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ДВА ПОДХОДА К АНАЛИЗУ БЛОЧНЫХ ШИФРОВ
Предложены два эвристических подхода к вскрытию ключа итерированного

блочного шифра (обращения хэш-функции). Первый подход основан на вложении
кольца Gn многочленов Жегалкина в квазикольцо рациональных чисел, второй — на
вложении Gn в (квази)кольцо целых 2-адических чисел. Для вскрытия ключа необхо-
димо составить продолженную целевую функцию и найти ее максимумы методом на-
искорейшего спуска. Значения переменных, найденные в ходе поиска максимума, дают
предположительно правильные разряды ключа.

Подходы подтверждены экспериментально. Для ГОСТ 28147–89 найден обшир-
ный класс потенциально слабых ключей, которые, возможно, допускают вскрытие с
низкой сложностью. При этом требуется всего четыре блока подобранных открытых
текстов.

1. Итерированные криптоалгоритмы и методы их анализа
Криптография позволяет создавать методы защиты информации,

обеспечивающие безопасность в условиях невырожденной модели воз-
можностей нарушителя (если чтение области памяти не является единст-
венным способом узнать защищаемую информацию) [6]. При разработке
криптографического алгоритма наиболее трудоемкой задачей является
обоснование его безопасности — оценка сложности вскрытия ключа.

В настоящее время для обеспечения конфиденциальности обычно
используются симметричные итерированные блочные шифры. Безопас-
ность таких шифров основана на задаче вскрытия ключа по известным или
подобранным открытым и зашифрованным текстам. Сложность этой зада-
чи обусловлена тем, что трудно определить, насколько тестируемый ключ
близок к истинному, так как небольшое изменение ключа или открытого
текста вызывает значительное изменение шифрограммы. Иначе говоря,
трудно задать вычислимую метрику, показывающую “расстояние” между
тестируемым и истинным ключом.

Для обеспечения высокой стойкости число циклов шифрования при-
нято выбирать достаточно большим. Однако до настоящего времени никто
не доказал, что увеличение числа циклов шифрования повышает стойкость
шифра или хотя бы не снижает ее; это предположение является своего рода
криптографическим “фольклором” (и не всегда справедливо).

Универсальные методы криптоанализа можно разделить на стати-
стические и алгебраические. Статистические методы используют метрику,
характерную для текстов “в среднем”, при этом обычно требуется большой
(зачастую недоступный) объем статистики открытых и соответствующих
зашифрованных текстов. Сюда можно отнести дифференциальный [8] и
линейный [11] методы, метод списка ключей [10] и метод сдвига [9], а
также ряд других методов, опубликованных в зарубежной печати. Чтобы
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организовать противодействие таким методам достаточно периодически
менять ключи, не позволяя нарушителю набрать требуемый объем стати-
стики.

Алгебраические методы часто основаны на использовании принципа
Пойа “обобщение — редукция” [2] и не требуют большого объема стати-
стики, поэтому организационно противостоять им почти невозможно. Эти
методы позволяют не только вскрывать ключ шифра, но и находить аргу-
мент хэш-функции. Сюда относятся метод Андельмана — Ридса [7] и ре-
шеточный метод [4]. Сложность первого метода растет по экспоненте от
числа циклов шифрования, что обусловлено необходимостью вычисления
производной сложной функции. Модификация этого метода предложена в
работе [3]. К числу алгебраических можно отнести и метод “giant step —
baby step” для вскрытия ключа симметричного шифра (реализуемый на
квантовом компьютере) и этим снизить стойкость в 2 раза по порядку ве-
личины [1]. Однако возможность создания практического квантового ком-
пьютера неочевидна.

При анализе алгебраическими методами нужно задать вычислимую
целевую функцию, принимающую значение 1 на единственном наборе пе-
ременных, продолжить ее до некоторого упорядоченного множества и най-
ти ее экстремум. В качестве целевой функции можно использовать пораз-
рядную конъюнкцию зашифрованных текстов, вычисленных для известно-
го открытого текста и тестируемого ключа, и истинного значения шифро-
граммы. На практике целевую функцию нельзя записать в виде обычной
булевой формулы, так как эта формула очень сложна, но можно вычислить
с полиномиальной сложностью для любого набора переменных.

2. Кольцо многочленов Жегалкина и его продолжения
Любую булеву функцию можно однозначно задать в виде многочле-

на Жегалкина от n переменных x1, …, xn. Многочлены Жегалкина образуют
конечное ассоциативное коммутативное факториальное кольцо Gn харак-
теристики 2, в котором каждый элемент, отличный от константы, является
делителем нуля. Кольцо Gn содержит в точности n неразложимых много-
членов, которые принимают единственное нулевое значение на множестве
из 2n наборов переменных [6], например, 1 ⊕ x1…xn, где ⊕ — сложение по
модулю 2.

