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О времени жизни общего и персонального открытого ключа

Криптосистемы с открытым ключом часто строятся на основе задачи
дискретного логарифмирования в циклической группе вычислимого или
трудновычислимого порядка (в группе обратимых элементов кольца, яко-
биане алгебраической кривой и т. п.). В общем случае эта задача формули-
руется так: в группе G решить показательное уравнение ax = b.

Защищенные системы связи в этом случае имеют общий для всех уча-
стников открытый ключ, каждый пользователь имеет персональный секрет-
ный и парный ему открытый ключ. Общим ключом является способ задания
группы G и образующая a, персональным открытым ключом является зна-
чение b, персональным секретным ключом является логарифм x. Например,
в стандартах цифровой подписи РФ и США общим открытым ключом явля-
ется характеристика поля p и образующая a группы простого порядка r.

Персональные ключи должны периодически меняться в соответст-
вии с установленным порядком по аналогии с симметричными криптоси-
стемами. При смене персонального ключа симметричные криптографиче-
ские алгоритмы допускают сохранение общего ключа (например, блока
подстановок в ГОСТ 28147–89). Что можно сказать о времени жизни об-
щего открытого ключа в криптосистемах с открытым ключом? Можно ли
продлить срок безопасной эксплуатации криптосистемы с открытым клю-
чом, периодически меняя персональные ключи всех пользователей и со-
храняя общий открытый ключ? Если смена персонального ключа решается
в организационном плане несложно, то смена общего открытого ключа
сопряжена со значительными неудобствами в эксплуатации. Кроме того,
после выработки срока действия общего ключа все цифровые подписи,
составленные с его помощью, должны считаться недействительными, а все
сеансовые ключи — раскрытыми.

Будем рассматривать только криптографические ограничения на
срок жизни ключа.

1. Мультипликативная группа кольца

Задача логарифмирования в группе Fp
* положена в основу отечест-

венного стандарта подписи, наилучший метод раскрытия персонального
секретного ключа — решето числового поля [1], обладающий субэкспонен-

циальной сложностью ( )S O c p p= ⋅



exp ln (ln ln ) 23 , где c ≈ 1,92 при усло-

вии удачного выбора простого числа p. Аналогичную сложность имеет и
метод логарифмирования на основе решета поля алгебраических функций.
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Метод решета числового поля основан на выборе неприводимого
над Q многочлена f(X) ∈  Z[X] небольшой степени n (практически 2 ≤ n ≤ 5)
и целого числа m < p1/n такого, что f(m) ≡ 0 (mod p) и m имеет малые про-
стые делители. Неудачный выбор числа p заключается в том, что сущест-
вует разреженный многочлен f(X) с малыми по абсолютной величине не-
нулевыми коэффициентами. В основу метода положена цепочка гомомор-
физмов колец ϕ: Z[α] → Z → Fp, ϕ(α) ≡ m (mod p), и однозначность разло-
жения идеалов в Z[α] и в Z на простые множители.

Наиболее трудоемкий этап логарифмирования заключается в состав-
лении базы данных  из  пар  целых  рациональных  чисел  (c, d)  таких,  что
c + dm и норма идеала (c + dα) раскладываются на множители из базы B,
не превышающие y, и в решении системы линейных уравнений. При этом
база, в которой раскладываются числа c + dm, может быть более узкой,
чем база, в которой раскладываются нормы идеалов.

Модифицируем метод решета числового поля для случая, когда a и b
неизвестны.
1. Создать базу данных размера не менее #B из пар (c, d).
2. Выразить базисные элементы в виде линейных комбинаций показате-
лей, найденных на шаге 1.

3. Когда нарушитель узнает персональный ключ b, он подбирает произве-
дение akbl, имеющее малые простые делители.

4. Ненулевые координаты элемента akbl выражаются через векторы, най-
денные на шаге 2 (число ненулевых координат этого элемента пренеб-
режимо мало по сравнению с размером базы данных).

