Chapter 1

Virtual Machine Manager Overview

Introduction

The virtual machine manager (VMM) is the 32-bit protected-mode operating system at the core of Windows 95. Its primary responsibility is to create, run, monitor, and terminate virtual machines. The VMM provides services that manage memory, processes, interrupts, and protection faults. The VMM works with virtual devices, 32-bit protected-mode DLLs, to allow the virtual devices to intercept interrupts and faults to control the access that an application has to hardware devices and installed software.

Both the VMM and virtual devices run in a single, 32-bit, flat model address space at privilege level 0 (also called ring 0). The system creates two global descriptor table (GDT) selectors, one for code and the other for data, and uses these selectors in the CS, DS, SS, and ES segment registers. Both selectors have a base address of zero and a limit of 4 gigabytes (GBs), so all the segment registers point to the same address space. The VMM and virtual devices never change these registers.

The VMM provides multiple-threaded, preemptive multitasking. It runs multiple applications simultaneously by sharing CPU (central processing unit) time between the threads in which the applications and virtual machines run. The VMM is also nonreentrant. This means that virtual devices must synchronize access to the VMM services. The VMM provides services, such as semaphores and events, to help virtual devices prevent reentering the VMM.

The virtual machine manager provides a variety of services, messages, macros, and structures to help virtual devices manage their corresponding hardware devices and services. The following chapters introduce the services and provide details about how to call the individual services, messages, macros, and structures.

Paging Through MS-DOS

When run on hardware for which 32-bit drivers are not available, Windows 95 may be forced to use MS-DOS and/or the BIOS for access to the paging device. When paging through MS-DOS, the VMM changes its behavior in significant ways, and new rules apply to existing VxDs. Windows 95 will also page through MS-DOS if the system is running in safe mode.

Make sure to test your VxD on a configuration which pages through MS-DOS. One way to accomplish this is to go to the Control Panel, and select System, Performance, File System, Troubleshooting, then 'Disable all 32-bit protect-mode disk drivers'.

Special circumstances that apply to paging through MS-DOS will be noted as they arise.

Pageable VxDs

This section describes how paging works using the Windows 3.1 model. Then, changes to the model for Windows 95 are described.

Under Windows 3.1, VxD code segments are always locked. This implies that VxD code is normally not preempted, with the following exceptions:

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	If interrupts are enabled, hardware interrupts may be serviced. Therefore, any data structures that may be accessed by hardware interrupts must be protected by disabling interrupts during the access. (And obviously, any data structures accessed by a hardware interrupt must be locked.)

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Accessing swappable memory may result in the code being pre-empted, even if interrupts are disabled. (The VMM might need to wait for the page to arrive from the swap device.) Therefore, any data structures that exist in swappable memory must be protected by some sort of synchronization mechanism; merely disabling interrupts is not good enough.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Calling a service that adjusts execution priorities may result in the code being pre-empted if the result of the adjustment is that the current virtual machine no longer has the highest execution priority in the system.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Calling a service that allocates or frees memory from the system heap or pages from the page allocator may result in the code being pre-empted if the swap file needs to be adjusted to account for the memory being allocated or freed.

The terms pageable and swappable are synonymous. The VMM uses paging as its form of memory management. It does not swap segments or tasks. Where you see the word swap or a derivative thereof, substitute the corresponding form of the word page.

Windows 95 supports VxD with pageable code segments. While this has the benefits of allowing rarely-used code segments to get paged out, thus freeing up memory, it does come at the cost of adding more rules to follow.

Here are additional rules that apply to Windows 95 pageable VxDs. They are in addition to the existing rules from Windows 3.1.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Pageable code and data may not be accessed by a hardware interrupt.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	 Code in pageable segments may be preempted at any time by the paging system, even if interrupts are disabled. Thus, care should be taken to protect data structures from corruption by unsynchronized access. Consider the following code fragment:

pushfd		; Disable interrupts to protect a global

 cli			; variable, so that the update is atomic

 mov eax, pHead 	; Get the head of the list

 mov ecx, [eax].pNext	; And delete it from the list

 mov pHead, ecx

 popfd			; End of critical section

If this code fragment resides in pageable memory, then it may be possible for code to interrupt this sequence and corrupt the linked list. Using standard synchronization techniques such as semaphores, you can serialize access to the data structure, but since there are hidden possibilities for deadlocks, the safest way to guarantee the correctness of the code is to keep it in locked memory. Furthermore, the data in which the linked list resides should also reside in locked memory.

If Windows 95 is paging through MS-DOS, allowing VxD code segments to be paged out would be catastrophic. In such situations, the VMM automatically locks all VxD code segments (and VxDLdr does the same for dynamically-loaded VxDs).

Bitness

Some services alter their behavior depending on whether the virtual machine is running in 16-bit or 32-bit protected mode. The VMM determines whether a virtual machine is in 16-bit or 32-bit protected mode by recording whether the virtual machine entered protected mode (via the DPMI services) as a 16-bit or 32-bit application. It does not check whether the current CS is a 16-bit or 32-bit code segment. This means that if a 16-bit DPMI client happens to create a 32-bit code segment and switch to it, the VMM will still treat it like a 16-bit application and use only the low word of the extended registers.

 For compatibility reasons, the Windows 95 system virtual machine executes as a 16-bit DPMI client. That implies that every Win32 application is considered a 16-bit application by the VMM. As a result, Win32 applications cannot communicate with VxDs by the same means that 16-bit Windows applications can (software interrupts, callbacks, VxD services, etc). Win32 applications must use the DeviceIOControl interface to communicate with VxDs that support device I/O calls.

Deadlocks

With the greater degree of multi-tasking available in Windows 95, the opportunity for deadlocking the system grows enormously. Moreover, some operations, while not deadlocking the system, effectively shut off multi-tasking until the operation completes. The section on events will discuss various deadlock issues related to events. Here are some other issues:

Remember that there are two components in the system which together control whether a thread may run. VxDs interact with the ring 0 scheduler and time slicer, whose rules for choosing which thread may run can be oversimplified to 'run the highest priority thread not blocked on a ring 0 synchronization object'. Meanwhile, there is also a ring 3 scheduler implemented in Kernel32 which has its own rules for which thread may run, based on things applications do, such as WaitForSingleObject or GetMessage. In order for a thread to run at ring 3, both schedulers must agree that the thread is runnable.

For example, a common scenario is for a VxD to block thread A at ring 0 and wait until thread B does some work at ring 3. If thread A owns some resource at ring 3 which thread B requires, then the system grinds to a halt because thread B cannot run until thread A releases the resource, but thread A is waiting for thread B to do something.

Another common scenario is for a VxD to attempt to acquire a resource at event or timeout time which the current thread already owns. This results in even shorter deadlock chain, where a thread ends up waiting for itself. Examples of this will be given in the chapter on events, but the general rule is not to block inside an event or timeout. Even if you don't deadlock the system, you will almost certainly cause multi-tasking to halt until the thread unblocks.

Another scenario is to call Begin_Critical_Section, followed by some other operation which blocks on a synchronization object. 'Blocking with the critical section' usually deadlocks the system because large numbers of important system operations require the critical section in order to proceed. By holding onto the critical section while waiting for something else, those other important system operations cannot be carried out.

Yet another situation is for thread A to go into a Resume_Exec loop, waiting for some operation to be performed by thread B. Resume_Exec does not block but merely processes events, so if thread B does not have sufficiently high priority, it will never run and thus thread A will wait forever.

Hook procedures

Windows 95 provides additional services which allow a virtual device to unhook various services that it had previously hooked. This has become increasingly important with the introduction of dynamically-loaded VxDs. In order to support this feature, new requirements have been imposed on VxDs which hook device services or faults.

The hook procedure passed in the ESI register to Hook_Device_Service, Hook_V86_Fault, Hook_PM_Fault, and Hook_VMM_Fault must be one declared with the BeginProc macro (defined in vmm.h) with the HOOK_PROC attribute. You are required to pass a new-style hook procedure even if you never plan to unhook the service. Failure to comply will prevent other devices from unhooking the service. Windows 95 supports old-style hook procedures solely for backwards-compatibility. Support for old-style hook procedures may be removed in a future version of Windows, so it is imperative that you convert all your hook procedures to the new style when building for Windows 95. (New-style hook procedures are downward-compatible with Windows 3.1, so there is no loss of amenity there.)

Here is a sample hook procedure, and the code that installs and removes it.

VxD_LOCKED_DATA_SEG

pPrevHook dd 0

VxD_LOCKED_DATA_ENDS

BeginProc MyHook, HOOK_PROC, pPrevHook, LOCKED

 pushfd ; Remember, hooks must preserve all regs

 pushad ;

 Trace_Out "An MS-DOS app is starting"

 popad

 popfd

 jmp [pPrevHook] ; Chain to previous hook

EndProc MyHook

 ...

 ; Install the hook to watch for MS-DOS apps starting

 mov esi, offset32 MyHook

 GetDeviceServiceOrdinal eax, DOSMGR_Begin_V86_App

 VMMCall Hook_Device_Service

 jc Error

IFDEF WIN31COMPAT

 mov pPrevHook, esi ; Windows 3.1 requires this

 ; Optional in Windows 95 provided

 ; MyHook is a HOOK_PROC

ENDIF

 ...

 ; Remove the hook that watches for MS-DOS apps starting

 mov esi, offset32 MyHook

 GetDeviceServiceOrdinal eax, DOSMGR_Begin_V86_App

 VMMCall Unhook_Device_Service

 jc Error

Observe that the value returned in ESI need not be stored into pPrevHook under Windows 95; the VMM automatically does this. (This also closes race conditions that occur if you hook an asynchronous service and a hardware interrupt arrives before you can save the answer.) Moreover, you should never attempt to modify the value in pPrevHook yourself; VMM assumes that it is the only code which will modify the value, because it uses that value to walk the hook chain. Furthermore, you must never attempt to 'unhook' the service by passing pPrevHook as the ESI to a Hook_Device_Service or Hook_XX_Fault call, for that too will mess up the bookkeeping.

For fault hooks, there is another twist. If there was no previous fault hook, zero is returned in ESI, for compatibility with Windows 3.1, but the address of the system default fault handler is returned in pPrevHook anyway. This allows you to pass a fault through instead of being forced to handle it. Sample code to install the hook procedure would then look like

 mov esi, offset32 MyHook

 mov eax, 6 ; Invalid opcode fault

 VMMCall Hook_VMM_Fault

 jc Error

IFDEF	WIN31COMPAT

 mov pPrevHook, esi	; DO NOT DO THIS FOR WINDOWS 95

ENDIF

The hook itself would look like this

BeginProc MyHook, HOOK_PROC, pPrevHook, LOCKED

 pushfd ; Remember, hooks must preserve all regs

 pushad ;

 Trace_Out "An invalid opcode fault"

 popad

IFDEF WIN31COMPAT ; THIS IS NOT NECESSARY FOR WINDOWS 95

 cmp [pPrevHook], 0 ; Was there a previous hook

 jnz @F ; Yes, chain to it

 popfd ; No, just return (nothing better to do)

 retd

@@:

ENDIF

 popfd

 jmp [pPrevHook] ; Chain to previous hook

EndProc MyHook

Observe how the Windows 95 hook mechanism removes the need to alter behavior depending on whether there was a previous fault handler.

Tips and Traps

This section describes common problems that VxD writers encounter and suggests ways to avoid them.

Tip: To avoid cancelling a timeout after it has been dispatched, ensure that the timeout callback procedure immediately set the variable that holds the timeout handle to zero.

Tip: To avoid cancelling a timeout twice by mistake, use the following method:

 xor esi, esi

 xchg [hTimeOut], esi

 VMMCall Cancel_Time_Out

If this code is executed twice by mistake, the second time will not cause any harm. Note, however, that there is still an opportunity for a race condition to occur between the xchg instruction and the call to the Cancel_Time_Out service. To be extra sure that you don't cancel the wrong timeout by mistake, put the routine in locked code. If the timeout being cancelled is an asynchronous timeout, you also need to disable interrupts.

Tip: To enumerate all of the threads in the System VM, you can't just call Get_Initial_Thread_Handle to retrieve the System VM (or Get_Sys_Thread_Handle), and then call Get_Next_Thread_Handle until you retrieve the handle of a VM whose parent is not the System VM (or until you get back where you started). The reason is that the initial thread handle happens to be the last thread in the list, so the next time you call Get_Next_Thread_Handle, you will be bumped into the next VM and think the game is over. Instead, call Get_Sys_Thread_Handle, and then call Get_Next_Thread_Handle repeatedly until you get back to the system thread handle. For each thread along the way, skip it if the parent VM is not the System VM.

Trap: Forgetting to zero-initialize the thread data slot. Remember that thread data slots are not zero-initialized. When one is allocated, you have to go through every thread in the system and initialize each one.

Traps

The following are all real problems that were encountered by virtual device developers:

Trap: Forgetting to free memory associated with a thread data slot when a thread terminates. When a thread terminates, don't forget to free the contents of the thread data slot while you still can; otherwise, the memory will be leaked.

Trap: Scheduling too many events. The VMM has only a limited amount of space to record events. The space does not grow until the next time the VMM processes events with the critical section free. Scheduling thousands of events in rapid succession will crash the machine. Coalesce duplicate events to reduce the demand on the event heap.

Trap: Allocating too many list elements. As with events, the VMM has a limited amount of space for allocating list elements (unless the list uses the heap, in which case list elements come from the heap and this remark does not apply). Also, as with events, the space for list elements grows only the next time the VMM processes events with the critical section free. Allocating thousands of list elements in rapid succession will crash the machine. If you need thousands of list elements, you should reconsider your data structure.

Trap: Forgetting to pass a priority value in the EAX register to Call_Restricted_Event or Call_Priority_VM_Event. The result is that the thread or virtual machine gets boosted by a random amount, and the system seems to freeze for extended periods of time. (The debugging version of Windows 95 reports this problem.)

Trap: Calling the registry at unrestricted event time. Unless you set the PEF_WAIT_NOT_NEST_EXEC restriction when scheduling the event, it is possible that the event may be dispatched on a thread that is already in the registry. This deadlocks the system. (The debugging version of Windows 95 reports this problem.)

Trap: Leaving events outstanding when you unload. Dynamically-loaded device drivers must remove all hooks and cancel all events, timeouts, and callbacks before they unload. Otherwise, the hook, event, timeout, or callback causes a jump to an invalid location when the appropriate condition is met. If you need to leave a hook or callback in place (for example, because the unhook failed, or there is no way to cancel the callback), put the hook or callback in a static code segment so that it remains loaded even after your VxD unloads. Of course, the stub in the static code segment shouldn't do anything unless the rest of the VxD is already loaded. (The debugging version of Windows 95 reports many cases of this problem, but not all of them.)

Trap: Looping without blocking. Remember that going into a Resume_Exec loop does not actually block the current thread; it merely processes events. If the current thread is the highest-priority thread, nothing happens until the loop ends. For additional discussion of this problem, see Events.

Trap: Assuming registers don't change across a call. This typically happens when calling a service whose name begins with an underscore (which in most cases indicates that the service uses the C calling and register convention) and assuming that the EAX, ECX, or EDX registers are be preserved across the call. (The debugging version of Windows 95 often intentionally modifies those registers in an attempt to catch code that relies on this non-feature.)

Trap: Assuming stack parameters don't change across a call. The C calling convention permits the called function to modify the input parameters, so don't rely on their values being preserved across a call. The following example is wrong:

push 0 ; flags

push nPages ; number of pages to lock

push page ; first page to lock

VMMCall _LinPageLock ; Lock them

; do stuff

VMMCall _LinPageUnlock ; Unlock them

add esp, 12

The LinPageLock service is allowed to damage the top three double-words on the stack, resulting in garbage being passed to LinPageUnlock. (The debugging version of Windows 95 often intentionally modifies input parameters, in an attempt to catch code that relies on this non-feature.)

Trap: Confusing VMSTAT_PM_Exec with VMSTAT_PM_Use32Mask. When deciding whether to use 16-bit or 32-bit offsets from the client, the rule is that you should use a 32-bit offset if the VMSTAT_PM_Exec bit is set, and if one of the VMSTAT_PM_Use32Mask bits is set. If a VxD checks only the VMSTAT_PM_Use32Mask bits, it may end up using 32-bit offsets even though the virtual machine is not in protected mode.

Trap: Leaving files open. If a virtual device opens files, it should close them before giving control back to the virtual machine. Since open files are tracked on a per-VM and per-PSP basis, the application on which you opened the file might create another file or might exit, causing the PSP to change, at which point the file handle becomes invalid. Also, having files open causes the virtual IFS Manager device to have problems when it attempts to transition to the protected-mode file system.

Trap: Changing the DS or ES selectors. The CS, DS, ES, and SS selectors must remain as flat selectors at all times. Do not load any other values into those registers, even temporarily. Doing so will crash the system.

Trap: Setting the direction flag. The direction flag must remain clear (up) whenever control passes to the VMM or another virtual device. You can set the direction flag to the 'down' state, but you must clear the flag before yielding control. (The debugging version of Windows 95 attempts to catch this error.)

Trap: Cancelling events the wrong way. If an event is scheduled as a VM Event, it must be cancelled with the Cancel_VM_Event service. Similarly, global events must be cancelled with Cancel_Global_Event, thread events must be cancelled with Cancel_Thread_Event, and restricted events must be cancelled with Cancel_Restricted_Events. Failing to observe these rules results in corrupted memory. (The debugging version of Windows 95 attempts to catch this error.)

Trap: Race conditions between timeouts, events, and hardware interrupts. VxD's often initiate an operation and then schedule a timeout that cancels the operation if it takes too long. A race condition can occur if the timeout is dispatched just as the operation completes. This is particularly true if the user is running high-speed communications software at the same time, because communication interrupts will be streaming in, causing the VxD to schedule and cancel many timeouts. If the VxD cancels a timeout after it has been dispatched, and the system has already recycled the handle and given it to another VxD, . the first VxD would end up cancelling the other VxD's timeout by mistake.

Trap: Assuming that MapPhysToLinear(N, 1, 0) = MapPhysToLinear(0, 1, 0) + N. This was never guaranteed, but it happened to be true under Windows 3.1 by accident. This is not true under Windows 95.

Trap: Passing the wrong number of arguments to a service. This happens most often with the HeapFree service because the VxD writer forgets that there is a second parameter of flags (which must be zero). In general, VxD writers tend to forget to pass flags to services that accept a bitmask of flags as the last parameter. This results in the service picking up stack garbage as the flags parameter. (The debugging version of Windows 95 attempts to catch this error.)

Trap: Assuming that the high word is always zero. Many VxDs that interface to DLLs at ring 3 pass a function code in the AX register to the VxD's protected-mode entry point, but the VxD looks at the entire EAX register to parse the function code. This code tended to work by accident under Windows 3.1 because the high words of extended registers were usually zero. This is no longer true under Windows 95.

Trap: Forgetting to disable interrupts when hooking an asynchronous service. Remember that asynchronous services can be called at hardware interrupt time. If a hardware interrupt occurs after a hook is installed, but before the pointer is saved in a place where the hook procedure can get to it, the interrupt can result in a call to the service before the hook is ready.

Trap: Using Begin_Nest_Exec inappropriately. Any protected-mode procedure called from a nested execution block must be in a nondiscardable segment, must access only data in nondiscardable segments, and may not switch to a 32-bit stack. (This means, in particular, that only interrupt-safe Windows functions can be called, because anything else might thunk to Win32.) Although these restrictions existed in Windows 3.1 as well, Windows 3.1 almost never spent any time on a 32-bit stack, unless a WINMEM32 or Win32s application was running. But now that Windows 95 has Win32 support built-in, the system spends a large percentage of its time on a 32-bit stack, so the window of opportunity for error is much greater. If you need to call functions that do not respect these restrictions, use an application time event, coupled with the _SHELL_CallDll service, passing lpszDll = 0 and lpszProcName equal to the 16:16 address.