Имеет место изоморфизм колец [6]:
Gn ≅ F2[x1, …, xn]/(x1

2 ⊕ x1, …, xn
2 ⊕ xn).

Замена всех переменных значениями из F2 задает гомоморфизм ко-
лец Gn → F2, который можно рассматривать как эндоморфизм кольца Gn.

Для анализа шифров интересны такие продолжения кольца Gn на
упорядоченные множества, которые позволяют определить, насколько тес-
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тируемый разряд ключа близок к истинному значению. Предлагаются два
подхода к анализу блочных шифров и хэш-функций.

Первый подход использует продолжение Gn на кольцо многочленов
над полем рациональных чисел Q (вещественные числа, не являющиеся
рациональными, непредставимы в ЭВМ). Более строго можно говорить не
о продолжении кольца Gn, а о продолжении эндоморфизмов этого кольца.

Наиболее интересным представляется продолжение
a ⊕ b → |a – b|, ab (mod 2) → ab, (1)

где ⊕ — сложение по модулю 2. Продолжение операции ⊕ определяет
коммутативную операцию “сложения”, задающую на рациональных чис-
лах структуру, похожую на коммутативную группу (без ассоциативности и
однозначной разрешимости уравнений). Продолженная структура удовле-
творяет многим аксиомам кольца и имеет характеристику 2. Назовем эту
структуру квазикольцом.

Если переменные принимают значения из подмножества рациональ-
ных чисел от 0 до 1, то и продолженный многочлен принимает значения из
этого множества.

Второй подход предполагает продолжение эндоморфизмов Gn → F2

до эндоморфизмов Z2[x1, …, xn] → Z2, где Z2 — кольцо целых 2-адических
чисел. Значение нормирования целого числа c2k, где c — нечетное число,
равно –k. Таким образом, значение нормирования является целым неполо-
жительным числом. Удвоение целого числа ведет к уменьшению значения
его нормирования на 1. Такое продолжение арифметических операций за-
дает гомоморфное вложение Gn в Z2[x1, …, xn]. Наряду с указанным воз-
можно и продолжение a ⊕ b → |a – b|. При этом продолженная структура
2-адических чисел будет являться не кольцом, а квазикольцом, но значение
нормирования удвоенного числа уменьшается до –∞.

По аналогии с приближением вещественных чисел рациональными,
когда отбрасываются младшие разряды, целое 2-адическое число можно
приближенно представлять элементом кольца Z/2mZ. В этом случае отбра-
сываются старшие двоичные разряды целого числа, минимальное значение
нормирования равно –m и продолжение имеет вид

a ⊕ b → a + b (mod 2m), ab (mod 2) → ab (mod 2m). (2)
Иногда сложение лучше продолжать так:

a ⊕ b → |a – b| (mod 2m). (2a)
Абсолютная величина разности обеспечивает коммутативность продол-
женного сложения, но для целей анализа можно использовать просто раз-
ность.
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3. Метод анализа
В основе криптоанализа лежит процедура нахождения максимума

целевой функции H, которая в случае продолжения (1) принимает значение
1 для истинного значения ключа. В случае продолжения (2), (2a) в качестве
значения целевой функции используется значение ее дискретного норми-
рования, равное нулю для истинного значения ключа. Поскольку аппарат
дифференцирования для нахождения максимума в данном случае неэффек-
тивен, использовался метод наискорейшего спуска, при этом множество
возможных значений разрядов ключа выбиралось по аналогии с работой
[3]. В случае рационального продолжения — это {0; 0,5; 1}, а в случае 2-
адического продолжения — {0; 1; 2}. Здесь числа 0,5 и 2 являются проме-
жуточными значениями между нулем и единицей соответственно для пер-
вого и второго подхода.

Пусть длина ключа равна n бит. Ключ определен однозначно, если
известны в среднем не менее 1,36n бит открытого и соответствующего за-
шифрованного текста [5]. В качестве целевой функции шифра с открытым
текстом x и шифрограммой y целесообразно использовать конъюнкцию
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где ui — разряды промежуточного текста, полученные при зашифровании
открытого текста на половине циклов шифрования, vi — разряды промежу-
точного текста, полученные при расшифровании шифрограммы на остав-
шейся половине циклов шифрования.
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Если переменные принимают значения из интервала (0, 1), то и целе-
вые функции (4), (5) принимают значения из этого же интервала.