5. Решается система линейных уравнений для ненулевых координат век-
тора, найденного на шаге 4, и вычисляется логарифм.
Сложность шагов 4–6 составляет примерно O(uu) операций, где

y
pu

ln
ln≈ . Традиционная оценка сложности раскрытия ключа равна O(uuy3),

сложность вычисления секретного ключа (при выполненных шагах 1−3) не
превышает квадратного корня из сложности первого этапа. Например, ес-
ли первоначально раскрытие персонального ключа требует нескольких лет
вычислений, то в случае его смены при составленной базе данных срок
безопасной эксплуатации продлится на несколько секунд. Смена обра-
зующей по сути ничего не меняет, так как в этом случае шаг 4 нужно вы-
полнить два раза. Поэтому здесь, в отличие от симметричных криптоси-
стем, по окончании срока действия любого персонального ключа нужно
менять характеристику поля и, следовательно, ключи всех пользователей
независимо от срока их ввода в действие.

В криптографии иногда используется задача логарифмирования в
группе трудновычислимого порядка (Z/pqZ)* обратимых элементов кольца
вычетов по модулю составного числа pq с неизвестным разложением.
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Данная задача сводится к разложению общего для всех составного числа.
Очевидно, что и в этом случае выработка срока действия любого персо-
нального ключа влечет замену характеристики кольца и, следовательно, за-
мену всех персональных ключей. Попутно отменяются защитные качества
всех криптографических алгоритмов, использующих отмененный общий
открытый ключ, независимо от начала действия персональных ключей.

Данное свойство криптосистем в сочетании с быстрым падением
стойкости — десятичный порядок в год для размера задачи 512 бит — де-
монстрирует неудобство популярных криптографических алгоритмов, до-
пускающих субэкспоненциальные алгоритмы раскрытия. В частности,
цифровая подпись электронных документов, действующая в течение не-
скольких лет, не может быть реализована средствами ГОСТ Р 34.10–94
при размере задачи менее 1–2 кбит. Кроме того, на сложность логарифми-
рования существенно влияет способ выбора характеристики поля p. В ча-
стности, “мина” может быть заложена, если сначала выбрать многочлен
f(X), числа α и m, а затем — простое число p с требуемыми свойствами.
Аналогичная “мина” может быть заложена и в задачу разложения. Кроме
того, составное число может быть не свободным от квадратов или содер-
жать более двух простых делителей, что значительно снижает стойкость.

В последние годы предпринимаются попытки создать электронные
деньги на основе криптографической подписи “вслепую”, причем прото-
колы часто основываются на задаче разложения или логарифмирования в
мультипликативной группе конечного поля. Ограничение на срок дейст-
вия общего ключа ведет к тому, что все электронные монеты независимо
от даты выпуска имеют одинаковый срок окончания действия, по истече-
нии которого они не могут быть погашены или обменены, так как все по
определению должны считаться фальшивыми. Социальные последствия
использования таких “денег” можно предсказать — ситуация с памятным
всем обменом купюр покажется невинной шалостью.

2. Общий случай циклической группы вычислимого порядка

Пусть абелева группа G имеет простой порядок r (в противном слу-
чае в соответствии с основной теоремой об абелевых группах задача сво-
дится к логарифмированию в подгруппах простых порядков).

Для логарифмирования в группе G наилучшим является алгоритм Пол-
ларда [2]. Этот алгоритм использует сжимающее отображение ϕ: G → G, со-
храняющее вычислимость логарифма (если логарифм y известен, то лога-
рифм ϕ(y) можно легко найти). Алгоритм предусматривает построение це-
почки отображений для начального элемента y, логарифм которого извес-
тен или может быть выражен через x. Граф конечен, поэтому существует
натуральное число n такое, что выполняется равенство ϕn(y) = ϕ2n(y). От-
сюда находится логарифм решением несложного уравнения по модулю
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порядка группы. Алгоритм Полларда невозможно улучшить за счет увели-
чения объема памяти [4].

