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РЕШЕТОЧНЫЙ КРИПТОАНАЛИЗ

Предлагается метод анализа симметричных шифров, полученных путем компо-
зиции наборов несложных булевых функций. Метод основан на использовании реше-
точного продолжения булевых функций с {0, 1} на множество рациональных чисел,
лежащих в диапазоне от 0 до 1, и позволяет распознавать, каким именно разрядом клю-
ча определяется значение решеточно продолженной функции.

1. Введение

Большинство современных шифров основано на использовании
композиции наборов булевых функций, каждая из которых имеет неслож-
ное описание и может быть легко вычислена. Примерами являются DES,
ГОСТ 28147-89, FEAL, «Кобра» и т. п. Сложность раскрытия ключа таких
шифров обусловлена тем, что небольшое изменение ключа или текста
приводит к большому изменению функции, причем неясно, каким разря-
дом переменной (ключа) определяется значение функции. Существующие
методы криптоанализа, в том числе линейный [1] и дифференциальный
[2], требуют большого объема известных открытых текстов. В данной ра-
боте предложен принцип исследования булевых уравнений, основанный на
распознавании разрядов ключа и не требующий большого объема текстов.

Рассмотрим  шифратор с композициями наборов булевых функций,
без эквивалентных ключей. Предположим, что нарушитель знает крипто-
алгоритм и некоторое количество разрядов открытых и соответствующих
зашифрованных текстов. Пусть разряды открытого текста описываются
уравнениями

xi = Fi(y1, ..., yn, z1, ..., zN). (1)
Здесь yi — разряды шифрограммы, zj — разряды ключа. Булевы функции
Fi не имеют аналитической записи (она очень сложна), но значения их мо-
гут быть вычислены для произвольного набора аргументов. Если откры-
тые и зашифрованные тексты известны в достаточном количестве, равном
O(N), то система уравнений (1) имеет единственное решение, которое и
является ключом. При этом достаточно знать только отдельные разряды
некоторых блоков открытого текста. Запишем для этого случая систему
уравнений (1) в виде

fi(z1, ..., zN) = ai (2)
Поскольку система (2) имеет единственное решение, оно может быть

записано в виде булевой формулы, содержащей единственную конъюнкцию:
~ ~ ~z z zN1 2 1... = (3)
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Символ ~z  означает вхождение переменной с инверсией или без инверсии.
С другой стороны, (2) может быть записана в виде следующей

конъюнкции булевых формул:

∧ =~Fi 1. (4)

Если xi = 1, то  Fi входит без инверсии, в противном случае Fi входит с ин-
версией. Поскольку левые части выражений (3) и (4) равны 1 на одном и
том же наборе аргументов, они представляют одну и ту же булеву функ-
цию, которую назовем целевой, при этом (4) дает способ вычисления целе-
вой функции для произвольного ключа.

2. Решеточно продолженные булевы функции

Булевы формулы в функциональном базисе И, ИЛИ, НЕ можно рас-
сматривать не только как элементы булевой алгебры, но и как решетки.
При этом множество значений аргументов и функций {true, false} интер-
претируется как true = 1, false = 0 с упорядочиванием 1 > 0. Соответствен-
но элементарные функции определяются численно на {0, 1} так:

a b a b a b a b a a∨ = ∧ = = −max min .( , ); ( , ); 1 (5)

Здесь одной и той же буквой обозначается имя аргумента и его численное
значение, но это не вносит путаницу.

Выражения (5) позволяют формально определить произвольную бу-
леву формулу на множестве A чисел,  лежащих в интервале от 0 до 1.
Множество A может состоять из конечного или счетного числа элементов.
При этом формальное представление булевой функции формулой сохра-
няется, но расширяется ее область определения и, соответственно, область
значений. Такие функции будем называть решеточно продолженными
(РПБФ). Будем называть для РПБФ по аналогии с булевыми формулами
a∨ b дизъюнкцией, a∧ b конъюнкцией. Соответственно определяется и
дизъюнктивная нормальная форма.