Целевая функция (3) в случае 2-адического продолжения (2), (2a)
имеет вид
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Очевидно, что если все разряды ключа определены правильно, то
значение продолженной целевой функции (ПЦФ) будет максимально. Для
рационального продолжения (4) или (5) это значение равно 1, а для 2-
адического — 0, что соответствует произвольному нечетному значению H
в (6) или (7).

Продолжения многочленов Жегалкина нарушают ряд алгебраиче-
ских свойств исходного кольца многочленов, поэтому у ПЦФ появляются
локальные экстремумы, не соответствующие истинному значению ключа.
Опытным путем установлено, что двоичные значения разрядов шифра, вы-
явленные в ходе поиска локального максимума ПЦФ, обычно чаще оказы-
ваются правильными, чем неправильными.

Поиск локального максимума ПЦФ является не целью, а средством
выявления предположительно истинных разрядов ключа. Наряду с поис-
ком максимума ПЦФ можно использовать другие критерии. Способ про-
должения эндоморфизмов кольца Gn, критерии выбора предположительно
правильного разряда ключа, а также способ представления операций в виде
многочленов Жегалкина выбираются в зависимости от вида шифра.

Метод анализа предполагает три основных этапа. На этапе предвы-
числений изучаются статистические свойства ПЦФ. Для случаев, когда
ключ известен, выбираются способы продолжения эндоморфизмов Gn и
задания целевой функции. Для частоты p совпадения найденного разряда
ключа с истинным значением вычисляется преобладание ε = p – 0,5. На
втором этапе по известным открытым и зашифрованным текстам оценива-
ется ключ как совокупность наиболее часто встречающихся разрядов. На
третьем этапе выполняется опробование ключей, близких к найденной
оценке. Все этапы допускают распараллеливание.

Сложность вскрытия ключа существенно зависит от выполнения
следующего предположения.

Предположение 1. Каждый разряд ключа вскрывается независимо от
остальных с положительным преобладанием ε.

Если предположение 1 верно, то сложность вскрытия одного разряда
ключа составляет примерно ε–2 итераций. Если ε–2 оценивается многочле-
ном от n, то третий этап оказывается лишним, а сложность вскрытия ключа
становится полиномиальной.

Если предположение 1 неверно, то предложенный метод благодаря
этапу 3 может иметь сверхполиномиальную сложность, но остается менее
сложным, чем перебор.

Обозначим через pi/j частоту того, что для данного бита ключа най-
дена оценка i, тогда как в действительности этот бит имеет значение j. Ес-
ли предположение 1 не выполняется, то истинное значение ключа следует
искать перебором вблизи найденной оценки. Обозначим через n0, n1 соот-
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ветственно число нулей и единиц в оценке ключа, n00 = p0/0n0, n01 = p0/1n0,

n10 = p1/0n1, n11 = p1/1n1. Объем перебора можно оценить числом n
n

n
n

0

01

1

10





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



 .

Эта оценка предполагает, что все нулевые разряды ключа могут быть оши-
бочными с одинаковой вероятностью и все единичные разряды тоже могут
быть ошибочными с одинаковой вероятностью. На практике объем пере-
бора можно снизить, если по результатам первого этапа разбить множество
разрядов на классы по частоте ошибок и вести перебор внутри соответст-
вующих классов.

4. Результаты эксперимента
Предложенные подходы были проверены экспериментально на не-

скольких шифрах и хэш-функциях. Первый вариант исследуемого шифра
имел длину блока и ключа по 64 бита и задавался уравнением y = F2k(x),
где F — оператор шифрования на каждом из 2k циклов, содержащий сло-
жение по модулю 2 текста с ключом, перестановку битов в блоке, задавае-
мую уравнением xi → x23i(mod 64), экстремальную 4-битовую подстановку








7912101452151463811130
1514131211109876543210 ,

обладающую наилучшими теоретически возможными характеристиками
(нелинейность равна 4, диффузия равна 1 [6]), и циклический сдвиг на 25
бит. Абсолютная величина преобладания любого линейного равенства

0=+ ∑∑
j

j
i

i yx  (разность между 0,5 и вероятностью выполнения этого

равенства над полем F2) для подстановки не превышает 1/4. Вероятность
наиболее вероятного дифференциала подстановки равна 1/4. Используемые
операторы шифрования обеспечивают стойкость к дифференциальному и
линейному методам близкую к максимально возможной для подстановоч-
но-перестановочных шифров.