�Chapter 2

Breakpoints and Callbacks

About Breakpoints and Callbacks

Breakpoints and callbacks provide a mechanism for transferring control from ring 3 to ring 0 in a controlled manner.

Callbacks are typically given by VxDs to applications so that the application can call back into the VxD as part of a service request. The application performs a far call indirect to the callback address. VMM will perform a Simulate_Far_Return before dispatching the callback to the VxD that installed it. The VxD typically inspects and/or modifies client registers, then returns. Execution then resumes in the application at the instruction following the "call far".

Breakpoints are typically installed by a VxD into existing V86-mode code that needs to be patched. When execution reaches the breakpoint, VMM dispatches the breakpoint directly to the VxD that installed it. The VxD typically inspects and/or modifies client registers, then moves the client (E)IP register past the breakpoint so as to resume execution. Note that, unlike callbacks, it is the VxD's responsibility to adjust the client (E)IP register to point to the location where execution should resume when servicing of the breakpoint is complete. If you forget to do this, the breakpoint will merely be hit again immediately.

Since there are no facilities for freeing breakpoints or callbacks, they should be treated as scarce resources. Dynamically-loaded VxDs which allocate callbacks should save the callback in a static data segment so a new callback is not allocated each time the VxD is loaded.

Note

Breakpoints are supported only for V86-mode code. Moreover, protected-mode callbacks are not supported from a Win32 application. If a Win32 application needs to communicate with a VxD, it must use the DeviceIoControl mechanism.

There are the following break point and callback services:

Service �Description ��Allocate_V86_Call_Back �Allocates a V86-mode callback. ��Allocate_PM_Call_Back �Allocates a protected-mode callback. ��Call_When_VM_Returns �Installs a return-from-interrupt callback. ��Install_V86_Break_Point �Installs a breakpoint callback. ��Remove_V86_Break_Point �Removes a V86 breakpoint. ��

Reference

Allocate_PM_Call_Back

include vmm.inc

mov edx, RefData ; reference data (any doubleword)

mov esi, OFFSET32 Callback ; callback function to call

VMMcall Allocate_PM_Call_Back

jc error

mov [CallbackAddr], eax ; selector:offset for callback

Registers a callback function that 16-bit protected-mode applications can call. Virtual devices use this service to provide an interface that is available to device drivers and applications in a VM. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, or set otherwise. If successful, the EAX register contains a selector:offset address that can be called (far call) from within a protected-mode VM. Note that the selector:offset is not callable from a Win32 program. A Win32 program must use the DeviceIoControl function to communicate with a VxD.

RefData

Reference data to be passed to the callback procedure. Can be any 32-bit value, but is typically the address of a driver-defined structure.

Callback

Address of the callback procedure. For more information about the callback procedure, see below.

The system calls the callback procedure as follows:

mov ebx, VM ; current VM handle

mov edi, hCurThread ; current thread handle

mov edx, RefData ; reference data

mov ebp, OFFSET32 crs ; points to Client_Reg_Struc

call [Callback]

The VM parameter is a handle identifying the current virtual machine. The RefData parameter is the value supplied when the callback procedure was installed, and crs points to a Client_Reg_Struc structure containing the register values for the virtual machine at the time it called the PM callback address. The callback may read and modify the client registers; any changes made will be seen by the calling application when control returns to it.

See also Allocate_V86_Call_Back

Allocate_V86_Call_Back

include vmm.inc

mov edx, RefData ; reference data (any doubleword)

mov esi, OFFSET32 Callback ; callback function to call

VMMcall Allocate_V86_Call_Back

jc error

mov [CallbackAddr], eax ; segment:offset for callback

Registers a callback function that V86 mode applications can call. Virtual devices use this service to provide an interface that is available to software in a VM. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, or set otherwise. If successful, the EAX register contains a segment:offset address that can be called (far call) from within a V86-mode VM.

RefData

Reference data to be passed to the callback procedure. Can be any 32-bit value, but is typically the address of a driver-defined structure.

Callback

Address of the callback procedure. For more information about the callback procedure, see below.

The system calls the callback procedure as follows:

mov ebx, VM ; current VM handle

mov edi, hCurThread ; current thread handle

mov edx, RefData ; reference data

mov ebp, OFFSET32 crs ; points to Client_Reg_Struc

call [Callback]

The VM parameter is a handle identifying the current virtual machine. The RefData parameter is the value supplied when the callback procedure was installed, and crs points to a Client_Reg_Struc structure containing the register values for the virtual machine.

See also Allocate_PM_Call_Back

Call_When_VM_Returns

include vmm.inc

mov eax, TimeOut ; milliseconds until time out

mov edx, RefData ; reference data

mov esi, OFFSET32 Callback ; address of callback function

VMMcall Call_When_VM_Returns

Installs a callback function that receives control when a virtual machine executes the iret instruction for the current interrupt. Uses Client_CS, Client_EIP, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

TimeOut

Number of milliseconds to wait before calling the callback procedure. The time out occurs only if the iret instruction is not executed before the specified time elapses. If this parameter is positive, the system calls the callback when time elapses. If this parameter is negative, the system calls the callback when time elapses and calls it again when the iret instruction is executed. If this parameter is zero, the system ignores the time out.

RefData

Reference data to be passed to the callback procedure. Can be any 32-bit value, but is typically the address of a driver-defined structure.

Callback

Address of the callback procedure. For more information about the callback procedure, see below.

A virtual device typically uses this service in a callback procedure that it installed using the Hook_V86_Int_Chain service. This service directs the system to replace the return address for the interrupt with the address of the callback procedure. That is, the system pushes the callback procedure address on the stack when it creates the stack frame for the interrupt. The system then passes the interrupt to the virtual machine.

When the virtual machine executes the iret instruction, the callback procedure receives control and can carry out tasks. After the callback procedure returns, the system restores the original interrupt return address and execution continues as if returning from the interrupt.

Note

The preceding description implies that the only meaningful place to use Call_When_VM_Returns is when a Simulate_Far_Call or Build_Int_Stack_Frame is going to happen soon. (As noted, this is typically done inside the callback installed by Hook_V86_Int_Chain.) In particular, in order to hook the back end of a simulated interrupt, you must call Call_When_VM_Returns before the interrupt itself is simulated. If the interrupt or far call has already been simulated, Call_When_VM_Returns will not do what you want. (The name of the service is rather unfortunate. It really means "Call when the VM returns to where it is now", and not "Call when the VM executes a return instruction".)

The system calls this callback procedure as follows:

mov ebx, VM ; current VM handle

mov edi, hCurThread ; current thread handle

mov edx, RefData ; reference data

mov ebp, OFFSET32 crs ; points to a Client_Reg_Struc

call [Callback]

The VM parameter is a handle identifying the current virtual machine. The RefData parameter is the value supplied when the callback procedure was installed, and the crs parameter points to a Client_Reg_Struc structure containing the register values for the virtual machine.

If the system calls the callback procedure as a result of a time out, it sets the carry flag before calling the procedure. If the system calls the callback a second time (once for a time out and once for the iret instruction), the system sets the zero flag before calling the procedure a second time. The value of the zero flag is indeterminate unless the TimeOut parameter specifies a negative value.

In other words,

(1) If you passed TimeOut = 0, then the callback is called when the VM returns and at no other time.

(2) If you passed TimeOut > 0, then the callback should begin like this:

jc timed_out; Timeout notification

 ; Otherwise, the VM returned

 ; before the timeout expired

(3) If you passed TimeOut < 0, then the callback should begin like this:

jc timed_out ; Timeout notification

 ; Otherwise, the VM returned

jnz 	normal_return; VM returned with no timeout

 ; Else, VM returned with timeout

See also Hook_V86_Int_Chain

Install_V86_Break_Point

include vmm.inc

mov eax, BreakAddr ; break point address

mov edx, RefData ; reference data

mov esi, OFFSET32 Callback ; address of callback procedure

VMMcall Install_V86_Break_Point

jc not_installed

Inserts a break point in V86 memory of the current virtual machine, and installs a break-point callback procedure to receive control when the break point occurs. A virtual device, such as the virtual MS-DOS manager, can use this service to place patches in the BIOS. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, or set otherwise.

BreakAddr

Specifies the V86 address to place the break point. The address must be specified as a segment:offset pair, and must specify RAM. Once installed, the break point must not be moved.

RefData

Reference data to be passed to the callback procedure. Can be any 32-bit value, but is typically the address of a driver-defined structure.

Callback

Address of the callback procedure. For more information about the callback procedure, see below.

Virtual devices typically place V86 break points in global virtual device memory during device initialization. For example, the XMS driver in the virtual V86MMGR device inserts a breakpoint in the real-mode XMS driver during device initialization. Thereafter, all calls to the real-mode XMS driver are intercepted by the virtual XMS driver.

The segment address specified when installing a V86 break point must be the segment address in the CS register when the virtual machine executes the break point. For example, if the break point is placed at 0100:0000 but the virtual machine executes the break point at the address 00FF:0010h, an error occurs even though the virtual machine executed a valid break point.

When the virtual machine executes the break point, the system calls the callback procedure as follows:

mov eax, BreakAddr ; address of breakpoint

mov ebx, VM ; current VM handle

mov edx, OFFSET32 RefData ; reference data

mov esi, BreakLinAddr ; linear address of break point

mov ebp, OFFSET32 crs ; points to a Client_Reg_Struc

The BreakAddr parameter is the V86 address of the break point. The VM parameter is a handle identifying the current virtual machine and the RefData parameter is the value specified when the callback procedure was installed. The BreakLinAddr parameter specified the linear address of the break point and the crs parameter points to a Client_Reg_Struc structure containing the register values for the specified virtual machine.

The Client_CS and Client_IP registers contain the address of the break point. The virtual device must change these registers to prevent the break point from being executed again when the virtual machine resumes. A virtual device can change the register by simulating the instruction that was patched, incrementing the Client_IP register past the patch, jumping to another address using the Simulate_Far_Jmp service, or returning from an interrupt handler using the Simulate_Iret service.

When the virtual device receives the System_Exit message, it must remove any break point that it placed in global V86 code, that is, code loaded before Windows was loaded. The virtual device can remove a V86 break point using the Remove_V86_Break_Point service.

See also Remove_V86_Break_Point

Remove_V86_Break_Point

include vmm.inc

mov eax, BreakAddr ; V86 address of break point

VMMcall Remove_V86_Break_Point

Removes a V86 break point that was installed using the Install_V86_Break_Point service. It restores the original contents of the memory automatically. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, set otherwise.

BreakAddr

Address of the break point to remove. The address must be a segment:offset pair.

In Windows 95, removing a breakpoint does not free the resources associated with it. Thus, repeatedly installing and removing the same breakpoint will slowly leak resources.

See also Install_V86_Break_Point

�Chapter 3

Debugging

About Debugging

There are the following debugging services:

Service �Description ��_Assert_Range �Validates a pointer to any structure ��Clear_Mono_Screen �Clears the secondary display. ��Debug_Convert_Hex_Binary �Converts hexadecimal to binary. ��Debug_Convert_Hex_Decimal �Converts a number to decimal. ��_Debug_Flags_Service �Asserts various conditions. ��_Debug_Out_Service �Sends a null-terminated ASCII string to the debugging device and stops the debugger if one is running. ��_Debug_Printf_Service �Prints a C-style formatted string to the debugging device. ��Debug_Test_Cur_VM �Asserts that EBX is the current VM handle. ��Debug_Test_Valid_Handle �Asserts that EBX is a valid VM handle. ��Disable_Touch_1st_Meg �Disables the first megabyte of memory. ��Enable_Touch_1st_Meg �Enables the first megabyte of memory. ��Get_Debug_Options �Checks for command-line debugging options. ��Get_Mono_Chr �Gets the character/attribute from the secondary display. ��Get_Mono_Cur_Pos �Gets the cursor position from the secondary display. ��In_Debug_Chr �Reads one character from the debugging device. ��Is_Debug_Chr �Checks if a character is ready on the debugging device. ��Log_Proc_Call �Logs the caller of the current procedure. ��Out_Debug_Chr �Writes one character to the debugging device. ��Out_Debug_String �Writes a string to the debugging device. ��Out_Mono_Chr �Writes one character to the secondary display. ��Out_Mono_String �Writes a string to the secondary display. ��Queue_Debug_String �Queues a debugging string. ��Set_Mono_Cur_Pos �Sets the cursor position for the secondary display. ��Test_Reenter �Asserts that VMM has not been re-entered. ��_Trace_Out_Service �Writes a null-terminated ASCII string to the debugging device. ��Validate_Client_Ptr �Validates the client register pointer. ��

Reference

_Assert_Range

#include vmm.h

_Assert_Range(DWORD pStruc, DWORD ulSize, DWORD sSignature,

 DWORD lSignatureOffset, DWORD ulFlags);

Verifies that a pointer to any structure is valid. Uses the C calling convention.

 Returns nonzero in the EAX register if the structure is valid; otherwise, returns zero.

pStruc

Structure pointer to validate.

ulSize

Size of the structure in bytes.

sSignature

A DWORD value to validate.

lSignatureOffset

Offset in bytes to sSignature.

ulFlags

Validation flags. May be one or more of these values:

ASSERT_RANGE_NULL_BAD �Return failure for NULL pointers. May not be combined with ASSERT_RANGE_NULL_OK. ��ASSERT_RANGE_NULL_OK �Return success for NULL pointers. May not be combined with ASSERT_RANGE_NULL_BAD. ��ASSERT_RANGE_NO_DEBUG �Do not output a debugging message on failure when debugger is present. This flag is ignored if no debugger is installed. ��

The following validation steps are taken.

	1	If pStruc is a null pointer, its validity is determined by which of the ASSERT_RANGE_NULL_BAD or ASSERT_RANGE_NULL_OK flags is passed.

	2	Otherwise, pStruc must be a pointer to valid data of length ulSize bytes.

	3	Furthermore, if sSignature is nonzero, then the DWORD at pStruc + lSignatureOffset must be equal to sSignature.

For example, suppose you have a structure defined as follows:

struct ABC {

	DWORD member1;

	BYTE member2[20];

	DWORD dwSignature;

};

// Every valid ABC has ABCSIGNATURE stored in the dwSignature field.

#define ABCSIGNATURE 0x31415926

 If you want to check whether some pointer variable p is a valid pointer to a ABC, except that null pointers are okay, then you would write

if (!_Assert_Range(p, sizeof(SAMPLE), ABCSIGNATURE,

 offsetof(SAMPLE, dwSignature), ASSERT_RANGE_NULL_OK)) {

 return ERROR_INVALID_PARAMETER;

 }

This service can be called only at a time when page faults can safely be handled. It cannot be called at hardware interrupt time, nor at any other time when paging is not allowed. Since this service touches the memory at pStruc as part of the validation (even if sSignature is zero), if pStruc points to a phys/linear region owned by memory-mapped hardware, there may be unusual side-effects.

Clear_Mono_Screen

include vmm.inc

VMMcall Clear_Mono_Screen

Clears the secondary display screen by filling it with spaces, and setting character attributes to normal. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

This service has no effect in the retail version of Windows. It is intended to be used with the debugging version.

See also Out_Mono_Chr

Debug_Convert_Hex_Binary

include vmm.inc

mov al, Number ; number to convert

VMMcall Debug_Convert_Hex_Binary

mov [BinNum], eax ; binary number

Converts an 8-bit value to a 32-bit value representing a binary number. The new value consists of eight 4-bit values, each of which is either 0 or 1. Uses EAX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the converted number in the EAX register.

Number

Value to convert.

This service is typically used in conjunction with the Trace_Out macro to display values in binary notation.

The following example prints, "The converted value is 01011001".

mov al, 01011001b

VMMcall Debug_Convert_Hex_Binary

Trace_Out 'Converted value is #EAX'

See also Debug_Convert_Hex_Decimal, Trace_Out

Debug_Convert_Hex_Decimal

include vmm.inc

mov eax, Number ; number to convert

VMMcall Debug_Convert_Hex_Decimal

mov [BinNum], eax ; binary number

Converts an 8-bit value to a 32-bit value representing a decimal number. The new value consists of eight 4-bit values, each in the range 0 through 9. Uses EAX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the converted number in the EAX register.

Number

Specifies the number to convert.

This service is typically used in conjunction with the Trace_Out macro to display values in decimal notation.

The following example prints, "The converted value is 00003141".

mov eax, 3141

VMMcall Debug_Convert_Hex_Decimal

Trace_Out 'Converted value is #EAX'

See also Debug_Convert_Hex_Binary, Trace_Out

_Debug_Flags_Service

include vmm.inc

push flags

VMMcall _Debug_Out_Service

Asserts various conditions. This is an asynchronous service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

flags

Specifies the debug flags. It can be a combination of the following values:

Value �Meaning ��DFS_NEVER_REENTER �VMM has not been re-entered (see below). ��DFS_TEST_REENTER �VMM has not been re-entered (see below). ��DFS_NOT_SWAPPING �The current thread is not in the middle of a paging operation. ��DFS_TEST_CLD �Assert that the processor direction flag is cleared. ��DFS_TEST_BLOCK �Asssert that NoBlock_Count is set to zero. ��DFS_LOG �Log this procedure (if requested). ��DFS_PROFILE �Increment profile count and validate the segment registers. ��DFS_ENTER_NOBLOCK �Increment the NoBlock_Count. ��DFS_EXIT_NOBLOCK �Decrement the NoBlock_Count. ��

The DFS_NEVER_REENTER and DFS_TEST_REENTER bits differ in their interaction with the Begin_Reentrant_Execution service. When the Begin_Reentrant_Execution service is called, the VMM re-entry count is reset to zero, even though the VMM has mostly like actually been re-entered. The DFS_TEST_REENTER bit checks this fake re-entry count, whereas the DFS_NEVER_REENTER bit checks the true re-entry count (which is unaffected by Begin_Reentrant_Execution).

The DFS_ENTER_NOBLOCK and DFS_EXIT_NOBLOCK flags increment and decrement a counter which is checked by the DFS_TEST_BLOCK bit. If the DFS_TEST_BLOCK bit is set when this internal counter is nonzero, the debugger will be notified if it is installed.

The DFS_LOG bit calls the Log_Proc_Call service on behalf of the caller.

The DFS_PROFILE bit causes the service to increment a DWORD variable generated by the BeginProc macro. Do not set this bit manually; let the BeginProc macro do it for you.

This service has no effect in the retail version of Windows. It is intended to be used with the debugging version.

As a rule, you should never call this service directly. It is generated automatically by macros in vmm.h and debug.h.

The BeginProc macro automatically calls this service with the DFS_LOG bit, as well as the DFS_TEST_REENTER if the procedure being declared is not an asynchronous service, and the DFS_TEST_BLOCK flag if the procedure is in pageable code. In the case of an exported service, the BeginProc macro also generates a DWORD profiling count and sets the DFS_PROFILE bit.

The ENTER_NOBLOCK, EXIT_NOBLOCK, and ASSERT_MIGHT_BLOCK macros in debug.h should be used to manipulate the block-related DFS bits.

_Debug_Out_Service

include vmm.inc

push OFFSET32 String

VMMcall _Debug_Out_Service

Sends a null-terminated ASCII string to the debugging device and stops the debugger if one is running. This is an asynchronous service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

String

String to display for debugging purposes.

See the documentation of the Out_Debug_String service for a list of supported placeholders. The Debug_Out_Service will do the requisite pushfd and pushad operations.

This service preserves all registers and flags.

You should not call this service directly. Use the Debug_Out macro instead.