Рассмотрим модификацию алгоритма Полларда при известном общем
ключе и неизвестном персональном ключе. Предположим, что память вы-
числительной модели ограничена значением O r( ) , что обычно имеет ме-
сто на практике. Выберем отображение, зависящее только от образующей a
и текущего значения аргумента. Например, для одной половины аргументов
ϕ(y) = ay и log(ϕ(y)) = log(y) + 1, для другой половины аргументов ϕ(y) = y2 и
log(ϕ(y)) = 2 log(y). Алгоритм предусматривает выбор случайных начальных
значений yi, логарифмы которых известны, последовательное выполнение n
отображений и запоминание троек {ϕn(yi), log(ϕn(yi)), yi} с сортировкой по
первой координате. После того, как нарушитель узнает b, он поочередно
выбирает элементы, логарифмы которых являются линейной функцией от b,
делает m отображений, сравнивая на каждом шаге результат с базой данных.
При совпадении приравниваются логарифмы и находится x.

Граф случайного отображения ϕ представляет собой ориентирован-
ный лес, корни которого связаны в циклы, при этом почти все вершины
лежат на одном дереве [3]. Случайное дерево при обращении ребер моде-
лируется пуассоновским ветвящимся процессом с параметром λ = 1. Зада-
ча логарифмирования сводится к задаче о встрече на случайном ориенти-
рованном дереве.

Определим индуктивно глубину d на дереве с r вершинами. Все ли-
стья имеют глубину 0, вершина имеет глубину d, если максимальное рас-
стояние от какого-либо из листьев до вершины равно d. Максимальная
глубина равна )( rO . Обозначим P(d) вероятность того, что вершина име-
ет глубину не более d, p(d) — вероятность того, что вершина имеет глуби-
ну d. Тогда p(0) = 1/e (e — основание натуральных логарифмов). Имеет
место рекуррентное соотношение )1(11)( −+−+−= dPedP . После каждого
шага от вершины с глубиной d глубина может увеличиваться от d + 1 до
O r( ) , вероятность попадания на каждую глубину пропорциональна доле
вершин с данной глубиной. Вероятности P(d) и p(d) при больших значени-
ях d равны соответственно (1 – 2/d) и 2/d2.

Вероятность того, что после k > 0 шагов по графу взятая наугад вер-
шина будет совпадать с вершиной из базы данных, равна

p p d p dk k
d

O r
=

=
∑ ( ) ( )
( )

1
,

где pk(d) — вероятность попасть после шага k на глубину d.
Попасть на глубину d после k шагов можно при следующих чередо-

ваниях глубин: (0, 1, ..., k – 3, k – 2, d), (0, 1, ..., k – 3, k – 1, d),  ...,  (0, 1, ...,
k – 3, d – 1, d), ..., (d – k, ..., d – 1, d). Число вариантов чередования глубин
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равно 





k
d

. Общее число путей длины k на глубину d равно k-й элементар-

ной симметрической функции от d аргументов. Эта симметрическая функ-
ция выражается в виде многочлена H(f1, …, fk) над Q от симметрических
функций ∑= i

i dpf )(  для 1 ≤ i ≤ k, которые могут быть оценены интегра-
лами. Длина многочлена H определяется числом разбиений числа k и

асимптотически равна субэкспоненте 
34

3/2

k
e kπ

 [5]. Все коэффициенты

многочлена H имеют вид 1/s, где s |  (k!), их сумма равна нулю.
Для того, чтобы суммарная вероятность равнялась единице, введем

нормирование:

∑
=

≈
)(

1
)('

)('
)(

qO

j
k

k
k

jp

dp
dp ,

где pk′ — аппроксимированное значение вероятности.
Анализ сложности алгоритма с использованием численных методов

и указанных аппроксимаций показал, что оптимальными являются значе-
ния  m = O(n) = O(log r) или n = O(1), m O r= ( ) . Если доступная память
не превышает O r( ) , то алгоритм имеет ту же асимптотическую слож-
ность, что и обычный алгоритм Полларда.

Таким образом, в криптосистемах с открытым ключом, в которых
наилучшим методом раскрытия ключа является алгоритм Полларда, заме-
на персонального ключа при сохранении общего ключа позволяет продле-
вать срок безопасной эксплуатации. В этом проявляется аналогия с сим-
метричными криптосистемами. К такому классу на сегодняшний день от-
носятся криптосистемы на алгебраических кривых невысокого рода, в ча-
стности, на эллиптических кривых при условии, что группа точек не мо-
жет быть вложена в аддитивную или мультипликативную группу поля при
небольших степенях расширения.
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