 При k = 4 стойкость этого шифра к линейному методу анализа со-
ставляет примерно 238, столько же требуется открытых и зашифрованных
текстов. Наиболее вероятные дифференциалы подстановки имеют вероят-
ность не более 1/4. С учетом того, что число дифференциалов с вероятно-
стью 1/4 больше, чем число линейных сумм с абсолютной величиной пре-
обладания 1/4, для вскрытия ключа дифференциальным методом требуется
лишь 235 подобранных открытых текстов (с заданной входной разностью).

При k = 8 стойкость шифра к линейному и дифференциальному ме-
тодам анализа превышает переборную и требует невозможного объема
статистики.

Промежуточные тексты имели вид: u = Fk(x) и v = F–k(y) для одного
известного открытого и соответствующего зашифрованного блока.
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Для снижения погрешности аппроксимации (1) и (2a), вызванной не-
ассоциативностью, использовалось нетрадиционное представление буле-
вых функций многочленами Жегалкина.

В ходе выполнения первого этапа для рационального и 2-адического
продолжения автоморфизмов кольца Gn установлено, что преобладание
достаточно велико для того, чтобы сложность вскрытия ключа была значи-
тельно ниже переборной.

Аналогичные результаты получились при вскрытии ключа шифра с
попарно различными циклами шифрования и при обращении хэш-функции
y = F2k(x) ⊕ x. Во втором случае в целевой функции использовались про-
межуточные тексты u = Fk(x), v = F–k(x ⊕ y). Установлено, что преоблада-
ния для хэш-функции и шифра с тем же числом циклов шифрования при-
мерно совпадают. Это обстоятельство опровергает мнение о том, что найти
коллизию хэш-функции легче, чем обратить ее.

 Эксперимент проводился также с отечественным 32-цикловым стан-
дартом шифрования ГОСТ 28147–89. На сегодняшний день не опублико-
ваны методы, снижающие его стойкость по сравнению с перебором. Суще-
ствуют классы ключей, при которых шифр становится степенным: это
ключи, определяемые равенствами K0 = K7, K1 = K6, K2 = K5, K3 = K4. Для
степенных шифров возможен анализ методом сдвига на один период чере-
дования ключей [9]. Однако эти равенства эффективно проверяемы только
при достаточно малом периоде повторения ключей (1 или 2) и при наличии
примерно 232 открытых и соответствующих зашифрованных текстов. Это
обстоятельство затрудняет использование свойства периодичности на
практике.

 В эксперименте выполнялся первый этап метода для продолжения
(1) эндоморфизмов Gn и целевой функции (4), при этом использовалась
экстремальная подстановка из предыдущего примера.

 Перемешивающие и рассеивающие свойства шифра в значительной
степени определяются переносами при сложении по модулю 232. Если
ключ и текст являются разреженными, то влияние переносов на начальных
циклах шифрования ослабляется. В целевой функции использовались че-
тыре блока открытого текста и соответствующие шифрограммы, суммар-
ная длина открытых текстов равна длине ключа. Для ослабления влияния
переносов один из блоков был нулевым, а остальные содержали по одной
единице. Шифрограммы вычислялись для режима простой замены.

 Установлено, что с увеличением разреженности слов ключа оценка
преобладания возрастает. Полученные большие оценки преобладания по-
зволяют предположить, что ГОСТ 28147–89 обладает большим множест-
вом потенциально слабых ключей, для которых число единиц в каждом
слове не превышает по крайней мере 8, а подстановка сохраняет 0 непод-
вижным (верхняя граница опасной разреженности не определялась). По-
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видимому, такие ключи могут быть вскрыты значительно быстрее, чем пе-
ребором. Число таких ключей превышает 1057. Уточнение границ множе-
ства потенциально слабых ключей, как и уточнение оценки стойкости
стандарта, требует дополнительных исследований.

 В результате эксперимента установлено следующее.
1. Сложность предложенного метода практически не зависит от того, оди-

наковы или попарно различны все циклы шифрования.
2. Значение преобладания, определяющее сложность метода, не является

монотонной функцией числа циклов шифрования: увеличение числа
циклов может снижать стойкость.

3. Значения преобладаний в случае рационального и 2-адического про-
должения для ПЦФ, вычисляемых согласно (4) и (5), а также (6) и (7),
различаются несущественно.

Проведенные эксперименты позволяют предположить, что предло-
женный  метод анализа является весьма эффективным, по крайней мере,
для подстановочно-перестановочных шифров и хэш-функций, зачастую
имеет значительно меньшую сложность, чем известные, и требует несрав-
нимо меньшего объема известных или подобранных текстов. К числу не-
достатков можно отнести эвристический характер оценок стойкости.
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