This service has no effect in the retail version of Windows. It is intended to be used with the debugging version.

_Debug_Printf_Service

include vmm.inc

push pArgs

push pFormat

VMMCall _Debug_Printf_Service

add esp, 8

Prints debug output. This is an asynchronous service. Uses the C calling convention.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

pFormat

C-style "printf" format string.

pArgs

Address of the array of substitution arguments.

The %-escapes understood by _Debug_Printf_Service are the same ones supported by wdeb386. (_Debug_Printf_Service merely calls the debugger to display the string.)

The total size of the output cannot exceed 256 bytes.

pArgs is a pointer to the substitution arguments, rather than being the first substitution itself. This service would more accurately have been been named _Debug_Vprintf_Service.

This service has no effect in the retail version of Windows. It is intended to be used with the debugging version.

Debug_Test_Cur_VM

include vmm.inc

mov ebx, VM ; VM handle to check

VMMcall Debug_Test_Cur_VM

Asserts that the specified virtual machine is also the current virtual machine. The service crashes the current virtual machine if the VM parameter does not identify the current virtual machine handle. This is an asynchronous service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value. This service does not return if the handle is not valid.

VM

Handle of the virtual machine to check.

Do not call this service directly. Use the Assert_Cur_VM_Handle macro instead.

This service has no effect in the retail version of Windows. It is intended to be used with the debugging version.

See also Crash_Cur_VM

Debug_Test_Valid_Handle

include vmm.inc

mov ebx, VM ; VM handle to validate

VMMcall Debug_Test_Valid_Handle

Determines whether the specified virtual machine handle is valid. This is an asynchronous service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value. This service does not return if the handle is not valid.

VM

Specifies the virtual machine handle to check.

Do not call this service directly. Use the Assert_VM_Handle macro instead.

This service has no effect in the retail version of Windows. It is intended to be used with the debugging version.

See also Assert_VM_Handle

Disable_Touch_1st_Meg

include vmm.inc

VMMcall Disable_Touch_1st_Meg

Disables the first 1 megabyte of memory for the current virtual machine. This is an asynchronous service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

See the description of Enable_Touch_1st_Meg for more information.

Do not call this service directly. Use the End_Touch_1st_Meg macro instead.

This service has no effect in the retail version of Windows. It is intended to be used with the debugging version.

See also Enable_Touch_1st_Meg

Enable_Touch_1st_Meg

include vmm.inc

VMMcall Enable_Touch_1st_Meg

Enables the first 1 megabyte of memory for the current virtual machine. The service sets the present bit for the first page directory allowing a virtual device to access addresses in the range. This is an asynchronous service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

In the debugging version of Windows, VxDs are normally not permitted to access memory below the 1MB boundary, so as to help catch null pointer errors. If you need to access memory below the 1MB boundary, you should normally access it at the high linear address instead. However, in the rare cases where you need to access to memory at its low linear address, this service temporarily grants access to the first megabyte of memory. You should then re-disable the first megabyte of memory when you are finished, as demonstrated in the following example:

 Begin_Touch_1st_Meg

 mov eax, ds:[40h] ; get int 10h vector

 End_Touch_1st_Meg

(Note that this is not the recommended way of getting a VM's interrupt vector. The proper way is to use the Get_Instanced_V86_Int_Vector service.)

Do not call this service directly. Use the Begin_Touch_1st_Meg macro instead.

This service has no effect in the retail version of Windows. It is intended to be used with the debugging version.

See also Begin_Touch_1st_Meg, Disable_Touch_1st_Meg

Get_Debug_Options

include vmm.inc

mov al, Char ; debugging option

VMMcall Get_Debug_Options

Determines whether the given character was specified as a command-line debugging option when Windows was started. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the zero flag set if the character was specified as a debugging option, clear otherwise.

Char

Debugging option to check for.

This service is available only during initialization. This service has no effect in the retail version of Windows. It is intended to be used with the debugging version.

See also Test_Debug_Installed

Get_Mono_Chr

include vmm.inc

VMMcall Get_Mono_Chr

mov byte ptr [Char], al ; character value

mov byte ptr [Attr], ah ; character attribute

Retrieves the character and attribute value at the current cursor position. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the character in the AL register and the attribute in the AH register.

This service has no effect in the retail version of Windows. It is intended to be used with the debugging version.

See also Out_Mono_Chr, Set_Mono_Cur_Pos

Get_Mono_Cur_Pos

include vmm.inc

VMMcall Get_Mono_Cur_Pos

mov byte ptr [Column], dl ; current column position

mov byte ptr [Row], dh ; current row position

Retrieves the current cursor position for the secondary display. Uses flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the column in the DL register, and the row in the AH register.

This service has no effect in the retail version of Windows. It is intended to be used with the debugging version.

See also Set_Mono_Cur_Pos

In_Debug_Chr

include vmm.inc

VMMcall In_Debug_Chr

mov byte ptr [Char], al ; character from debug device

Reads a character from the debugging device. Uses EAX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the character read in the AL register. If the ESCAPE key or CTRL+C key combination was pressed, the service sets the zero flag.

This service has no effect in the retail version of Windows. It is intended to be used with the debugging version.

See also Is_Debug_Chr

Is_Debug_Chr

include vmm.inc

VMMcall Is_Debug_Chr

jz no_character ; zero flag set if no character available

mov byte ptr [Char], al ; character from debugging device

Checks for a character from the debugging device. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the zero flag clear if a character is available, set otherwise. If a character is available, it is returned in the AL register.

This service has no effect in the retail version of Windows. It is intended to be used with the debugging version.

See also In_Debug_Chr

Log_Proc_Call

include vmm.inc

VMMcall Log_Proc_Call

Creates a debugging message that identifies which service or virtual device called the service that called Log_Proc_Call. This service is intended to be used only for debugging, and it creates the message only if the user has turned on call logging. This is an asynchronous service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

When the BeginProc macro creates a new service, the macro generates a call to Log_Proc_Call if the DEBUG symbol is defined and the NO_LOG attribute is not specified as a parameter to BeginProc.

The service adds the message to the debugging queue using the Queue_Out macro.

Do not call this service directly. Use the BeginProc macro instead.

This service has no effect in the retail version of Windows. It is intended to be used with the debugging version.

See also BeginProc, Queue_Out

Out_Debug_Chr

include vmm.inc

mov al, Char ; character to write

VMMcall Out_Debug_Chr

Writes a character to the debugging device. Uses EAX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Char

Specifies the character to write to the debugging device.

This service has no effect in the retail version of Windows. It is intended to be used with the debugging version.

See also Out_Debug_String

Out_Debug_String

include vmm.inc

pushfd ; save flags on stack

pushad ; save registers on stack

mov esi, OFFSET32 String ; points to string to write

VMMcall Out_Debug_String

popad

popfd

Writes a null-terminated string to the debugging device (typically the COM1 serial port). If the string contains register placeholders, Out_Debug_String replaces these with the actual register values in hexadecimal, or the symbolic label nearest to the specified addresses. Uses all registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

String

Points to a null-terminated string specifying the message to write to the debugging device. Out_Debug_String uses the lods instruction to process characters in the string, so the DS register must specify the correct segment selector for the string.

The string can contain one or more placeholders having the following forms:

Placeholder �Description ��#register �Displays the current value of the specified register. For example, the service replaces #AX with the value of the AX register. The register must not be the name of a segment register. ��?register �Displays the label nearest the address specified by the registers. For example, the service replaces ?EAX with the VMM code segment label nearest the address in the EAX register. The register must not be the name of a segment register. ��?register:register �Displays the label nearest the address specified by the registers. For example, the service replaces ?AX:EBX with the label in the segment specified by the AX register that is nearest to the address in the EBX register. The register must not be the name of a segment register. ��

This service has no effect in the retail version of Windows. It is intended to be used with the debugging version.

If the string contains placeholders, Out_Debug_String requires the caller to use the pushfd and pushad instructions before carrying out a near call to this service.

See also Trace_Out

Out_Mono_Chr

include vmm.inc

mov al, Char ; character to write

VMMcall Out_Mono_Chr

mov eax, 0 ; write character and attribute

mov bl, Char ; character to write

mov bh, Attr ; attribute to write

VMMcall Out_Mono_Chr

Writes a character to the current position on the secondary display.

If the EAX register is not zero, the service writes the character in the AL register and applies the normal attribute. Otherwise, it writes the character and attribute pair in the BX register. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Char

Specifies the character to write to the secondary display.

Attr

Specifies the attribute to apply to the character when written.

If the linefeed or carriage return character is written, the service automatically adjusts the cursor position, scrolling the screen if necessary.

This service has no effect in the retail version of Windows. It is intended to be used with the debugging version.

See also Out_Mono_String

Out_Mono_String

include vmm.inc

mov esi, OFFSET32 String ; points to string to write

VMMcall Out_Mono_String

Writes the specified null-terminated string to the secondary display. If the string contains register placeholders, Out_Mono_String replaces these with the actual register values (in hexadecimal), or the symbolic label nearest to the specified addresses. Uses all registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

String

Points to a null-terminated string specifying the message to write to the debugging device. Out_Mono_String uses the lods instruction to process characters in the string, so the DS register must specify the correct segment selector for the string.

The string can contain one or more placeholders having the following forms:

Placeholder �Description ��#register �Displays the current value of the specified register. For example, the service replaces #AX with the value of the AX register. The register must not be the name of a segment register. ��?register �Displays the label nearest the address specified by the registers. For example, the service replaces ?EAX with the VMM code segment label nearest the address in the EAX register. The register must not be the name of a segment register. ��?register:register �Displays the label nearest the address specified by the registers. For example, the service replaces ?AX:EBX with the label in the segment specified by the AX register that is nearest to the address in the EBX register. The register must not be the name of a segment register. ��

This service has no effect in the retail version of Windows. It is intended to be used with the debugging version.

See also Mono_Out, Out_Debug_String

Queue_Debug_String

include vmm.inc

puse Value1 ; will be used as #EAX or ?EAX

push Value2 ; will be used as #EBX or ?EBX

Queues a string and corresponding values for display at a later time. The message remains queued until the user enters the .lq command using the debugger. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Value1

Value to queue with the string. If the string contains the #EAX or ?EAX placeholder, this value is used when the string is displayed.

Value2

Value to queue with the string. If the string contains the #EBX or ?EBX placeholder, this value is used when the string is displayed.

String

Address of the null-terminated string to queue. It can contain one or more of the following register placeholders: #AX, #EAX, ?EAX, #BX, #EBX, ?EBX, ?AX:EBX, ?BX:EAX.

Do not call this service directly. Use the Queue_Out macro instead.

This service has no effect in the retail version of Windows. It is intended to be used with the debugging version.

See also Out_Debug_String

Set_Mono_Cur_Pos

include vmm.inc

mov dl, Column ; current column position

mov dh, Row ; current row position

VMMcall Set_Mono_Cur_Pos

Sets the current cursor position for the secondary display. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Column

Column position.

Row

Row position.

This service has no effect in the retail version of Windows. It is intended to be used with the debugging version.

See also Get_Mono_Cur_Pos

Test_Reenter

include vmm.inc

VMMcall Test_Reenter

Checks the re-entry count for the VMM and values of the DS, ES, and SS registers. This is an asynchronous service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

If the re-entry count is not zero or the segment registers are not equal to the VMM data segment selector, the service displays an error message at the debugging terminal. This service is intended to be used only for debugging.

When the BeginProc macro creates a new service, the macro generates a call to Test_Reenter if the SERVICE attribute is specified with BeginProc and the DEBUG symbol is defined.

See also BeginProc

_Trace_Out_Service

include vmm.inc

mov esi, OFFSET32 String

VMMcall _Trace_Out_Service

Sends a null-terminated ASCII string to the debugging device.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

String

String to display for debugging purposes.

See the documentation of the Out_Debug_String service for a list of supported placeholders. _Trace_Out_Service will do the requisite pushfd and pushad oeprations.

You should not call this service directly. Use the Trace_Out macro instead.

Example:

Trace_Out 'The value of EAX is #EAX'

This service has no effect in the retail version of Windows. It is intended to be used with the debugging version.

Validate_Client_Ptr

include vmm.inc

mov ebp, OFFSET32 crs ; points to a Client_Reg_Struc

VMMcall Validate_Client_Ptr

Asserts that the address in the EBP register points to the Client_Reg_Struc structure for the current virtual machine. This is an asynchronous service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value. If the address is not correct, the service crashes the current virtual machine and does not return.

If the current re-entry count for the VMM is not zero, this service returns immediately without checking the client register pointer.

You should not call this service directly. Use the Assert_Client_Ptr macro instead.

This service has no effect in the retail version of Windows. It is intended to be used with the debugging version.

�Chapter 5

Events

About Events

Introduction

The Windows 95 virtual machine manager (VMM) is a multiple threaded, non-reentrant operating system. Because it is non-reentrant, virtual devices (VxDs) that process hardware interrupts must have some method of synchronizing their calls to the VMM. For this reason, Windows 95 has the concept of "event" processing.

Events are requests from VxDs that a callback procedure be called at a more propitious time. An event is made of the following pieces of information:

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The procedure to be called (the event callback procedure),

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	An arbitrary 32-bit reference data to pass to the event callback procedure,

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Information describing the conditions under which the event callback procedure may be called,

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	An optional priority boost associated with the event,

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	An optional timeout associated with the event.

If one of the prerequisites for an event is that it be called when the current virtual machine or current thread is a particular thread, it is said that the event is scheduled 'for' that thread or virtual machine. The act of calling the event callback procedure is referred to as 'processing' the event.

When a VxD is entered because of an asynchronous interrupt such as a hardware interrupt, the VxD can call only a small subset of services. The VxD can:

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Call any Virtual PIC Device (VPICD) service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Call any asynchronous VMM service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Schedule events.

Devices that service hardware interrupts often need to use services other than those referred to above. When this is the case, the VxD must schedule an event. That is, the VxD calls an event service such as Schedule_VM_Event, specifying a callback function that the VMM calls when it is safe to call synchronous services.

You can schedule global events or events that a specific to a VM or thread. The callback function for a global event may be called at any time. However, a VM event callback function is always called with the specified VM as the current VM. Similarly a thread event callback function is always called with the specified thread as the current thread.

Certain services can only be called if no VM owns the critical section. To schedule an event such that the callback function is only called when the critical section is not owned, you can use the Call_Restricted_Event service with the PEF_WAIT_NOT_CRIT flag. Alternatively, you can schedule a critical section callback function by using the Call_When_Not_Critical service. For more information about critical sections, see Synchronization.

VM events are often useful for virtual devices that do not service hardware interrupts and can be scheduled at any time except during a Non-Maskable Interrupt (NMI).

Restricted events, which are the most general type of event, are new for Windows 95. When scheduling a restricted event, you can specify a number of "restrictions", or conditions that must be met before the event callback will be called.

Services whose names are of the form Call_XX_Event have the option either to schedule an event or to call the event callback procedure immediately without scheduling an event. The event will be scheduled if the VMM is processing a hardware interrupt that interrupted the VMM, or if the event is virtual machine-specific or thread-specific and the requested virtual machine or thread is not the current virtual machine or thread. The event will also be scheduled if the PEF_ALWAYS_SCHED bit is set, assuming the service supports such a bit. (Not all do.) This list of conditions is intended to be informative and not comprehensive. The VMM reserves the right to choose to schedule the event under conditions not explicitly listed above.

See also Call_Priority_VM_Event, Call_When_Not_Critical

Cancelling Events

Services whose names are of the form Cancel_XX_Event must be used only to cancel events scheduled by the corresponding Schedule_XX_Event or Call_XX_Event service. It is an error to pass (for example) a thread event handle to Cancel_VM_Event.

Services which cancel events also allow zero to be passed as the event handle, which is simply ignored. The standard paradigm for scheduling, processing, and cancelling events is as follows:

Scheduling the event:

mov 	esi, OFFSET32 MyEvent

VMMcall Schedule_Global_Event

mov hMyEvent, esi ; Save handle for cancellation

Processing the event:

BeginProc MyEvent

mov hMyEvent, 0 ; VERY FIRST THING is

 ; to zero out the handle

; .

; . Do other event stuff

; .

ret ; Finished with the event

EndProc MyEvent

Cancelling the event:

xor esi, esi ; Atomically set hMyEvent to 0

xchg hMyEvent, esi ; and retrieve previous value

VMMcall Cancel_Global_Event ; Cancel if still outstanding

Event Processing

Events are processed whenever the VMM is about to transfer control from ring 0 to ring 3. One common example of this is returning from ring 0 back to an application running inside a virtual machine. A second example is when a nested execution service like Resume_Exec or Exec_Int is about to transfer control to ring 3 code..

Events are also processed when a thread is blocked on a synchronization object, provided that the Blk_Svc_Ints flag was passed to the corresponding synchronization service. (Such a thread is known as 'blocked servicing events'.) That a thread which is ostensibly blocked on a synchronization object can be called upon to do work while waiting for that synchronization object is a common source of confusion (or horror) for developers familiar with other operating systems. Failure to consider this is a common source of system deadlocks, so this document will attempt to highlight frequently-encountered scenarios where particular caution must be exercised.

Note also that event processing is secondary to the scheduler. An event scheduled for a thread or virtual machine may meet all its restrictions, but will nevertheless not be processed if the scheduler does not choose to run that thread or virtual machine. In simplified terms, the scheduler chooses the the highest-priority thread in the system which satisfies the following criterion:

(Not suspended) and ((Is not blocked) or ((Is blocked servicing events) and (contains events which have met the restrictions)))

This has some subtle consequences.

Spinning in a Resume_Exec loop is not the same as being blocked on a synchronization object, although it does process events. This has not been an uncommon source of deadlocks. Thread A initiates an asynchronous operation, then goes into a Resume_Exec loop, processing events and checking for the asynchronous operation to complete, which breaks the loop. Meanwhile, the code that completes the operation resides in an event callback procedure whose event was scheduled for thread B. If the priority of thread B does not exceed that of thread A, the event will never be processed, because the scheduler only pays attention to the highest-priority unblocked thread.

Note also that unless otherwise explicitly noted, there is no guarantee on the order in which events are processed.

Event Callbacks

When the VMM calls an event callback function, it enters the function with the following registers set:

Register �Contents ��EBX �Current VM handle ��EDX �Programmer-defined reference data specified when the event service routine was installed ��EDI �Current thread handle. ��EBP �Client register structure ��Interrupts �Enabled ��Direction �Clear (up) ��

Note

Some types of events can pass additional information in other registers, and other types of events do not always pass all the information listed above. Exceptions are noted.

The event callback procedure can modify EAX, EBX, ECX, EDX, ESI, and EDI. It must return with interrupts enabled and the direction flag cleared.

Since events are not synchronized with the virtual machine, the contents of the client registers are unpredictable. Altering the contents of the client registers can cause the virtual machine to get very confused. You must save the client state before modifying the client registers, then restore them before returning from the event.

Since event callbacks can be called while the current thread is blocked on a semaphore or other synchronization object, events should be extremely careful not to create deadlocks by attempting to claim a resource that may already be owned by the current thread. For example, consider a thread which takes a resource, then blocks waiting for some other operation to complete, with the intention of releasing the resource after the other operation has completed. While waiting for the semaphore to be signalled, that thread is used to perform an event callback is which attempts to take the same resource. The system is now deadlocked, because the event will wait indefinitely for the resource, which cannot be released until the event returns.

There are many important examples of this deadlock risk which are common sources of problems, so they will be given explicit attention.