Геометрически введенные понятия можно интерпретировать так. Бу-
лева функция определена на вершинах N-мерного единичного куба, а
РПБФ определена на всех рациональных точках этого куба. Нет необхо-
димости расширять множество A до вещественных чисел, так как вещест-
венные нерациональные числа не представимы в ЭВМ.

РПБФ обладает следующими свойствами:
1. Булева функция и ее решеточное продолжение на вершинах единичного
куба совпадают.

2. Решеточное продолжение операций И, ИЛИ сохраняет идемпотент-
ность: a∨ a = a, a∧ a = a. Поэтому РПБФ принимает значения одной из
переменных или ее инверсии.
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3. Решеточные продолжения операций И, ИЛИ являются коммутативны-
ми, ассоциативными, дистрибутивными. Для них выполняются законы
поглощения: a∨ b = b∨ a, a∧ b = b∧ a, (a∨ b)∨ c = a∨ (b∨ c), (a∧ b)∧ c =
= a∧ (b∧ c), a∧ (b∨ c) = (a∧ b)∨ (a∧ c), a∨ (b∧ c) = (a∨ b)∧ (a∨ c), a∨ (a∧ b) = a,
a∧ (a∨ b) = a.

4. Операция инверсии не является решеточной операцией дополнения на
внутренних точках куба.

5. Для решеточного продолжения операции сложения по модулю 2 сла-
гаемое, ближайшее к числу 0.5, поглощает другие слагаемые суммы.
Число 0.5 является аннулятором: 0.5 ⊕  z = 0.5.

6. Отображение z → 0 для 0 ≤ z < 0.5 и z → 1 для 0.5 < z ≤ 1 задает изомор-
физм булевых формул и их решеточных продолжений.

7. Множество РПБФ является расширением множества булевых функций
путем присоединения нестандартных конъюнкций вида z zi i∧ . Соот-
ветственно РПБФ разбивается на стандартную и нестандартную части.
Нестандартная конъюнкция не превышает 0.5 на всем единичном кубе и
равна 0 на всех вершинах.
Решеточное продолжение булевой функции позволяет различать, ка-

кой именно переменной или ее инверсией определяется значение функ-
ции. Назовем конусом, ассоциированным с вершиной T куба, множество
точек куба, каждая координата которых отличается от соответствующей
координаты вершины T меньше, чем на 0.5. Таким образом, соответствие
конус-вершина является взаимно однозначным. Удалением r РПБФ (от
значения 0.5)  будем  называть  число  аргументов,  которые  в  метрике
∆ab = |a – b| ближе к 0.5, чем значение функции.

Имеет место следующая лемма.

Лемма. РПБФ с конечным числом композиций представима в виде
дизъюнктивной нормальной формы.

Следствие. Решеточно продолженная целевая функция имеет вид

H C g z z g z zN N N= ∨ ∨ ∨1 1 1 ... (6)

где C — целевая конъюнкция (стандартная часть РПБФ), представленная
выражением (3), gi — решеточные продолжения булевых функций, при
этом gi не зависит от zi.

Заметим, что поскольку каждое из преобразований шифрования мо-
жет быть быстро вычислено на ЭВМ, описывающие это преобразование
булевы формулы и их решеточные продолжения быстро вычислимы. По-
этому быстро вычисляется и решеточно продолженная целевая функция.

Если целевая функция содержит только стандартную конъюнкцию,
то ключ может быть легко вычислен следующим алгоритмом. Придадим
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переменным произвольные значения с попарно различными удалениями и
вычислим функцию. Поскольку значение функции превышает 0.5 в един-
ственном конусе, а вероятность угадать этот конус мала, будем считать,
что значение функции меньше 0.5. Пусть значение функции равно некото-
рому разряду ключа (или его инверсии). Поскольку H < 0.5, то этот разряд
был выбран неверно. Заменяем его на инверсный и повторно вычисляем
функцию. Так повторяем до тех пор, пока значение целевой функции не
превысит 0.5. Решением является вершина куба, ассоциированная с кону-
сом, в котором  H > 0.5. Алгоритм требует в среднем N/2 шагов.