Event callbacks may not touch pageable data or otherwise cause paging unless it can be ensured that the thread processing the event callback is not in the middle of its own swapping operation. One way to ensure this is to schedule the event as PEF_Wait_Not_Crit, because the critical section is held during paging. Another way to is to check explicitly whether paging is allowed now (e.g., PAGESWAP_Test_IO_Valid). Note that allocating memory from the VMM page manager or heap manager may result in paging, so services like _PageAllocate and _HeapFree are also forbidden unless it has already been determined that the thread is not paging. List management functions like List_Allocate are safe to call, provided the list was not created with the LF_HEAP or LF_SWAP bits.

Event callbacks may not access the registry unless it can be ensured that the thread processing the event callback is itself not active in the registry. This can be done by using the PEF_Wait_Not_Nested_Exec restriction on the event.

Even if you have ensured that blocking on a semaphore or other synchronization object will not cause a deadlock, bear in mind that blocking at event time seriously impacts the system's ability to multitask smoothly. The thread that got selected to service an event might own resources at ring 3, such as the Win16Mutex, for which other threads are waiting. (Indeed, the fact that the thread is running at all makes it much more likely that it owns such a resource.) While the event is in progress, those resources remain held by the thread even though the thread isn't doing anything with them.

Thus, as a general rule, you should not block at event time.

Reference

There are the following groups of event services:

Group �Elements ��Global event services �Call_Global_Event, Cancel_Global_Event, GlobalEventCallback, Schedule_Global_Event ��VM and thread event services �Call_VM_Event, Cancel_Thread_Event, Cancel_VM_Event, EventCallback, Schedule_Thread_Event, Schedule_VM_Event ��Priority event services �Call_Priority_VM_Event, Cancel_Priority_VM_Event, PriorityEventCallback ��Restricted event services �Call_Restricted_Event, Cancel_Restricted_Event, RetrictedEventCallback ��Miscellaneous event services �_AtEventTime, Register_PEF_Provider ��

Global Event Services

Global events are the least restrictive events. They can be processed by any thread or virtual machine.

Call_Global_Event

include vmm.inc

mov esi, OFFSET32 GlobalEventCallback

mov edx, RefData

VMMcall Call_Global_Event

mov [EventHandle], esi

Calls the specified event callback function immediately or schedules a global event. This is an asynchronous service. Uses Flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns zero in ESI zero if the service calls the callback function. Otherwise, returns the event handle in ESI. The event handle can be used in subsequent calls to the Cancel_Global_Event service to cancel the event.

EventCallback

Address of the callback function to install.

RefData

Address of reference data to pass to the event callback function.

Any virtual machine can process the event, so the system does not switch tasks before calling the function. The callback function can carry out any actions, and use any VMM services. For a description of the callback function, see GlobalEventCallback. For information about event callback functions, see Event Callbacks.

See also Cancel_Global_Event, GlobalEventCallback, Schedule_Global_Event

Cancel_Global_Event

include vmm.inc

mov esi, EventHandle

VMMcall Cancel_Global_Event

Cancels an event that was previously scheduled using the Schedule_Global_Event or Call_Global_Event service. A virtual device must not attempt to cancel an event if the callback function for the event has already been called. This is an asynchronous service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

EventHandle

Handle of the event to cancel. This parameter can be zero to indicate that no event should be canceled.

The event callback function typically sets the event handle to zero so that subsequent calls by the virtual machine to this service do not cause errors.

See also Call_Global_Event, Schedule_Global_Event

GlobalEventCallback

mov ebx, VMHandle

mov edx, RefData

mov ebp, OFFSET32 Client_Reg_Struc

call [GlobalEventCallback]

Performs programmer-defined processing of a global event. GlobalEventCallback is a programmer-defined callback function installed by the Call_Global_Event or Schedule_Global_Event service. The callback function can modify the EAX, EBX, ECX, EDX, ESI, and EDI registers. It must return with interrupts enabled and the direction flag clear (up).

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

VMHandle

Handle of the current virtual machine.

RefData

Reference data supplied when the event was scheduled.

Client_Reg_Struc

Address of a Client_Reg_Struc structure containing the contents of the virtual machine's registers.

For additional information about event callbacks, see Event Callbacks.

See also Call_Global_Event, Cancel_Global_Event, Client_Reg_Struc, Schedule_Global_Event

Schedule_Global_Event

include vmm.inc

mov esi, OFFSET32 GlobalEventCallback

mov edx, RefData

VMMcall Schedule_Global_Event

mov [EventHandle], esi

Schedules a global event, which is an event that does not require a specific virtual machine to process it. Since any virtual machine can process the event, the system does not switch tasks before calling the function. This is an asynchronous service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the event handle in ESI. The handle can be used in a subsequent call to the Cancel_Global_Event service to cancel the event.

GlobalEventCallback

Address of the callback function. For more information about the callback function, see GlobalEventCallback.

RefData

Reference data to be passed to the event callback function.

The callback function can carry out any actions and use any VMM services, subject to the remarks in GlobalEventCallback.

See also Call_Global_Event, Cancel_Global_Event, GlobalEventCallback

VM and Thread Event Services

Call_VM_Event

include vmm.inc

mov ebx, VMHandle

mov esi, OFFSET32 EventCallback

mov edx, RefData

VMMcall Call_VM_Event

mov [EventHandle], esi

Calls the event callback function immediately or schedules an event for the specified virtual machine. This is an asynchronous service. Uses Flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns zero in ESI f the service calls the callback function. Otherwise, returns the event handle in ESI. The event handle can be used in subsequent calls to the Cancel_VM_Event service to cancel the event.

VMHandle

Handle of the virtual machine to process the event. This value must be a valid VM handle.

EventCallback

Address of the callback function to install. For more information about the callback function, see EventCallback.

RefData

Reference data to pass to the event callback function.

Since the specified virtual machine must process the event, the system carries out a task switch if necessary before calling the function. The callback function can carry out any actions and use any VMM services.

For additional information about event callbacks, see Event Callbacks.

See also Cancel_VM_Event, EventCallback, Schedule_VM_Event

Cancel_Thread_Event

include vmm.inc

mov edi, ThreadHandle

mov esi, EventHandle

VMMcall Cancel_Thread_Event

Cancels an event that was previously scheduled using the Schedule_Thread_Event service. A virtual device must not attempt to cancel an event if the callback function for the event has already been called. This is an asynchronous service. Uses Flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

ThreadHandle

Handle of the thread for which the event is to be canceled. This value must be a valid thread handle and it must equal the thread handle used when the event was originally scheduled.

EventHandle

Handle of the event to cancel. This parameter can be zero to indicate that no event should be canceled.

The event callback function typically sets the event handle to zero so that subsequent calls by the thread to this service do not cause errors.

See also Schedule_Thread_Event

Cancel_VM_Event

include vmm.inc

mov ebx, VMHandle

mov esi, EventHandle

VMMcall Cancel_VM_Event

Cancels an event that was previously scheduled using the Schedule_VM_Event or Call_VM_Event service. A virtual device must not attempt to cancel an event if the callback function for the event has already been called. This is an asynchronous service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

VMHandle

Handle of the virtual machine for which the event is to be canceled. This value must be a valid thread handle and it must equal the thread handle used when the event was originally scheduled.

EventHandle

Handle of the event to cancel. This parameter can be zero to indicate that no event should be canceled.

The event callback function typically sets the event handle to zero so that subsequent calls by the virtual machine to this service do not cause errors.

Do not use this service to cancel events scheduled using the Call_Priority_VM_Event, Call_Thread_Event, or Call_Restricted_Event service. You must cancel priority events using the Cancel_Priority_VM_Event service.

See also Call_Priority_VM_Event, Call_VM_Event, Cancel_Priority_VM_Event, Schedule_VM_Event

EventCallback

mov ebx, VMHandle

mov edi, ThreadHandle

mov edx, RefData

mov ebp, OFFSET32 Client_Reg_Struc

call [EventCallback]

Performs programmer-defined processing of a event for a virtual machine. EventCallback is a programmer-defined callback function installed by the Call_VM_Event, Schedule_Thread_Event, or Schedule_VM_Event service. The callback function can modify the EAX, EBX, ECX, EDX, ESI, and EDI registers.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

VMHandle

Handle of the current virtual machine.

ThreadHandle

Handle of the current thread.

RefData

Reference data supplied when the event was originally scheduled.

Client_Reg_Struc

Address of a Client_Reg_Struc structure containing the contents of the virtual machine's registers.

For additional information about event callbacks, see Event Callbacks.

See also Call_VM_Event, Cancel_VM_Event, Client_Reg_Struc, Schedule_Thread_Event, Schedule_VM_Event

Schedule_Thread_Event

include vmm.inc

mov edi, ThreadHandle

mov esi, OFFSET32 EventCallback

mov edx, RefData

VMMcall Schedule_Thread_Event

mov [EventHandle], esi

Schedules an event for the specified thread. This is an asynchronous service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the event handle in ESI. The event handle can be used in subsequent calls to the Cancel_Thread_Event service to cancel the event.

ThreadHandle

Handle of the thread to process the event.

EventCallback

Address of the callback function. For more information about the callback function, see EventCallback.

RefData

Reference data to pass to the callback function.

Since the specified thread must process the event, the system carries out a task switch (if necessary) before calling the function. The callback function can carry out any actions, and use any VMM services. The system completes the event processing before the VMM returns from the current interrupt. For additional information about event callbacks, see Event Callbacks.

See also Cancel_Thread_Event, EventCallback, Schedule_Global_Event, Schedule_VM_Event

Schedule_VM_Event

include vmm.inc

mov ebx, VMHandle

mov esi, OFFSET32 EventCallback

mov edx, RefData

VMMcall Schedule_VM_Event

mov [EventHandle], esi

Schedules an event for the specified virtual machine. This is an asynchronous service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the event handle in ESI. The event handle can be used in subsequent calls to the Cancel_VM_Event service to cancel the event.

VMHandle

Handle of the virtual machine to process the event. This value must be a valid VM handle.

EventCallback

Address of the callback function. For more information about the callback function, see EventCallback.

RefData

Reference data to pass to the callback function.

Since the specified virtual machine must process the event, the system carries out a task switch (if necessary) before calling the callback function. The function can carry out any actions and use any VMM services. The system completes the event processing before the VMM returns from the current interrupt.

For additional information about event callbacks, see Event Callbacks.

See also Call_VM_Event, Cancel_VM_Event, EventCallback, Schedule_Global_Event, Schedule_Thread_Event

Priority Event Services

Call_Priority_VM_Event

include vmm.inc

mov eax, PriorityBoost

mov ebx, VMHandle

mov ecx, Flags

mov edx, RefData

mov esi, OFFSET32 PriorityEventCallback

mov edi, TimeOut

VMMcall Call_Priority_VM_Event

mov [EventHandle], esi

Calls the callback function immediately or schedules a priority event for the specified virtual machine. This is an asynchronous service. Uses Flags and ESI.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns zero in ESI if the callback function was called immediately. Otherwise, returns the event handle in ESI. The handle can be used in a subsequent call to the Cancel_Priority_VM_Event service to cancel the event.

PriorityBoost

Priority boost for the virtual machine. This parameter must be a value such that when added to the current execution priority, the result is within the range Reserved_Low_Boost to Reserved_High_Boost. This parameter can be 0 if no boost is necessary. Common priority boost values, from lowest to highest, are as follows:

Value �Meaning ��Reserved_Low_Boost �Reserved for use by system. ��Cur_Run_VM_Boost �Use to boost the priority of each virtual machine, in turn, forcing them to run for their allotted time slices. ��Low_Pri_Device_Boost �Use for operations that need timely processing but are not time critical. ��High_Pri_Device_Boost �Use for time-critical operations that should not circumvent the critical section boost. ��Critical_Section_Boost �Use to boost the priority of the virtual machine whenever it enters a critical section (calls Begin_Critical_Section). ��Time_Critical_Boost �Use for operations that require immediate processing, even when another virtual machine is in a critical section. For example, VPICD uses this when simulating hardware interrupts. ��Reserved_High_Boost �Reserved for use by system. ��

Forgetting to pass a priority value in the EAX register is a common error.

VMHandle

Handle of the virtual machine to process the event. This value must be a valid VM handle.

Flags

A combination of these action flags:

Value �Meaning ��PEF_Always_Sched �Event is always scheduled, meaning the callback function is never called immediately. ��PEF_Dont_Unboost �Priority of the virtual machine is not reduced after return from callback function. ��PEF_Time_Out �Specifies that time-out value in the EDI register should be used. Available in Windows version 3.1 or later. ��PEF_Wait_For_STI �Callback function is not called until the virtual machine enables interrupts in all threads. ��PEF_Wait_Not_Crit �Callback function is not called until the virtual machine is not in a critical section or time-critical operation. ��PEF_Wait_Not_Time_Crit, PEF_Wait_Not_HW_Int �Callback function is not called until the thread priority is below TIME_CRITICAL_BOOST. Useful to prevent an event from occurring while an interrupt is being simulated into a VM. ��

All other values are reserved.

RefData

Reference data to pass to the callback function.

EventCallback

Address of the callback function to install. For more information about the callback function, see PriorityEventCallback.

TimeOut

Number of milliseconds until the event times out. The service uses this parameter only if the PEF_Time_Out value is specified by Flags.

The system carries out a task switch to the specified virtual machine if it is not the current virtual machine. If PriorityBoost is not zero, the service boosts the priority of the virtual machine before calling the callback function.

If the amount of time specified by TimeOut elapses before the system can switch to the virtual machine, the system sets the carry flag and calls the callback function immediately regardless of which virtual machine is currently running. In this case, any requested priority boost is canceled even if Flags specified the PEF_Dont_Unboost value. The callback function should always check the carry flag to determine whether a time out occurred.

For additional information about event callbacks, see Event Callbacks.

See also Adjust_Exec_Priority, Begin_Critical_Section, Call_When_Not_Critical, Call_VM_Event, Cancel_Priority_VM_Event, PriorityEventCallback

Cancel_Priority_VM_Event

include vmm.inc

mov esi, EventHandle

VMMcall Cancel_Priority_VM_Event

Cancels an event that was previously scheduled using the Call_Priority_VM_Event service. A virtual device must not attempt to cancel an event if the callback function for the event has already been called. Uses ESI, Flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

EventHandle

Handle of the event to cancel. This parameter can be zero to indicate that no event should be canceled.

The event callback function typically sets the event handle to zero so that subsequent calls by the virtual machine to this service do not cause errors.

This service cancels any priority boost associated with the event, even if the PEF_Dont_Unboost value was specified when the event was scheduled.

Do not use this service to cancel events scheduled using the Call_VM_Event or Schedule_VM_Event services. You must cancel virtual machine events using the Cancel_VM_Event service.

See also Call_Priority_VM_Event, Call_VM_Event, Cancel_VM_Event, Schedule_VM_Event

PriorityEventCallback

mov ebx, VMHandle

mov edi, ThreadHandle

mov edx, RefData

mov ebp, OFFSET32 Client_Reg_Struc

;set up CY flag if appropriate

call [PriorityEventCallback]

Performs programmer-defined processing of a priority event for a virtual machine or thread. PriorityEventCallback is a programmer-defined callback function installed by the Call_Priority_VM_Event service. The callback function can modify the EAX, EBX, ECX, EDX, ESI, EDI, and Flags registers. It must return with interrupts enabled and the direction flag clear (up).

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the event did not time out; otherwise, sets the carry flag.

VMHandle

Handle of the current virtual machine. If a timeout occurs, this handle may not be valid. In such cases, the callback function should use the Get_Cur_VM_Handle service to get the handle of the current virtual machine.

ThreadHandle

Handle of the current thread. If a timeout occurs, this handle may not be valid. In such cases, the callback function should use the Get_Cur_Thread_Handle service to get the handle of the current thread.

RefData

Reference data supplied when the event was scheduled.

Client_Reg_Struc

Address of a Client_Reg_Struc structure containing the contents of the virtual machine's registers.

If the PEF_Time_Out bit was set when the event was scheduled, additional information is given in the flags register, as described in Call_Priority_VM_Event. Such an event callback procedure should begin as follows:

mov 	hThisEvent, 0 ; (See 'Cancelling Events')

 ; (Must preserve carry!)

jc 	Event_Timed_Out ; Carry set means event timed out

 ; Else event processed normally

If a timeout occurs, any priority boost is automatically canceled, even if the the PEF_Dont_Unboost flag was specified in the Call_Priority_VM_Event function that initiated the event.

For additional information about event callbacks, see Event Callbacks.

See also Call_Priority_VM_Event, Client_Reg_Struc, Get_Cur_Thread_Handle, Get_Cur_VM_Handle

Restricted Event Services

Call_Restricted_Event

include vmm.inc

mov eax, PriorityBoost

mov ebx, Handle

mov ecx, Flags

mov edx, RefData

mov esi, OFFSET32 RestrictedProc

mov edi, Timeout

VMMcall Call_Restricted_Event

mov [EventHandle], esi

Combines the functionality of the Call_VM_Event, Call_When_VM_Ints_Enabled, Call_When_Not_Critical, and Adjust_Exec_Priority services into one service.

The service allows a VxD to specify flags which place restrictions on when the VMM can call the event callback function. Restrictions include such things as the event callback function can be called only when interrupts are enabled, only when the critical section is unowned, and so on.

As with all event services, this service can be called from an interrupt handler. This is an asynchronous service. Uses ESI and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns zero in ESI if the callback function was called immediately. Otherwise, returns the event handle in ESI. The handle can be used in a subsequent call to the Cancel_Restricted_Event service to cancel the event.

PriorityBoost

Priority boost for the virtual machine. This parameter must be a value such that when added to the current execution priority, the result is within the range Reserved_Low_Boost to Reserved_High_Boost. This parameter can be 0 if no boost is necessary. Common priority boost values, from lowest to highest, are as follows:

Value �Meaning ��Reserved_Low_Boost �Reserved for use by system. ��Low_Pri_Device_Boost �Use for operations that need timely processing but are not time critical. ��High_Pri_Device_Boost �Use for time-critical operations that should not circumvent the critical section boost. ��Critical_Section_Boost �Use to boost the priority of the virtual machine whenever it enters a critical section (calls Begin_Critical_Section). ��Time_Critical_Boost �Use for operations that require immediate processing, even when another virtual machine is in a critical section. For example, VPICD uses this when simulating hardware interrupts. ��Reserved_High_Boost �Reserved for use by system. ��

For global events, the priority boost only goes into effect after restrictions have been met; that is, just before the VMM calls the event callback function. For VM events, the priority boost is originally applied to the whole VM, but will be moved to the thread that the event is called on unless Flags specifies the PEF_Dont_Unboost flag.

Forgetting to pass a priority value in the EAX register is a common error.

Handle

If the PEF_Thread_Event flag is specified, this parameter contains the handle of the thread for which the event callback is requested; Otherwise, the value of this parameter is zero when the event is a global event or the handle of the virtual machine for which the VM event callback is requested.

Flags

A combination of these action flags:

Value �Meaning ��PEF_Always_Sched �Event is always scheduled, meaning the callback function is never called immediately. ��PEF_Dont_Unboost �Priority of the virtual machine or thread is not reduced after return from callback function. ��PEF_Thread_Event �Handle is the handle of the thread for which the event is requested. The callback function is called only in the context of the thread. ��PEF_Time_Out �The time-out value in the EDI register should be used. Available in Windows version 3.1 or later. ��PEF_Wait_For_STI �Callback function is not called until the virtual machine enables interrupts in all threads. ��PEF_Wait_Not_HW_Int �Callback function is not called while the VPICD is simulating a hardware interrupt. ��PEF_Wait_In_PM �Callback function is not called until the virtual machine or thread is executing in protected mode. Use this flag with caution — it may never happen for VM other than the system VM unless an MS-DOS Protected Mode Interface (DPMI) application is running. ��PEF_Wait_Not_Crit �Callback function is not called until the virtual machine is not in a critical section or time-critical operation. See remarks below. ��PEF_Wait_Not_Nested_Exec �Callback function is not called while the virtual machine is in a nested execution block. ��PEF_Wait_For_Thread_STI �Callback function is not called until interrupts are enabled at ring 3 in the current thead. ��PEF_Ring0_Event �Callback function completes at ring 0. See remarks below. ��PEF_Wait_Crit �Callback function is not called until (1) the critical section is free, or (2) the critical section is owned by the current thread. See remarks below. ��PEF_Wait_Crit_VM �Callback function is called when critical section not owned by other thread in VM. See remarks below. ��PEF_Process_Last �See description below. ��

All other values are reserved.

RefData

Reference data to pass to the callback function.

EventCallback

Address of the callback function to install. For more information about the callback function, see RestrictedEventCallback.

TimeOut

Number of milliseconds until the event times out. The service uses this parameter only if the PEF_Time_Out value is specified by Flags.

If a timeout occurs before the restrictions are met, the event callback will be called with carry set.

A VxD uses the Call_Restricted_Event service for purposes that include the following:

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	To wait until a virtual machine enables interrupts and the critical section is free so the VxD can call MS-DOS or some other non-reentrant code.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	To boost a virtual machine's priority and wait until the virtual machine enables interrupts to simulate an interrupt type event. For example, the VNETBIOS uses this service for asynchronous network request POST call-backs.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	To force an event to be processed in another virtual machine by boosting the virtual machines execution priority.

Global restricted events can happen in any VM that meets the restriction. VM-restricted events can only happen in the specified VM; and now that multiple threads are supported in the system VM, restricted thread events can be specified to only happen in the one thread context (although specifying that interrupts must be enabled for a thread event will only happen when interrupts are enabled in all threads of that VM.)

The PEF_Wait_Not_Crit flag will delay the processing of the event until the critical section is free and the priority of the current thread or virtual machine is less than Critical_Section_Boost. One should be careful not to pass too large a PriorityBoost when this flag is set. (In particular, passing a PriorityBoost greater than or equal to Critical_Section_Boost will prevent the event from ever satisfying its own restrictions.)

The PEF_Wait_For_Thread_STI flag differs from the PEF_Wait_For_STI flag in that the former checks the status of only the current thread, whereas the latter checks the status of all threads in the virtual machine. The two flags may not be combined.

The PEF_Ring0_Event flag indicates that the event can complete entirely at ring 0 without faulting. The requirements for 'ring 0' events are very strict, and apply to the event callback procedure and anything it calls, directly or indirectly. Although some rules in the system are relaxed if 32-bit disk access is enabled, these rules remain in full force. Ring 0 events must restrict memory accesses to locked code and locked data. They must not call Begin_Nest_Exec, Resume_Exec, Exec_VxD_Int, Exec_Int, or any service or procedure that in turn calls one of those services. They must not block on any synchronization objects. They must not adjust any thread's execution priority. In brief, they must guarantee that they will carry out their work to completion without running any code at ring 3, and without causing a task switch. In exchange for these guarantees, ring 0 events can be processed even if a thread has specifically requested that events not be processed. Ring 0 events are very dangerous. It is strongly recommended that they be avoided entirely. The flag is listed here for completeness.

The PEF_Wait_Crit flag indicates that the event may be processed only if the current thread owns the critical section, or if the critical section is unowned. This restriction may be applied only to global events (Handle = 0). The event callback can then be assured that it can call Begin_Critical_Section without blocking. PEF_Wait_Crit events allow you to ensure that a section of code be executed as soon as possible under the protection of the critical scetion. In Windows 3.1, this was done by a chain of events which repeatedly determine the critical section owner, then either perform the requested action or reschedule the same event for the current critical section owner and trying again. Since the ownership of the critical section can change between the time the event is scheduled and the time the event is processed, this chain of events may continue for several iterations before finally completing. (If you draw a picture, you can see why this is informally known as 'chasing the critical section'.) Starting with Windows 95, the PEF_Wait_Crit flag is the recommended way of accomplishing this.

The PEF_Wait_Crit_VM flag may be set only if Handle is equal to the System VM handle. It indicates that the event may be processed when the current thread is a thread in the System VM, and one of the following conditions is also met: (1) The critical section is unowned. (2) The critical section is owned by the current thread. (3) The critical section is owned by a thread not in the System VM. Writers of virtual device drivers should not normally have need for this flag. It is documented here for completeness.

The PEF_Process_Last allows a limited degree of control over the order in which events are processed. Normally, global events are processed first, then VM events, then thread events. This flag causes the event to be removed from consideration during the initial check for processable events. If the initial check fails to find any events, then a second pass is made during which this event can be selected. The only time this flag should be set is on a VM event (Handle is a valid VM handle), to indicate that the current thread should have no thread events when the VM event is processed. It does not add the event to the end of a list. Writers of virtual device drivers should not normally have need for this flag. It is documented here for completeness.

See also Adjust_Exec_Priority, Begin_Critical_Section, Call_VM_Event, Call_When_Not_Critical, Call_When_VM_Ints_Enabled, Cancel_Restricted_Event, RestrictedEventCallback

Cancel_Restricted_Event

include vmm.inc

mov esi, EventHandle

VMMcall Cancel_Restricted_Event

Cancels an event that was previously scheduled using the Call_Restricted_Event service. A virtual device must not attempt to cancel an event if the callback function for the event has already been called. Uses ESI, Flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

EventHandle

Handle of the event to cancel. This parameter can be zero to indicate that no event should be canceled.

The event callback function typically sets the event handle to zero so that subsequent calls by the virtual machine to this service do not cause errors.

This service cancels any priority boost associated with the event, even if the PEF_Dont_Unboost value was specified when the event was scheduled.

Do not use this service to cancel events scheduled using the Call_VM_Event or Schedule_VM_Event services. You must cancel virtual machine events using the Cancel_VM_Event service.

See also Call_Restricted_Event, Call_VM_Event, Cancel_VM_Event, RestrictedEventCallback, Schedule_VM_Event

RestrictedEventCallback

include vmm.inc

mov ebx, VMHandle

mov edi, ThreadHandle

mov edx, RefData

mov ebp, OFFSET32 Client_Reg_Struc

call [RestrictedEventCallback]

Performs programmer-defined processing of a restricted event for a virtual machine or thread. RestrictedEventCallback is a programmer-defined callback function installed by the Call_Restricted_Event service. The callback function can modify the EAX, EBX, ECX, EDX, ESI, EDI, and Flags registers. The callback function must return with interrupts enabled and the direction flag clear (up).

VMHandle

Handle of the current virtual machine. If a timeout occurs, this handle may not be valid. In such cases, the callback function should use the Get_Cur_VM_Handle service to get the handle of the current virtual machine.

ThreadHandle

Handle of the current thread. If a timeout occurs, this handle may not be valid. In such cases, the callback function should use the Get_Cur_Thread_Handle service to get the handle of the current thread.

RefData

Reference data supplied by the virtual machine that initiated the priority event.

Client_Reg_Struc

Address of a Client_Reg_Struc structure containing the contents of the virtual machine's registers.

If a timeout occurs, any priority boost is automatically canceled, even if the the PEF_Dont_Unboost flag was specified in the Call_Restricted_Event function that initiated the event.

If the PEF_Time_Out bit was set when the event was scheduled, additional information is given in the flags register, as described in Call_Restricted_Event. Such an event callback procedure should begin as follows:

mov hThisEvent, 0 	 ; (See 'Cancelling Events')

 ; (Must preserve carry!)

jc Event_Timed_Out	 ; Carry set means event timed out

 ; Else event processed normally

For additional information about event callbacks, see Event Callbacks.

See also Call_Restricted_Event, Cancel_Restricted_Event, Client_Reg_Struc, Get_Cur_Thread_Handle, Get_Cur_VM_Handle

Miscellaneous Event Services

_AtEventTime

include vmm.inc

VMMcall _AtEventTime

mov fEvent, eax

Tests whether the current thread is processing an event. Uses EAX, ECX, EDX, and Flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns non-zero in EAX if the thread is processing an event, zero otherwise.

Register_PEF_Provider

include vmm.inc

mov eax, PEFFlag

mov ecx, 0 ; reserved, must be zero

VMMCall Register_PEF_Provider

jc Error_Handler

mov [VM_State_Off], eax

Retrieves the offset of the restricted-event flags in a virtual machine's control block. An external component can set the flags to indicating whether a restricted condition is met. Uses EAX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the offset of the restricted-event flags (a double-word value). An external component can toggle flag bits at this offset. Setting a bit means the corresponding restriction is not met.

PEFFlag

Flag bit to set or clear. Currently, the only valid flag is PEF_WAIT_NOT_HW_INT_BIT.

The VPICD uses this service to indicate whether it is simulating a hardware interrupt into a VM. It sets the PEF_WAIT_NOT_HW_INT_BIT bit when it is about to simulate an interrupt into a virtual machine, and clears the bit when it finishes simulating the interrupt.

This service is intended to be used by only by internal Windows components, it is not for general use.

See also Call_Restricted_Event, Cancel_Restricted_Event

See also

�Chapter 9

I/O Trapping

About I/O Trapping

The VMM provides the Install_IO_Handler service to install a callback procedure to handle protection faults for a given port. When a virtual device calls Install_IO_Handler, the VMM sets the appropriate bit in the I/O permission map (IOPM) and registers the procedure. When a virtual machine executes an instruction that reads or writes data from an I/O port, the 80386 looks up the port number in the I/O permission map. If the corresponding bit in the IOPM is set, then the instruction will cause a protection fault that results in calling the registered procedure.

There are the following I/O services:

Service �Description ��Disable_Global_Trapping �Disables global I/O trapping. ��Disable_Local_Trapping �Disables local I/O trapping. ��Enable_Global_Trapping �Enables global I/O trapping. ��Enable_Local_Trapping �Enables local I/O trapping. ��Install_IO_Handler �Install an I/O callback procedure. ��Install_Mult_IO_Handlers �Install I/O handlers for multiple ports. ��Remove_IO_Handler �Removes the I/O handler for the specified port and disables trapping for that port. ��Remove_Mult_IO_Handlers �Repeatedly calls the Remove_IO_Handler service for each entry in the VxD_IO_Table, removing the specified IO handlers. ��Simulate_IO �Simulates input and output. ��_Simulate_VM_IO �Reduces complex I/O instructions to simpler I/O operations. ��

Reference

Disable_Global_Trapping

include vmm.inc

mov edx, Port ; I/O port number

VMMcall Disable_Global_Trapping

Disables I/O port trapping for the specified I/O port. This applies to every virtual machine. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Port

Number of the I/O port for which global trapping is to be disabled.

This service must not be used unless an I/O callback procedure has been installed for the given port using the Install_IO_Handler or Install_Mult_IO_Handlers service during initialization. In particular, you should not attempt to alter the port trapping state of a port for which you did not personally install an I/O handler. Altering the port trapping state of a port owned by another virtual device driver may cause that other driver to get confused.

The system applies the current global trapping state for each new virtual machine as it is created. When the system first starts, global trapping is enabled by default.

See also Enable_Global_Trapping, Install_IO_Handler, Install_Mult_IO_Handlers

Disable_Local_Trapping

include vmm.inc

mov ebx, VM ; VM handle

mov edx, Port ; I/O port number

VMMcall Disable_Local_Trapping

Disables I/O port trapping for the specified I/O port. This applies only to the specified virtual machine. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

VM

Handle of the virtual machine for which to disable I/O trapping.

Port

Number of the I/O port for which trapping is disabled.

This service must not be used unless an I/O callback procedure has been installed for the given port using the Install_IO_Handler or Install_Mult_IO_Handlers service during initialization. In particular, you should not attempt to alter the port trapping state of a port for which you did not personally install an I/O handler. Altering the port trapping state of a port owned by another virtual device driver may cause that other driver to get confused.

See also Enable_Local_Trapping, Install_IO_Handler, Install_Mult_IO_Handlers

Enable_Global_Trapping

include vmm.inc

mov edx, Port ; I/O port number

VMMcall Enable_Global_Trapping

Enables I/O port trapping for the specified port. This applies to every virtual machine. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Port

Number of the I/O port for which global trapping is to be enabled.

This service must not be used unless an I/O callback procedure has been installed for the given port using the Install_IO_Handler or Install_Mult_IO_Handlers service during initialization. In particular, you should not attempt to alter the port trapping state of a port for which you did not personally install an I/O handler. Altering the port trapping state of a port owned by another virtual device driver may cause that other driver to get confused.

The system applies to current global trapping state to each new virtual machine as it is created. When the system first starts, global trapping is enabled by default.

See also Disable_Global_Trapping, Install_IO_Handler, Install_Mult_IO_Handlers

Enable_Local_Trapping

include vmm.inc

mov ebx, VM ; VM handle

mov edx, Port ; I/O port number

VMMcall Enable_Local_Trapping

Enables I/O port trapping for the specified port. This applies to the specified virtual machine only. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

VM

Handle of the virtual machine for which to enable I/O trapping.

Port

Number of the I/O port for which trapping is enabled.

This service must not be used unless an I/O callback procedure has been installed for the given port using the Install_IO_Handler or Install_Mult_IO_Handlers service during initialization. In particular, you should not attempt to alter the port trapping state of a port for which you did not personally install an I/O handler. Altering the port trapping state of a port owned by another virtual device driver may cause that other driver to get confused.

See also Disable_Local_Trapping, Install_IO_Handler, Install_Mult_IO_Handlers

Install_IO_Handler

include vmm.inc

mov esi, IOCallback ; points to callback procedure

mov edx, Port ; I/O port number

VMMcall Install_IO_Handler

jc not_installed ; carry flag set if procedure not installed

Installs a callback procedure for I/O port trapping, and enables trapping for the specified port. Only one procedure may be installed for a given port. For Windows 95, this service can be called following initialization. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, set otherwise.

IOCallback

Address of the callback procedure. For more information about the callback procedure, see below.

Port

Number of the I/O port trap.

The service returns an error if a callback procedure is already installed for the specified port or the system limit for I/O callback procedures has been reached.

The system calls the callback procedure whenever a program in a virtual machine attempts to access the specified I/O port, and I/O trapping is enabled. The system calls the procedure as follows:

mov ebx, VM ; current VM handle

mov ecx, IOType ; type of I/O

mov edx, Port ; port number

mov ebp, OFFSET32 crs ; points to a Client_Reg_Struc

mov eax, Data ; output data (if I/O type is output)

call [IOCallback]

mov [Data], eax ; input data (if I/O type is input)

The VM parameter specifies the current virtual machine, the Port parameter specifies the I/O port, and the crs parameter points to a Client_Reg_Struc structure containing the register contents for the current virtual machine.

The IOType parameter specifies the type of input or output operation requested and determines whether the callback procedure receives data in the EAX register or must return data in the EAX register. The IOType parameter can be a combination of the following values:

Value �Meaning ��Addr_32_IO �Use 32-bit address offsets for input or output string operations. If this value is not given, the 16-bit offsets are used. ��Byte_Input �Input a single byte; place in AL if String_IO not given. ��Byte_Output �Output a single byte from AL if String_IO not given. ��Dword_Input �Input a double word; place in EAX if String_IO not given. ��Dword_Output �Output a double word from EAX if String_IO not given. ��Rep_IO �Repeat the input or output string operation the number of times specified by the Client_CX field in the Client_Reg_Struc structure. (The number of repetitions is stored in the Client_ECX field if Addr_32_IO is also set.) ��Reverse_IO �Decrement string address on each input or output operation. If this value is not given, the string address is incremented on each operation. ��String_IO �Input or output a string. The high 16-bits specifies segment address of buffer containing the string to output or to receive the string input. ��Word_Input �Input a word; place in AX if String_IO not given. ��Word_Output �Output a word from AX if String_IO not given. ��

The Data parameter is used only for when I/O type is for output.

A virtual machine can disable trapping of a port for every or for specific virtual machines by using the Disable_Global_Trapping and Disable_Local_Trapping services.

See also Disable_Global_Trapping, Disable_Local_Trapping, Install_Mult_IO_Handlers

Install_Mult_IO_Handlers

include vmm.inc

mov edi, OFFSET32 IOTable ; points to an I/O table

VMMcall Install_Mult_IO_Handlers

jnc installed ; carry flag clear if all procedures installed

mov [BadPort], edx ; I/O port number that failed

Installs I/O callback procedures for one or more I/O ports. For Windows 95, this service can be called following initialization. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if all callback procedures were installed, set otherwise. If the carry flag is set, the EDX register contains the number of the I/O port for which the procedure could not be installed.

IOTable

Address of an I/O table created using the Begin_Vxd_IO_Table, End_Vxd_IO_Table, and Vxd_IO macros. For more information about the table, see below.

This service repeatedly calls the Install_IO_Handler service until all entries in the specified I/O table have been installed.

A virtual device can create an I/O table using the Begin_Vxd_IO_Table, End_Vxd_IO_Table, and Vxd_IO macros. The following example shows a table containing three entries for ports 30, 31, and 32:

Begin_Vxd_IO_Table My_IO_Table

Vxd_IO 30,IO_Handler_1

Vxd_IO 31,IO_Handler_2

Vxd_IO 32,IO_Handler_1

End_Vxd_IO_Table My_IO_Table

See also Begin_Vxd_IO_Table, End_Vxd_IO_Table, Install_IO_Handler, Vxd_IO

Remove_Mult_IO_Handlers

include vmm.inc

mov edi, OFFSET32 VxD_IO_Table

VMMCall Remove_Mult_IO_Handlers

Repeatedly calls the Remove_IO_Handler service for each entry in the VxD_IO_Table, removing the specified IO handlers. Uses flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

VxD_IO_Table

A table of IO port numbers and associated procedure names. This table should have the following format:

Begin_Vxd_IO_Table Table_Name

Vxd_IO <port #>,<procedure name>

...

Vxd_IO <port #>,<procedure name>

Vxd_IO <port #>,<procedure name>

End_Vxd_IO_Table Table_Name

Remove_IO_Handler

include vmm.inc

mov edx, IO_Port_Address

VMMCall Remove_IO_Handler

jc IO_Handler_Does_Not_Exist

Removes the I/O handler for the specified port and disables trapping for that port. Uses flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	ts the carry flag if the I/O handler does not exist.

IO_Port_Address

Address of the port for which the handler should be removed.

The I/O handler removed by this service is a procedure that was installed with the Install_IO_Handler service.

Simulate_IO

include vmm.inc

mov eax, Data ; data for output operations

mov ebx, VM ; current VM handle

mov ecx, IOType ; type of I/O operation

mov edx, Port ; I/O port number

mov ebp, OFFSET32 crs ; address of Client_Reg_Struc

VMMjmp Simulate_IO

mov [Data], eax ; data for input operation

Reduces complex I/O instructions to simpler I/O operations. An I/O callback procedure typically jumps to this service whenever the procedure receives a type of I/O that it does not directly support. Uses EAX, EBX, ECX, EDI, EDX, ESI, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the input data in the EAX register, if the IOType parameter specifies an input operation. The size of the value in the EAX register is implied by the operation type.

Data

Data for an output operation. This parameter is used only if the IOType parameter specifies an output operation.

VM

Handle of the current virtual machine.