3. Метод криптоанализа

Реально  решеточно продолженная целевая функция содержит и не-
стандартные конъюнкции, в этом случае C ≤ H. Поэтому указанный выше
метод нужно модифицировать с учетом последнего неравенства.

Пусть для набора значений переменных {Zi} (Zi ≠ 0.5 — значение
переменной zi) из конуса, ассоциированного с некоторой вершиной куба,
удаление целевой РПБФ равно r(H) = r(Zk). При этом во всех конусах, кро-
ме конуса, ассоциированного с решением, H < 0.5. Поскольку C ≤ H, то не
все значения переменных с удалением не менее r(Zk) выбраны правильно.
Чем больше удаление целевой функции, тем больше информации о ключе
можно получить.

Целевая РПБФ может вычисляться как в разных конусах, так и в од-
ном конусе с различным упорядочением переменных. После серии таких
испытаний получается набор условий типа “хоть одна переменная из дан-
ного набора определена неправильно”. Если Zk не является ближайшим к
0.5 числом из {Zi}, то это позволяет отбраковать сразу значительную долю
ключей, которые не могут удовлетворять целевой конъюнкции. Соответст-
венно сужается область перебора.

Заметим, что если удастся доказать, что на данном наборе перемен-
ных H = C, то это позволяет раскрыть сразу все разряды ключа с удалени-
ем не меньшим, чем удаление целевой функции.

Криптоанализ может проводиться следующим алгоритмом.

Алгоритм.
1. По известным блокам шифрограммы и разрядам открытого текста со-
ставляется целевая функция.

2. Разрядам ключа придаются произвольные значения из случайно вы-
бранного конуса с попарно различными удалениями. Вычисляется целе-
вая функция. Если она определяется наименее удаленным разрядом клю-
ча, то выбор конуса или выбор упорядочивания разрядов ключа неудачен.
В противном случае вычисляется множество возможных ключей.
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3. Предыдущий пункт повторяется до тех пор, пока не будет найден ключ,
который вычисляется как пересечение множеств возможных ключей на
каждой итерации п. 2.

Для повышения эффективности решеточного анализа можно исполь-
зовать следующее:
1. Приравнивать не вычисленные значения разрядов шифрограммы и их ис-
тинные значения, а значения промежуточных текстов, которые получа-
ются зашифрованием открытого текста на половине циклов и расшифро-
вания шифрограммы на половине циклов на том же ключе (для этого
нужно знать не отдельные разряды, а целые блоки открытых текстов).

2. Число отбракованных ключей для предложенного алгоритма равно 2r(H).
Поэтому желательно использовать не случайный выбор конуса и упорядо-
чивания, а проводить процедуры, обеспечивающие максимум удаления.

3. Для снижения сложности метода целесообразно учитывать закон рас-
пределения вероятностей разностей удалений целевой функции и целе-
вой конъюнкции.

4. На сложность метода сильно влияют нестандартные конъюнкции. С целью
ослабления их действия булевы формулы, описывающие стандартную
часть каждой операции шифрования, должны быть минимизированы.

Возможно, для каждого криптоалгоритма существует пара чисел, за-
дающих оптимальные число перестановок значений разрядов ключа для
каждого конуса и число конусов, которая позволяет минимизировать
сложность раскрытия ключа. Поиск максимального удаления может вы-
полняться указанным выше алгоритмом, если в п. 2 для каждого конуса
выбирать оптимальное число перестановок и в качестве удаления целевой
функции в данном конусе выбирать наибольшее.

Данный метод не работает, если в уравнении (6) почти все gi больше
0.5. Заметим, что практически с ростом числа циклов шифрования удале-
ние целевой функции стремится к 0, т. е. значения gi превышают 0.5.

Метод должен быть эффективен для тех шифров, в которых не каж-
дый разряд ключа сцеплен с каждым разрядом шифртекста, например, для
шифров с псевдослучайным выбором слов ключа.
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