IOType

Type of I/O operation, as specified in a call to an I/O trap procedure. Can be one or more of these values:

Value �Meaning ��Addr_32_IO �Uses 32-bit address offsets for input or output string operations. If this value is not given, the 16-bit offsets are used. ��Byte_Input �Inputs a single byte; place in AL if String_IO is not given. ��Byte_Output �Outputs a single byte from AL if String_IO is not given. ��Dword_Input �Inputs a doubleword; place in EAX if String_IO is not given. ��Dword_Output �Outputs a doubleword from EAX if String_IO is not given. ��Rep_IO �Repeats the input or output string operation the number of times specified by the Client_CX field in the Client_Reg_Struc structure. (The number of repetitions is stored in the Client_ECX field if Addr_32_IO is also set.) ��Reverse_IO �Decrements string address on each input or output operation. If this value is not given, the string address is incremented on each operation. ��String_IO �Inputs or outputs a string. The high 16-bits specifies the segment address of the buffer containing the string to output, or to receive the string input. ��Word_Input �Inputs a word; place in AX if String_IO is not given. ��Word_Output �Outputs a word from AX if String_IO is not given. ��

Port

Number of the I/O port through which to carry out the operation. If word I/O is requested, then Port+1 is also used. If dword I/O is requested, then Port+1 through Port+3 are also used.

crs

Address of a Client_Reg_Struc structure containing the register contents for the current virtual machine.

The parameters to this service are identical to the parameters passed to an I/O callback procedure. A callback procedure should jump to this service, using the VMMjmp macro, with all of the registers in the same state as when the procedure was called. The procedure may modify the ESI and EDI register before jumping, if necessary.

See also Dispatch_Byte_IO, Emulate_Non_Byte_IO

_Simulate_VM_IO

include vmm.inc

mov edx, PortID

mov ecx, IOType

mov eax, OutputData

VMMCall _Simulate_VM_IO

mov [InputData], eax

Reduces complex I/O instructions to simpler I/O operations. Uses EAX, flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	If the service is called to simulate input, EAX will receive the input value.

PortID

Identifies the port for which input or output is simulated.

IOType

Specifies the type of I/O. It can be one of the following values:

Value �Meaning ��Byte_Input �Inputs a single byte. ��Byte_Output �Outputs a single byte. ��Dword_Input �Inputs a doubleword. ��Dword_Output �Outputs a doubleword. ��Word_Input �Inputs a word. ��Word_Output �Outputs a word. ��

OutputData

The data to be output. (This parameter is only used if the service is called to simulate output.)

This service is called to simulate port I/O from the current VM. It is useful for VxDs which need to alter the state of other VxDs. For example, a VxD could perform a simulated EOI by calling this procedure with:

mov al, 20h

mov edx, 20h

mov ecx, Byte_Output

VMMcall Simulate_VM_IO

Which is the same as a VM executing:

mov al, 20h

out 	20h, al

�Chapter 6

Free Physical Page Management

About Free Physical Page Management

Free physical pages are unused physical addresses that the VMM can assign to committed pages when they are paged in. The Windows loader initializes the list of free physical pages. If the loader does not find certain pages that are actually available, virtual devices can use VMM services to add these to the free list.

The _AddFreePhysPage service notifies the memory manager of additional physical pages. The _PageResetHandlePAddr service also makes new physical pages available to the memory manager. However, this service simultaneously maps a range of pages in the specified memory block to the new physical pages.

Virtual devices must not attempt to add physical pages that are already under the control of the memory manager. You can determine whether physical pages exist and are recognized by the memory manager by using the _GetPhysPageInfo service.

The system creates linear address aliases for physical memory only when requested through the _MapPhysToLinear service. This is different from Windows 3.1, which created a giant linear address region to alias all of physical memory. (The change is required in order to support machines with more than 16MB of memory.) Therefore, it is imperative that linear address aliases for physical memory always be obtained through calls to _MapPhysToLinear. Do not assume that _MapPhysToLinear(N, 1, 0) is the same as _MapPhysToLinear(0, 1, 0) + N for all values of N. When you create a linear address alias, the second parameter indicates the number of bytes for which an alias is required; it is only for this number of bytes that the mapping of linear addresses to physical addresses remains contiguous. Linear address aliases are valid until the system is shut down.

See also _AddFreePhysPage, _GetPhysPageInfo, _MapPhysToLinear, _PageResetHandlePAddr

Reference

_AddFreePhysPage

include vmm.inc

VMMcall _AddFreePhysPage, <PhysPgNum, nPages, flags>

mov [PagesAdded], eax ; 0 = none, 1 = some, 2 = all

Adds one or more physical pages to the free memory pool. Virtual devices use this service to add pages that the Windows loader could not find, but that the virtual device did find. For example, the V86MMGR device adds any unused physical pages it finds when using the Global EMM Import function of a 386 LIMulator. Uses EAX, ECX, EDX, and Flags.

This service is only available during initialization, and only in Windows version 3.1 and later.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with one of these values in the EAX register:

Value �Meaning ��0 �None of the specified physical pages were added to the free pool. ��1 �Some, but not all, of the specified physical pages were added. ��2 �All of the specified physical pages were added. ��

PhysPgNum

Physical page number of the first page to add. The page number must be greater than or equal to 110h; only extended memory pages may be added to the pool. The specified pages must be read/write physical memory pages, and must be available for use at any time.

nPages

Number of physical pages to add.

flags

Operation flags. Can be zero or the following value:

Value �Meaning ��AFPP_RECEXIT �The physical memory being added will be automatically restored to its original state (original contents, and in an unused and unmapped state) immediately before System_Exit. No more than 32 pages can be added per call using this feature; to add more than 32 pages, make multiple calls. ��

A virtual device must not attempt to use pages once it has added them to the free pool, or attempt to add pages that are already available to the system.

This service returns an error if the number of pages to add exceeds the limit of the internal data structure the system uses to manage the free pool. The internal data structure is allocated during initialization and cannot be modified.

Most virtual devices do not need to use this service.

See also _GetFreePageCount

_GetPhysPageInfo

#include <vmm.h>

ULONG EXTERNAL GetPhysPageInfo(ULONG iPage, ULONG nPages, ULONG flags);

Indicates whether any, all, or none of the specified physical pages exist. This service is available even after initialization, but is pageable, meaning that if it is called after initialization, it may block and/or cause a task-switch before returning. Uses EAX, ECX, EDX, and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns PHYSINFO_NONE (0) if the pages are nonexistent, PHYSINFO_SOME (1) if the some of the pages exist, and PHYSINFO_ALL (2) if the all the pages exist.

iPage and nPages

Page number of the first physical page in the range, and the number of physical pages in the range.

flags

Must be zero.

_MapPhysToLinear

include vmm.inc

VMMcall _MapPhysToLinear, <PhysAddr, nBytes, flags>

cmp eax, 0FFFFFFFFh ; 0FFFFFFFFh if not addressable

je not_addressable

mov [Address], eax ; address of first byte

Returns the linear address of the first byte in the specified range of physical addresses. Uses EAX, ECX, EDX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the ring-0 linear address of the first byte of the physical region, if successful. The EAX register contains 0FFFFFFFFh if the specified range is not addressable.

PhysAddr

32-bit physical address of the start of the region to examine. Physical addresses start at 0, thus the address of physical page 0A0h is 0A0000h.

nBytes

Length of the physical region, in bytes. The service uses this parameter to verify that the entire range is addressable.

flags

Operation flags. Must be zero.

This service is intended to be used to examine device-specific physical memory. Virtual devices must not use this service for any other purpose.

Because physical addresses do not move, the linear address returned by this service remains valid until the system is shut down. Virtual devices should be careful not to use this service in a manner that wastes linear address space.

The following example returns a linear address for 64 kilobytes of memory starting at the physical page 0A0h:

VMMcall _MapPhysToLinear,<0A0000h,10000h,0>

Since physical memory is mapped contiguously, the linear address for page 0A1h is 4096 bytes beyond the return linear address. Note, however, that no information can be concluded about the linear addresses for physical pages 9Fh or 0B0h, because they lie outside the 64KB range requested. If a virtual device needs linear address aliases for those pages, it must call _MapPhysToLinear separately for those pages.

_PageResetHandlePAddr

include vmm.inc

VMMcall _PageResetHandlePAddr, <hMem, PgOff, nPages, PhysPgNum, flags>

or eax, eax ; nonzero if substituted, zero if error

jz not_substituted

Substitutes one or more pages in a memory block with physical pages not previously available to the system. This service is similar to the _AddFreePhysPage service, but allows memory to be used in a slightly different way. Uses EAX, ECX, EDX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in the EAX register if successful, zero otherwise.

hMem

Handle (base linear address) of a memory block. This handle must have been previously created using the _PageAllocate or _PageReAllocate service.

PgOff

Offset in pages from the start of the memory block to the first page to be substituted.

nPages

Number of pages to substitute.

PhysPgNum

Number of the first physical page to substitute into the memory block. The page number must be greater than or equal to 110h; only extended memory pages may be added to the block. The specified pages must be read/write physical memory pages, and must be available for use at any time.

flags

Operation flags. Must be 0.

This service is only available for Windows version 3.1 and later.

This service returns an error if the sum of the PgOff and nPages parameters is greater than the size of the memory block.

A virtual device must not attempt to use pages once it has added them to the free pool, or attempt to add pages that are already available to the system.

This service returns an error if the number of pages to add exceeds the limit of the internal data structure the system uses the manage the free pool. The internal data structure is allocated during initialization and cannot be modified.

This service converts pages that are substituted into the block to fixed pages. These pages are always locked, and cannot be unlocked.

This service maps a new physical page in at the specified locations and puts the existing physical memory in the free list. The contents of the freed pages are not preserved.

Most virtual devices do not need to use this service.

See also _AddFreePhysPage

�Chapter 11

Memory Allocation

About Memory Allocation

Sparse Memory Allocation

A "sparse memory" block is a range of linear addresses in which not all pages are necessarily available for use. The owner of a sparse memory block is responsible for making pages available ("committing") and removing pages ("decommitting"), as it sees fit. Accessing a page which is not committed will raise a protection exception. The sparse memory functions allow a VxD to manage linear address space in roughly the same way as the Win32 "VirtualAlloc" and related functions.

Sparse memory allocation services allocate pages in two steps. First, you reserve a range of pages; then you commit pages as they are needed. Reserving pages sets the corresponding linear addresses aside for a specific purpose, but does not consume any physical storage. Committing pages allocates physical storage for them. Free pages are those that are neither reserved nor committed.

Suppose a virtual device uses a data structure that must be contiguous and that varies in size over time. By reserving a large range of pages, and committing them as needed, the virtual device can efficiently grow the data structure. Because the reserved pages are guaranteed to be available, growing the structure never requires copying it to a new location.

To reserve a range of pages, use the _PageReserve service. Collectively, the pages reserved in a single call to the _PageReserve service comprise a memory block. The base linear address returned by _PageReserve identifies the block. For example, you specify this address when you free the block using the _PageFree service.

To commit pages, use the _PageCommit service. This service allocates physical storage for a range of pages, and enables you to specify whether the pages are fixed (permanently locked) and what their privileges are. (Committing pages fixed rather than locked is more efficient if your VxD will never unlock the pages.) All pages committed at one time must be in the same memory block - that is, they must have been reserved by a single call to the _PageReserve service. To decommit pages, use the _PageDecommit service. Decommitting pages is different from freeing a memory block because the pages remain reserved.

The _PageCommit service allocates physical memory purely on the basis of availability, such that there is no correlation between linear and physical addresses. Virtual device may sometimes require pages to be physically contiguous - for example, when allocating a DMA buffer. Using the _PageCommitContig service, you can commit pages that are physically contiguous, and may also specify a physical alignment and a range of allowable physical addresses.

The _PageCommitPhys service maps a range of pages to the specified physical addresses. The pages are considered committed. However, no physical memory is allocated by this service. That is, the service does not verify that the specified physical addresses are available, and not does update the list of free physical pages. The specified physical addresses must be outside the control of the memory manager, or otherwise under the control of the virtual device. For more information about the memory manager's use of physical memory, see Free Physical Page Management.

See also _PageCommit, _PageCommitContig, _PageCommitPhys, _PageDecommit, _PageFree, _PageReserve

Page Allocation

The VMM provides a set of page allocation services that do not separately reserve and commit pages. Internally, these services simply reserve and commit pages in one step by calling the appropriate sparse memory management services.

To allocate pages, use the _PageAllocate service. The service allocates (reserves and commits) a memory block, and returns the block's base linear address. The address is identical to the address returned by the _PageReserve service. To free the memory block, pass the linear address by using the _PageFree service.

You can change the size of a memory block after it is allocated by using the _PageReAllocate service. The service attempts to change the committed size of the object without changing its base address. However, if necessary the service reserves a new memory block and copies the existing pages to it.

To determine the size of a memory block, use the _PageGetSizeAddr service. This service returns the reserved size of the block, which may be greater than the number of committed pages in the memory block. You can get information about the amount of available memory by using the _PageGetAllocInfo and _GetFreePageCount services.

Because these services use the sparse memory management services internally, it is possible to use the two groups of services in combination. For example, you might allocate a memory block using _PageAllocate and then decommit certain pages in that memory block using the _PageDecommit service. However, combining these services is generally not recommended because doing so might break assumptions made by the page allocation services. For example, the _PageReAllocate service assumes that all committed pages in a memory block are contiguous, which may not be the case if sparse memory allocation services have been used on the same region.

See also _PageGetAllocInfo, _GetFreePageCount, _PageGetSizeAddr, _PageReAllocate, _PageReserve, _PageFree

Heap Allocation

You can use the system heap to allocate memory objects of any size, rather than allocating in units of pages.

To allocate a memory object on the heap, use the _HeapAllocate service. You can change the size of the memory object using the _HeapReAllocate service and free it using the _HeapFree service. To determine the size of a memory object, use the _HeapGetSize service.

There are three system heaps: the locked heap, the swappable heap, and the init heap. The init heap is discarded at the end of Init_Complete. The locked and swappable heaps remain available as long as the system is running. Memory allocated into the swappable heap is swappable; your VxD must be careful not to access it at a time when paging is not allowed.

The system provides no memory protection for memory objects on the heap. It also does not compact the heap. Therefore, virtual devices should avoid using the heap in such a way as to severely fragment it.

See also _HeapAllocate, _HeapFree, _HeapGetSize, _HeapReAllocate

Reference

Sparse Memory Allocation Services

Sparse memory allocation services enable virtual devices to allocate pages in two steps: reserving linear addresses, and then committing physical storage as needed. There are the following sparse memory allocation services:

_PageCommit

#include <vmm.h>

ULONG EXTERNAL _PageCommit(ULONG page, ULONG npages, ULONG hpd,

	ULONG pagerdata, ULONG flags);

Commits physical pages to a range of linear addresses.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value if successful, zero otherwise.

page and npages

Linear page number to commit the first physical page to, and the number of pages to commit. The entire range of linear addresses must have been previously reserved by a single call to the _PageReserve service.

hpd

Handle of a registered pager (returned by the _PagerRegister service) or one of these values:

PD_ZEROINIT �Swappable zero-initialized. ��PD_NOINIT �Swappable uninitialized. ��PD_FIXED �Fixed uninitialized (must also pass in PC_FIXED flag). ��PD_FIXEDZERO �Fixed zero-initialized (must also pass in PC_FIXED flag). ��

pagerdata

A pager-defined 32-bit value to be stored with the page. Must be zero if the hpd parameter does not identify a registered pager.

flags

One or more of the following values:

PC_FIXED �The pages are permanently locked. If you know that the memory will remained locked throughout its lifetime, it is more efficient to use PC_FIXED than PC_LOCKED. ��PC_LOCKED �The pages are initially present and locked, but may be unlocked in the future. ��PC_LOCKEDIFDP �The pages are locked only if the virtual pageswap device uses MS-DOS or BIOS functions to write pages to the hardware. (Note that in such a case, the pages are locked and not fixed.) ��PC_STATIC �The pages are committed even if the linear addresses were reserved using the PR_STATIC flag. If the linear address had been reserved with PR_STATIC and the PC_STATIC flag is not passed to _PageCommit, the function will fail. ��PC_USER �The pages are accessible at ring 3. ��PC_WRITEABLE �The pages are writeable. ��PC_INCR �Increments the pager-defined 32-bit value associated with each page in the specified range. ��

If the PC_LOCKED, PC_LOCKEDIFDP, or PC_FIXED flag is specified, none of the pages in the range of linear addresses specified by the page and npages parameters can already be committed. If none of these flags are specified, the range can include committed pages; however, recommitting already-committed pages is inefficient and should be avoided.

See also _PagerRegister, _PageReserve

_PageCommitContig

#include <vmm.h>

ULONG EXTERNAL _PageCommitContig(ULONG page, ULONG npages, ULONG flags,

	ULONG alignmask, ULONG minphys, ULONG maxphys);

Commits physically contiguous pages to a range of linear addresses. ommitting physically contiguous pages is typically required only when interacting with hardware devices that impose external constraints on the physical properties of the memory on which they operate.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the base physical address if successful, -1 otherwise.

page and npages

Linear page number to commit the first physical page to, and the number of pages to commit. The entire range of linear addresses must have been previously reserved by a single call to the _PageReserve service, and none of the linear pages can be already committed. If the PC_NOLIN flag is specified, page is ignored.

flags

Zero or more of these values:

PC_USER �The pages are accessible at ring 3. ��PC_WRITEABLE �The pages are writeable. ��PCC_ZEROINIT �The pages are zero initialized. ��PCC_NOLIN �The pages are not mapped to any linear addresses. If PCC_NOLIN is passed, raw physical pages are allocated and the raw physical address is returned. Pages allocated in this way cannot be freed; they belong permanently to the caller. The PCC_NOLIN flag must not be combined with any of the other flags. ��

alignmask

Value specifying the physical alignment of the memory. Can be one of these values:

0x00 �4 K alignment ��0x01 �8 K alignment ��0x03 �16 K alignment ��0x07 �32 K alignment ��0x0F �64 K alignment ��0x1F �128 K alignment ��

minphys and maxphys

Minimum and maximum physical page numbers for new pages.

The pages allocated will be greater than or equal to minphys and strictly less than maxphys. For example, to ensure that the pages returned will lie below the 16MB boundary, pass minphys=0x0000 and maxphys=0x1000. If you do not wish to impose restrictions on the physical page numbers, pass minphys=0 and maxphys=-1.

This service is typically used when communicating with hardware devices which have peculiar requirements on the physical address on which they operate. The _PageCommit service does not ensure the physical properties of the pages committed.

Pages allocated by this service are allocated as PC_FIXED.

_PageCommitPhys

#include <vmm.h>

ULONG EXTERNAL _PageCommitPhys(ULONG page, ULONG npages, ULONG physpg,

 ULONG flags);

Commits a specified physical page or range of physical pages to a range of linear addresses.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value if successful, zero otherwise.

page and npages

Linear page number to commit the first physical page to, and the number of pages to commit. The entire range of linear addresses must have been reserved by a single call to the _PageReserve service, and none of the linear pages can be already committed.

physpg

Physical page number of the first page to commit. All of the physical pages committed must be either outside the control of the memory manager (for example, a memory-mapped device or video memory) or otherwise under the control of the virtual device driver making the call (for example, previously allocated and locked, or obtained by a previous call to PageCommitContig with the PCC_NOLIN flag). By default, all pages in the linear address region are mapped to the page number specified by physpg. To commit a region of physical pages to a corresponding region of linear addrsses, use the PC_INCR flag.

flags

One or more of these values:

PC_INCR �The linear pages are mapped to an equal number of contiguous physical pages. That is, the physical page number is incremented for each linear page committed.

this flag is not specified, all of the linear pages are mapped to the same physical page. ��PC_USER �The pages are accessible at ring 3. ��PC_WRITEABLE �The pages are writeable. ��

Memory committed through this service should not be touched while processing a hardware interrupt, since the page tables mapping the memory may be swapped out. If you need to access the memory at hardware interrupt time, lock the pages with the _LinPageLock service.

_PageDecommit

#include <vmm.h>

ULONG EXTERNAL _PageDecommit(ULONG page, ULONG npages, ULONG flags);

Decommits physical storage from a specified range of linear addresses.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value if success, zero otherwise.

page and npages

Linear page number of first page to decommit, and the number of pages to decommit. The entire range of linear addresses must have been reserved by a single call to the _PageReserve service.

While the specified range can include pages that are already decommitted, this is not recommended.

flags

Must be zero.

_PageFree

// C syntax

#include <vmm.h>

ULONG EXTERN _PageFree(PVOID hMem, DWORD flags);

// assembler syntax

include vmm.inc

VMMcall _PageFree, <hMem, flags>

or eax, eax ; nonzero if freed, zero if error

jz failed

Frees the specified memory block. Uses EAX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in the EAX register if successful, zero otherwise.

hMem

Base linear address of the memory block to free. This value must have been returned by the _PageAllocate, _PageReAllocate, or _PageReserve service. You may not free only part of a memory block.

flags

Operation flags. Can be zero or PR_STATIC, which specifies that the memory block being freed was allocated as PC_STATIC. If the memory block was allocated as PC_STATIC, but the PR_STATIC field is not also specified, the free will fail..

Virtual devices that allocate PG_VM or PG_HOOKED pages must free these pages when the associated virtual machine is destroyed. PG_SYS pages do not need to be freed when Windows exits.

If a virtual device maps a memory block into the V86 address space (using the _MapIntoV86 service), it should unmap the memory block before attempting to free it.

It is not an error to free memory which is all or partially locked.

It is not necessary to decommit the memory inside a memory block before freeing it. Freeing a memory block automatically decommits its contents.

See also _PageAllocate, _PageReAllocate

_PageReserve

#include <vmm.h>

ULONG EXTERNAL _PageReserve(ULONG page, ULONG npages, ULONG flags);

Reserves a range of linear addresses in the current context without allocating any physical storage.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the linear address of the first reserved page if successful, - 1 otherwise.

page

Linear page number of the start of the range, or one of these values:

PR_PRIVATE �Anywhere in current ring 3 private arena. ��PR_SHARED �Anywhere in the ring 3 shared arena. ��PR_SYSTEM �Anywhere in the system arena. ��

If an explicit page is specified, the memory manager attempts to allocate that linear page address. If the linear address is already in use, the service fails.

npages

Number of linear pages to reserve.

flags

Zero or more of these values:

PR_FIXED �Prevents _PageReAllocate from moving the pages. ��PR_STATIC �Disallows commit, decommit and free operations unless a static flag is specified. ��PR_4MEG �Forces the reserved address to be aligned on a four-megabyte boundary. This flag is ignored if the page parameter specifies a specific address. ��

Before touching any linear page reserved by this service, you must commit physical storage to the page using the _PageCommit, _PageCommitContig, or _PageCommitPhys service.

See also _PageCommit, _PageCommitContig, _PageCommitPhys

Page Allocation Services

Page allocation services allocate blocks of pages, without separately reserving and committing them. There are the following page allocation services.

_GetFreePageCount

include vmm.inc

VMMcall _GetFreePageCount, <flags>

mov dword ptr [FreePages], eax ; number of free pages

mov dword ptr [LockablePages], edx ; number of lockable pages

Returns the number of pages in the free list. This service also returns the number of free pages that can be allocated as locked pages. Uses EAX, ECX, EDX, and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the number of free pages in the EAX register register and the number of pages available for allocation as locked pages in the EDX register.

flags

Operation flags. Must be zero.

Virtual devices can allocate pages by using the _PageAllocate, _PageCommit, _PageCommitContig, or _PageCommitPhys service.

In a demand-paged virtual memory system such as Windows, the number of free pages is usually very close to 0, so the count of pages available for locking is usually a better indicator of available memory. However, virtual devices must not rely on the count of free pages being less than or equal to the count of pages to lock. No guarantees can be made about the length of time the information returned by this service remains accurate.

See also _PageAllocate

_PageAllocate

// C syntax

#include <vmm.h>

ULONG EXTERN _PageAllocate(ULONG nPages, ULONG pType, ULONG VM,

 ULONG AlignMask, ULONG minPhys, ULONG maxPhys, ULONG *PhysAddr,

 ULONG flags);

; assembler syntax

include vmm.inc

VMMcall _PageAllocate, <nPages, pType, VM, AlignMask, minPhys,

 maxPhys, <OFFSET32 PhysAddr>, flags>

test eax, eax ; returns 0 on error

jz error

mov [Address], eax ; linear address of allocated memory block

Allocates a block of memory consisting of the specified number of pages. This service reserves linear address space for the memory block, and depending on the value of the flags parameter, may also map the linear addresses to physical memory, locking the pages in memory. The service returns a memory handle that can be used in subsequent memory management functions to lock, unlock, reallocate, and free the memory block. Uses EAX, ECX, EDX, and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the ring-0 linear address of the memory block (in the EAX register). For compatibility with Windows 3.1, the same value is returned in EDX. For Windows 3.1, EAX was the memory handle and EDX the memory address. For Windows 95, the handle and the linear address are always the same. Both registers are zero if an error occurs, such as insufficient memory.

nPages

Number of pages to allocate for the memory block. This parameter must not be zero.

pType

Value specifying the type of pages to allocate. Must be PG_HOOKED, PG_SYS, or PG_VM. If PG_SYS is specified, the pages are allocated in the system arena. Otherwise, they are allocated in the ring 3 shared arena. There is no real difference between the PG_HOOKED and PG_VM types.

VM

Handle of the virtual machine for which to allocate the pages. This parameter applies to pages allocated using the PG_VM and PG_HOOKED values only. This parameter must be zero if the nType parameter specifies PG_SYS.

AlignMask

Alignment mask that defines acceptable starting page numbers for the memory block. This parameter can be one of the following values:

Value �Meaning ��00000000h �Physical address is a multiple of 4K. ��00000001h �Physical address is a multiple of 8K. ��00000003h �Physical address is a multiple of 16K. ��00000007h �Physical address is a multiple of 32K. ��0000000Fh �Physical address is a multiple of 64K. ��0000001Fh �Physical address is a multiple of 128K. ��

This parameter is used only if the flags parameter specifies the PAGEUSEALIGN value.

minPhys

Minimum acceptable physical page number in the memory block. All page numbers must be greater than or equal to this value. This parameter is used only if the flags parameter specifies the PAGEUSEALIGN value.

maxPhys

Maximum acceptable physical page number in the memory block. All page numbers must be less than this value. This parameter is used only if the flags parameter specifies the PAGEUSEALIGN value.

PhysAddr

Address of a four-byte buffer that receives the physical address of the start of the memory block. The service uses this parameter only if the flags parameter specifies the PAGECONTIG and PAGEUSEALIGN values. The service ignores this parameter if it is zero.

flags

Operation flags. Can be zero or more of these values:

Value �Meaning ��PAGECONTIG �Allocates contiguous physical pages to create the memory block. This value is ignored if the PAGEUSEALIGN value is not also specified. ��PAGEFIXED �Locks the allocated pages in memory at a fixed linear address, and prevents the pages from subsequently being unlocked or moved. The service locks the memory block regardless of the type of virtual page swap device present.

the page will remain locked throughout its life, use PAGEDFIXED; it's more efficient than PAGELOCKED. ��PAGELOCKED �Locks the allocated pages in the memory. The pages can be subsequently unlocked using the _PageUnLock service. The service locks the memory block regardless of the type of virtual page swap device present. ��PAGELOCKEDIFDP �Locks the allocated pages in the memory only if the virtual page swap device uses MS-DOS or BIOS functions to write to the hardware. If the pages are locked, they can be subsequently unlocked using the _PageUnLock service.

irtual device must not specify the PAGELOCKEDIFDP value until after it has received the Init_Complete message.

 PAGELOCKED and PAGELOCKEDIFDP values are mutually exclusive. ��PAGEUSEALIGN �Allocates pages using the alignment and physical addresses specified by the AlignMask, minPhys, and maxPhys parameters. If this value is specified, PAGEFIXED must also be specified. ��PAGEZEROINIT �Fills the memory block with zeros. If this value is not given, the contents of the memory block are undefined. ��

All other values are reserved.

This service reserves linear address space by calling the _PageReserve service, and then commits physical storage by calling the _PageCommit service. The address returned by this service can be used in the same manner as the linear address returned by the _PageReserve service.

Unless the PAGELOCKED, PAGELOCKEDIFDP, or PAGEFIXED value is specified, the allocated pages are not initially present in physical memory. The system maps a page into physical memory (pages it in) when a virtual device attempts to access the page. You can force a page to be present by using the _PageLock service.

Virtual devices use the PAGEUSEALIGN value to allocate buffers for use by the device which have additional alignment restrictions enforced by the hardware. For example, a DMA may require buffers to start at addresses that are a multiple of 64K or 128K. When allocating such buffers, the PAGECONTIG value is often used in combination with PAGEUSEALIGN.

See also _PageFree, _PageLock, _PageReAllocate, _PageUnLock

_PageGetAllocInfo

include vmm.inc

VMMcall _PageGetAllocInfo, <flags>

mov [Lockable], edx ; count of lockable pages

Returns the number of pages that can be allocated as locked or fixed memory. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the number of pages available for allocating as locked pages in the EDX register. The value returned in the EAX register is undefined. (This peculiar return convention is for Windows 3.1 compatibility.)

flags

Operation flags. Must be zero.

Virtual devices must not rely on being able to allocate all pages specified by this service. In general, virtual devices should allocate memory as needed, and not attempt to allocate all available memory.

See also _PageAllocate

_PageGetSizeAddr

include vmm.inc

VMMcall _PageGetSizeAddr, <hMem, flags>

test eax, eax ; returns zero if error

mov [Pages], eax ; number of pages in memory block

mov [Address], edx ; ring-0 linear address of memory block

Returns the size and linear address of a memory block. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the number of pages in the memory block in the EAX register. For compatibility with Windows 3.1, the ring-0 linear address of the memory block is returned in the EDX register. Both registers are zero if an error occurs. (Under Windows 95, handles and addresses are the same, so the return value in EDX is relatively meaningless.)

hMem

Base linear address of the memory block for which to return information. This parameter may be a handle returned by the _PageAllocate or _PageReAllocate service, or may be a linear address returned by the _PageReserve service.

flags

Operation flags. Must be zero.

The return value specifies the number of reserved pages for the memory block, which may be greater than the number of committed pages. For example, if the _PageReAllocate service is used to reduce the size of a memory block, the number of virtual pages reserved for that block may remain unchanged.

See also _PageAllocate, _PageReAllocate

_PageReAllocate

// C syntax

#include <vmm.h>

ULONG EXTERN _PageReAllocate(ULONG hMem, ULONG nPages, ULONG flags);

; assembler syntax

VMMcall _PageReAllocate, <hMem, nPages, flags>

test eax, eax ; zero in eax if error

jz error

mov [Address], eax ; new linear address

Resizes and optionally reinitializes an existing memory block. The service can increase or decrease the number of pages in the memory block. Uses EAX, ECX, EDX and flags.

 Returns the ring-0 linear address of the block (in the EAX register). For compatibility with Windows 3.1, the same value is returned in the EDX register.

Both registers are zero if an error occurs, such as insufficient memory, an invalid memory address, or the wrong memory type. In this case, the original memory block is unchanged.

hMem

Base linear address of the memory block to reallocate. In most cases, this should be a value returned by the _PageAllocate or _PageReAllocate service. If this parameter is a linear address returned by the _PageReserve service, see the cautions below.

nPages

Number of pages in the reallocated memory block. This parameter must not be zero. To free a memory block, use the _PageFree service.

flags

Operation flags. Can be zero or more of these values:

Value �Meaning ��PAGELOCKED �Locks the allocated pages in the memory. The pages can be subsequently unlocked using the _PageUnLock service. The service locks the memory block regardless of the type of virtual page swap device present. ��PAGELOCKEDIFDP �Locks the allocated pages in memory only if the virtual page swap device uses MS-DOS or BIOS functions to write to the hardware. If the pages are locked, they can be subsequently unlocked using the _PageUnLock service.

irtual device must not specify the PAGELOCKEDIFDP value until after the Init_Complete message has been processed by all virtual devices. ��PAGENOCOPY �Does not preserve contents of existing pages. If this value is not given, the service preserves the contents of each existing page by copying the contents of the old memory block into the corresponding pages of the new block. ��PAGEZEROINIT �Fills any new pages with zeros. All existing pages remain unchanged. ��PAGEZEROREINIT �Fills all pages, new and existing, with zeros. ��

All other values are reserved.

This service changes the number of committed pages for the memory block. It attempts to do so without changing the base linear address. If necessary, however, the service reserves a new memory block, copies the old data into it, and then frees the existing memory object.

If you use this service with sparse memory management services, such as _PageReserve, _PageCommit, and _PageDecommit, you must ensure that all committed pages are contiguous and that the first committed page is at the start of the memory block's reserved address range. If pages have been committed sparsely, the service may return an error or free pages unexpectedly. You can reallocate a memory block that has no committed pages. For example, you could call _PageReserve and then _PageReAllocate.

If the specified base linear address identifies a fixed memory block (allocated using the PAGEFIXED value), this service implicitly allocates fixed pages for the new memory block. The service returns an error if the block cannot be reallocated without changing the base linear address.

If the specified base linear address identifies an aligned memory block (allocated using the PAGEUSEALIGN value), this service returns an error.

If the specified base linear address identifies a memory block allocated by _PageReserve with the PR_STATIC flag, this service returns an error.

Virtual devices must never rely on the new and old starting addresses being equal.

The action specified by the PAGELOCKEDIFDP value is available only after the virtual page swap device has been initialized.

See also _PageAllocate, _PageFree, _PageLock, _PageReserve, _PageUnLock

Heap Services

Heap allocation services enable virtual devices to allocate memory objects of arbitrary size, rather than in units of pages. There are the following heap allocation services:

_HeapAllocate

// C syntax

#include <vmm.h>

ULONG EXTERN _HeapAllocate(ULONG nbytes, ULONG flags);

; assembler syntax

include vmm.inc

VMMcall _HeapAllocate, <nbytes, flags>

or eax, eax ; zero if error

jz not_allocated

mov [Address], eax ; address of memory block

Allocates a block of memory from the system heap. Uses EAX, ECX, EDX, and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the address of the block in the EAX register if successful, zero otherwise.

nbytes

Specifies the size in bytes of the block to allocate. Must not be zero.

flags

Allocation flags. Can be zero or more of these values.

Value �Meaning ��HEAPLOCKEDIFDP �Allocates a memory block in locked memory only if MS-DOS or BIOS functions are used for paging. Otherwise, the memory block is allocated in pageable memory. ��HEAPINIT �Allocates a memory block that is automatically freed after initialization. This value can only be specified during initialization. ��HEAPSWAP �Allocates a memory block in pageable memory. ��HEAPZEROINIT �Fills the memory block with zeros. If this value is not given, the initial content of the memory block is undefined. ��

All other values are reserved.

Only one of the values HEAPINIT, HEAPSWAP, or HEAPLOCKEDIFDP can be specified. If none of these values is specified, the block is allocated in fixed memory.

This service aligns allocated block on doubleword boundaries, however, the block size does not have to be a multiple of 4.

Since the system offers no protection on the heap, virtual devices must provide their own protection to prevent overrunning allocated blocks.

The system offers no compaction on the heap; all memory blocks on the heap are fixed. Virtual devices must not to use the heap in such a way as to severely fragment it.

See also _HeapFree, _HeapReAllocate

_HeapFree

// C syntax

#include <vmm.h>

ULONG EXTERNAL _HeapFree(ULONG hAddress, ULONG flags);

; Assembler syntax

include vmm.inc

VMMcall _HeapFree, <hAddress, flags>

or eax, eax ; nonzero if freed, zero if error

jz not_freed

Frees an existing memory block in the system heap. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in the EAX register if successful, zero otherwise.

hAddress

Address of the memory block to free. This address must have been previously returned by the _HeapAllocate or _HeapReAllocate service.

flags

Operation flags. Must be 0.

Although the system can usually recover from an attempt to free an invalid address, you should not rely on this.

See also _HeapAllocate, _HeapReAllocate

_HeapGetSize

// C syntax

#include <vmm.h>

ULONG EXTERNAL _HeapGetSize(ULONG hAddress, ULONG flags);

; assembler syntax

include vmm.inc

VMMcall _HeapGetSize, <hAddress, flags>

or eax, eax ; zero if error

jz error

mov [Size], eax ; size in byte of memory block

Returns the size, in bytes, of an existing block in the system heap. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the of the block in the EAX register if successful, zero otherwise.

hAddress

Address of the memory block. This address must have been previously returned by the _HeapAllocate or _HeapReAllocate service.

flags

Operation flags. Must be 0.

Although the system can usually recover from an attempt to get the size of an invalid address, you should not rely on this.

See also _HeapAllocate

_HeapReAllocate

//C syntax

#include <vmm.h>

ULONG EXTERNAL _HeapReAllocate(ULONG hAddress, ULONG nbytes, ULONG flags);

; assembler syntax

include vmm.inc

VMMcall _HeapReAllocate, <hAddress, nbytes, flags>

or eax, eax ; zero if error

jz error

mov [Address], eax ; address of reallocated block

Reallocates or reinitializes a memory block in the system heap. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the address of the reallocated block in the EAX register if successful, zero otherwise.

hAddress

Address of the memory block. This address must have been previously returned by the _HeapAllocate or _HeapReAllocate service.

nbytes

New size, in bytes, of the block. Must not be zero.

flags

Allocation flags. Can be zero or more of these values:

Value �Meaning ��HEAPNOCOPY �Does not preserve contents of existing bytes. If this value is not given, the service preserves the contents of existing bytes by copying the contents of the old memory block into the new block. ��HEAPZEROINIT �Fills any new bytes in the memory block with zeros. All existing bytes remain unchanged. ��HEAPZEROREINIT �Fills all bytes, new and existing, with zeros. ��

All other values are reserved.

If this service is successful, it frees the old memory block, making the old address invalid. Virtual devices must never rely on the old and new addresses being the same. If this service returns an error, the old memory block is not freed and the old address remains valid.

Since the system offers no protection on the heap, virtual devices must provide their own protection to prevent overrunning allocated blocks.

The system offers no compaction on the heap; all memory blocks on the heap are fixed. Virtual devices must not use the heap in such a way as to severely fragment it.

Although the system can usually recover from an attempt to reallocate an invalid address, you should not rely on this.

See also _HeapAllocate, _HeapFree

�Chapter 14

Page Mapping and Address Spaces

About Page Mapping and Address Spaces

Pages and Page Translation

The 32-bit linear address space used by the Intel 80386 and later microprocessors is divided into 4 kilobyte units called pages. Each page can be assigned specific permissions, and can be mapped to any 4K section of physical memory. The base physical address of a page is its page frame address. A page can also be marked not present, in which case it does not map to any physical memory.

Page mapping is possible because of page translation, the mechanism by which the CPU translates linear addresses to physical addresses. A linear address can be viewed as a combination of two values: a 20-bit page number, and a 12-bit offset (4K = 2^12 bytes). The CPU uses the page number to locate a page descriptor, which contains a page frame address and other information. Adding the offset to the page frame address yields a physical address. A page that is marked not present does not map to any physical address. Attempting to access such a page triggers a page fault. Typically, a page is marked not present if has been temporarily swapped out to disk or if no physical storage has been allocated for the page. In addition, virtual devices may mark a hooked page as not present in order to trigger a page fault every time the page is accessed. The system does something similar for instanced pages. Page descriptors are organized into page tables. By creating more than one set of page tables, the system can define more than one address space, each with a unique mapping of pages to physical storage. Virtual devices should not manipulate page tables directly. (Doing so is virtually guaranteed to result in incompatibilities with future versions of Windows.) However, a virtual device can use VMM services to get information about the current address space and to change the way pages are mapped to physical storage.

Arenas

The system divides the linear address space into four areas, called arenas, each of which is managed differently.

The DOS arena spans linear addresses in the range MINDOSLADDR through MAXDOSLADDR, and is used for virtual machines (VMs). The DOS arena is itself divided into several areas. For more information about the DOS arena, see V86 Address Space Mapping and Allocation.

The private arena spans linear addresses in the range MINPRIVATELADDR through MAXPRIVATELADDR. This arena is used for code and data that is private to a Win32 process. The mapping of pages in this arena to physical storage depends on the current memory context, as does which pages are reserved.

The shared arena spans linear addresses in the range MINSHAREDLADDR through MAXSHAREDLADDR. This arena is used for ring-3 shared code and data, such as 16-bit Windows applications and DLLs, DPMI memory, and 32-bit system DLLs. The mapping of pages in this arena does not depend on the current VM or memory context.

The system arena spans linear addresses in the range MINSYSTEMLADDR through MAXSYSTEMLADDR. This arena is used for code and data for the VMM and virtual devices.

The last four megabytes of the linear address space is permanently invalid and is not part of any arena. Because zero is a valid address, you should use an address in this permanently invalid region to denote an invalid pointer. To be extra safe, you can use the value 0xFFFE0000, which lies right in the middle of the invalid region.

See also _GetNulPageHandle

Memory Contexts

The system uses memory contexts to create a private linear address space for each Win32 application. The current memory context determines the mapping of pages in the private arena, the linear address range from MINPRIVATELADDR through MAXPRIVATELADDR.

Most memory context services are for the exclusive use of the system. Virtual devices should only use the _GetCurrentContext service.

To access data in the private arena from a different memory context or at interrupt time, map the data to globally addressable pages by using the _LinPageLock service with the PAGEMAPGLOBAL flag. Do not change the current context for this purpose.

See also _GetCurrentContext, _LinPageLock

Page Locking and Mapping

A virtual device cannot access swappable pages while processing hardware interrupts because doing so may trigger a page fault. A virtual device can avoid page faults by committing pages as fixed, or by temporarily locking pages when necessary — for example, during a device input or output operation. Locking a page forces it to remain physically present at a fixed address until it is unlocked.

You can lock a range of pages by using the _LinPageLock service. The pages remain locked until they are unlocked using the _LinPageUnLock service. The system maintains a lock count for each page. Thus, you can lock a page more than once. You must unlock a page once for each time it is locked unless you specify the PL_TOTALUNLOCK flag to bring the lock count to zero. (But don't use the PL_TOTALUNLOCK flag. It is mentioned here only for completeness.)

You can specify the PAGELOCKEDIFDP flag with the _LinPageLock service, in which case the pages are locked only if the pager uses MS-DOS or BIOS functions to perform file operations. You should use this flag for pages that need to be touched while a virtual device owns the critical section. Because MS-DOS is not reentrant, it cannot be called while the critical section is owned. For the same reason, VxD_PAGEABLE_CODE_SEG and VxD_PAGEABLE_DATA_SEG segments are automatically locked when MS-DOS is used for paging.

Warning

You cannot call memory manager services while any virtual machine holds the critical section, unless you ensure that MS-DOS is not used for paging. For more information about critical sections, see Synchronization.

If a virtual device must access a range of pages in the private arena regardless of the current memory context, it must map the pages to a range linear addresses outside the private arena. To do so, use the _LinPageLock service with the PAGEMAPGLOBAL flag. When you unlock the pages using the _LinPageUnlock service, you must specify the same flag to undo the mapping. You must also pass the global alias as the page to unlock rather than the original private page. Failure to observe either of these two rules will leak critical system memory and eventually crash the machine.

You can use the _PageLock and _PageUnLock services to lock a range of pages. However, these services are more difficult to use than the _LinPageLock and _LinPageUnLock services, and offer no performance advantage. Also, you cannot map pages into shared memory by using the _PageLock service. The _PageLock and _PageUnLock services exist primarily for compatibility with Windows 3.1 virtual devices.

Do not attempt to lock uncommitted pages. You can verify that all pages in a given range are committed by using the _PageCheckLinRange service. Locking pages that were committed as fixed has no effect, but consumes just as much time as locking swappable pages.

In addition to the services described here, the VMM provides services for mapping pages into VMs. For more information about such services, see V86 Address Space Mapping and Allocation. For information about services that convert selector:offset addresses to linear addresses, see Selector Management.

See also _LinPageLock, _LinPageUnLock, _PageLock, _PageUnLock, _PageCheckLinRange

Miscellaneous Page Management Services

A virtual device must not modify page tables directly. However, a virtual device can retrieve a copy of a page table to analyze. To do so, use the _CopyPageTable service. To retrieve high-level information about a range of pages, use the _PageQuery function.

Each committed page has a specific set of permissions, which determine whether the page can be written to and whether it is accessible in user mode (ring 3). To change the permissions for a range of pages, use the _PageModifyPermissions service.

Because zero is a valid address, you should use an address in the permanently invalid region of linear address space to denote an invalid pointer.

See also _CopyPageTable, _GetNulPageHandle, _PageModifyPermissions, _PageQuery

Obsolete Memory Management Services

 The following services are obsolete. If called, they immediately return zero in the EAX register:

_GetGlblRng0V86IntBase, _MapFreePhysReg, _SetFreePhysRegCalBk, _UnmapFreePhysReg, _XchgFreePhysReg

In addition, the _GetSysPageCount and _GetVMPgCount services do not return meaningful values, and the _GetSetPageOutCount and _PageOutDirtyPages services have been deleted.

Reference

Memory Context Services

Memory context services control the mapping of pages in the private arena. With the exception of the _GetCurrentContext service, these services are for the exclusive use of the VMM, and are documented here only to satisfy the reader's curiosity. There are the following memory context services:

_ContextCreate

#include <vmm.h>

PVOID EXTERNAL _ContextCreate(void);

Creates a new memory context. The tasking and scheduling component uses this service to create a private linear address space for a new Win32 application. Do not call this service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the handle of the new context if successful, zero otherwise.

The private linear address space corresponds to linear addresses in the range MINPRIVATELADR through MAXPRIVATELADDR. A memory context is destroyed using the ContextDestroy service.

See also _ContextDestroy

_ContextDestroy

#include <vmm.h>

ULONG EXTERNAL _ContextDestroy(PCD hcd);

Destroys a memory context created by the _ContextCreate service. Do not call this service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value if successful, zero otherwise.

hcd

Zero to free the private memory in the current context, or the handle of the dying context to perform final clean-up.

To destroy a memory context, this service must be called twice. The first call must be from within the dying memory context, and the hcd parameter must be zero. The second call must be from a different context, and the hcd parameter must be the handle of the dying context.

See also _ContextCreate

_ContextSwitch

#include <vmm.h>

PVOID EXTERNAL _ContextSwitch(PVOID hcd);

Changes the current memory context. The current memory context determines the mapping of pages in the private arena. Do not call this service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the handle of the outgoing context.

hcd

Context handle returned by the _ContextCreate service.

See also _ContextCreate

_GetCurrentContext

#include <vmm.h>

PVOID EXTERNAL _GetCurrentContext(void);

Determines the current memory context. Do not call this service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the handle of the current context.

See also _ContextSwitch

_PageAttach

#include <vmm.h>

ULONG EXTERNAL _PageAttach(ULONG page, PCD hcontextsrc, ULONG npages);

Maps a range of linear pages in the current memory context to the same physical storage that those pages are mapped to in a specified context (the source context). Do not call this service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value if successful, zero otherwise.

page and npages

Linear page number of the first page to map, and the number of pages to map.

hcontextsrc

Handle of the source memory context.

This service should only be called by the Win32 program loader, which uses it to map the pages containing a program image from one context into another.

The pages in the source context must be committed, and the pages in the current context must be reserved but not committed. After _PageAttach is called, the pages in the current context can be regarded as committed pages — for example, they can be decommitted, freed, or mapped into another memory context.

Page Locking and Mapping Services

Page locking and mapping services are used to make a range of swappable pages physically present, or to make a range of private pages available in any memory context. There are the following page locking and mapping services:

_LinPageLock

include vmm.inc

VMMcall _LinPageLock, <page, npages, flags>

or eax, eax ; nonzero if locked, zero if error

jz not_locked

#include <vmm.h>

ULONG EXTERNAL _LinPageLock(ULONG page, ULONG npages, ULONG flags);

Locks one or more pages starting at the specified linear page number. Locking a pages forces it to become physically present and to remain so until it is unlocked. This service is similar to the _PageLock service. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value if successful, zero otherwise. If the PAGEMAPGLOBAL flag is specified, the successful return value is the base linear address of the new linear mapping.

page and npages

Linear page number of the first page in the range, and the number of pages in the range. All of the pages in the range must be committed.

flags

Zero or one of these values:

PAGELOCKEDIFDP �Lock the pages only if the virtual pageswap device uses MS-DOS or BIOS functions to write pages to the hardware. ��PAGEMAPGLOBAL �Map a global linear address to the locked range so that the memory can be accessed out of the current context. Cannot be specified with PAGELOCKEDIFDP. ��PAGEMARKDIRTY �Mark the pages as if they have been written to. This flag is intended for a VxD that needs to modify the pages, but the CPU doesn't recognize the modifications. For example, the CPU may not recognize DMA write operations, or write operations using the address returned when the PAGEMAPGLOBAL flag is used. ��

A page can be locked more than once, in which case it must be unlocked once for each time it is locked. Unlock pages using the _LinPageUnLock service.

See also _LinMapIntoV86, _LinPageUnLock, _PageLock

_LinPageUnLock

include vmm.inc

VMMcall _LinPageUnLock, <page, npages, flags>

or eax, eax ; nonzero if successful, zero otherwise

jz not_unlocked

#include <vmm.h>

ULONG EXTERNAL _LinPageUnLock(ULONG page, ULONG npages, ULONG flags);

Unlocks one or more pages starting at the specified linear page number. This service is similar to the _PageUnLock service. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value if successful, zero otherwise.

page and npages

Linear page number of the first page to unlock, and the number of pages to unlock. All of the pages in the range must be committed. If freeing a global alias, these must describe the location and size of the alias and not the originally locked address.

flags

Zero or one of these values:

PAGELOCKEDIFDP �Unlock the pages only if the virtual pageswap device uses MS-DOS or BIOS functions to write pages to the hardware. ��PL_TOTALUNLOCK �Bring lock count to zero. This flag should only be used by the SetResetV86Pageable service. ��PAGEMAPGLOBAL �Deletes a linear mapping created by a previous call to the _LinPageLock service. If this flag is specified, the value of the page parameter must be the linear address that was returned by _LinPageLock. ��

See also _LinPageLock, _PageUnLock, _SetResetV86Pageable

_PageCheckLinRange

include vmm.inc

VMMcall _PageCheckLinRange, <page, nPages, flags>

mov [Pages], eax ; number of committed pages at start of range

#include <vmm.h>

ULONG EXTERNAL _PageCheckLinRange (ULONG page, ULONG npages,

 ULONG flags);

Determines whether all pages in the specified range of linear addresses are committed. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the actual number of contiguous committed pages in the EAX register. In particular, the return value is zero if the first page in the specified range is not committed.

page

Page number of the first page to check. A page number is a ring-0 linear address shifted right by 12 bits.

nPages

Number of pages to check.

flags

Operation flags. Must be zero.

Virtual devices typically use this service to validate an address range before specifying the range in a call to the _LinPageLock or _LinMapIntoV86 service.

See also _LinMapIntoV86, _LinPageLock

_PageLock

include vmm.inc

VMMcall _PageLock, <hMem, nPages, PageOff, flags>

or eax, eax ; nonzero if locked, zero if error

jz not_locked

Locks one or more pages in the specified memory block. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in the EAX register if successful, zero otherwise.

hMem

Handle (base linear address) of the memory block that contains the pages to lock. This value have been previously returned by the _PageAllocate, _PageReAllocate, or _PageReserve service.

nPages

Number of pages to lock.

PageOff

Offset in pages from the start of the memory block to the first page to lock.

flags

Operation flags. Can be zero or the PAGELOCKEDIFDP value. All other values are reserved.

If the PAGELOCKEDIFDP value is specified, pages are locked only if the virtual swap device uses MS-DOS or BIOS functions to write pages to the hardware. The PAGELOCKEDIFDP value cannot be used until after the Init_Complete message has been processed.

The _LinPageLock service is the preferred method of locking pages.

This service returns an error if the sum of the PageOff and nPages parameters is greater than the number of pages in the memory block.

This service has no effect on memory blocks allocated using the PAGEFIXED value; such memory is always locked.

Virtual devices must not assume that the requested number of pages can always be locked.

Each page in a memory block has an individual lock count. This service increments the lock count each time the page is locked, and decrements the count each time the page is unlocked. The lock count must be zero for the page to be unlocked. This means that if the handle is locked 5 times, it has to be unlocked 5 times. Virtual devices must not leave handles locked when not needed.

See also _PageAllocate, _PageUnLock

_PageUnLock

include vmm.inc

VMMcall _PageUnLock, <hMem, nPages, PageOff, flags>

or eax, eax ; nonzero if unlocked, zero if error

jz not_unlocked

Unlocks one or more pages in the specified memory block. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in the EAX register if successful, zero otherwise.

hMem

Handle (base linear address) of the memory block that contains the pages to unlock. This value have been previously returned by the _PageAllocate, _PageReAllocate, or _PageReserve service.

nPages

Number of pages to unlock.

PageOff

Offset in pages from the start of the block to the first page to unlock.

flags

Operation flags. Can be zero or more of these values:

Value �Meaning ��PAGELOCKEDIFDP �Unlocks pages only if the virtual page swap device use MS-DOS or BIOS functions to write to the hardware. If the virtual page swap device writes directly to the hardware, this service returns immediately without unlocking the pages.

 PAGELOCKEDIFDP value cannot be used until after the Init_Complete message has been processed. ��PAGEMARKPAGEOUT �Marks pages for immediate swapping, if this service sets the lock count for the pages to zero. This service marks the pages by clearing the P_ACC bit for each page. The PAGEMARKPAGEOUT value should only be used if the pages are unlikely to be accessed for some time. ��

All other values are reserved.

This service returns an error if the sum of the PageOff and nPages parameters is greater than the number of pages in the memory block. It also returns an error if the specified pages are not already locked.

Each page in a memory block has an individual lock count. This service increments the lock count each time the page is locked, and decrements the count each time the page is unlocked. The lock count must be zero for the page to be unlocked. This means that if the handle is locked 5 times, it has to be unlocked 5 times. Virtual devices must not leave handles locked when not needed.

See also _PageLock

Miscellaneous Page Management Services

Miscellaneous page management services enable you to analyze pages, set page permissions, specify that pages are no longer in use, and get a handle to the system nul page.

_CopyPageTable

include vmm.inc

VMMcall _CopyPageTable, <LinPgNum, nPages, <OFFSET32 PageBuf>, flags>

mov [Copied], eax ; nonzero if copied, zero otherwise

Copies one or more page-table entries to the specified buffer. Virtual devices, such as the virtual DMA device, use this service to analyze the mapping of linear to physical addresses. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in the EAX register if the copy is successful, zero otherwise. The return value is zero if at least one of the specified page table entries was in a region where the corresponding page directory entry is not present. If zero is returned, the contents of the output buffer are undefined.

LinPgNum

Number of the first page table entry to copy. This parameter must be in the range 0 through 0FFFFFh. Numbers in the range 0 through 10Fh specify pages in the 1 megabyte V86 address space of the current virtual machine. Page numbers for other virtual machines can be computed using the CB_High_Linear field in the control block of each virtual machine.

nPages

Number of page-table entries to copy.

PageBuf

Address of the buffer to receive the page-table entries. This buffer must be large enough to receive the specified number of entries. Each entry is 4 bytes.

flags

Operation flags. Must be zero.

This service copies the page table, so writing to the buffer does not affect the content of the actual page table. The system does not update the buffer when changes to the actual page table are made, so no guarantees are made about the length of time the information in the buffer remains accurate.

_GetNulPageHandle

include vmm.inc

VMMcall _GetNulPageHandle

mov [NulPage], eax ; handle of system nul page

Returns the memory handle of the system nul page. This page can be mapped to unused regions of the address space to prevent page faults. The system nul page can be mapped to multiple locations in the system, so its contents are always random. Uses EAX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the memory handle of the system nul page in the EAX register.

The null page handle is the one exception to the otherwise uniform rule that memory handles and memory addresses are the same. The handle returned by _GetNulPageHandle can be used in the following (and only in the following) ways: It can be passed as the source page handle in _MapIntoV86, or as the source physical page for _PageCommitPhys, in order to map or commit null pages. As a special case, you can also pass the null page handle to _PageGetSizeAddr, although the return value is not entirely meaningful.

See also _MapIntoV86, _PageCommitPhys, _PageGetSizeAddr

_PageModifyPermissions

#include <vmm.h>

ULONG EXTERNAL _PageModifyPermissions(ULONG page, ULONG npages,

	ULONG permand, ULONG permor);

Modifies the permissions for pages in the specified range. Uses EAX, ECX, EDX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the previous permissions of the first page in the range if successful, –1 otherwise. If an error occurs, the service returns without modifying any permissions.

page and npages

Linear page number if the first page in the range, and the number of pages in the range. All of the specified pages must be committed. None of the pages may be static unless the permor parameter specifies the PC_STATIC flag.

permand

AND mask to combine with the existing permissions for each page. Can be PC_USER, PC_WRITEABLE, or both. To withhold a permission, do not specify the corresponding flag.

permor

OR mask to combine with the existing permissions for each page. Can be PC_USER, PC_WRITEABLE, or both. To grant a permission, specify the corresponding flag. To change the permissions of static pages, this parameter must also include the PC_STATIC flag.

For more information about permission flags, see the description of the _PageCommit service.

See also _pagecommit

_PageQuery

#include <vmm.h>

ULONG EXTERNAL _PageQuery(ULONG pbase,

	PMEMORY_BASIC_INFORMATION pmbi, 	ULONG cbmbi);

Retrieves information about a range of virtual pages. This service carries out the work for the _VirtualQuery function in the Win32 API. Uses EAX, ECX, EDX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the count of bytes filled in return structure (0 if error)

pbase

Linear address of the first page in the range. This address is rounded down to the nearest page boundary. The range includes all consecutive pages starting at this address that share the following attributes:

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The pages share the same state: committed, reserved, or free.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	If the initial page is not free, all pages were reserved by the same call to the _PageReserve service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The pages share the same read and write privileges: read-only, read-write, or no access.

pmbi and cbmbi

Address of a MEMORY_BASIC_INFORMATION structure that receives information about the range of pages, and the size of the structure in bytes.

�Chapter 15

Pagers

About Pagers

A pager is a component or body of code that the VMM calls to move pages in and out of memory. Every committed page is associated with a pager except for hooked pages, instanced pages, and pages committed using _PageCommitPhys. Virtual devices can register pagers by using VMM services. Additional services enable virtual devices to immediately write pages to the swap file, or to discard pages that no longer contain valid information.

A pager is defined by a PD (pager descriptor) structure. This structure contains the addresses of pager functions. The VMM calls pager functions when a page needs be moved in or out of memory (paged in or out). The VMM calls other pager functions when it detects that a page has been accessed, and when a page is decommitted.

The VMM has four internal pagers that correspond to the following page types: fixed zero-initialized, swappable zero-initialized, fixed initialized, and swappable initialized. Fixed pages are paged in when committed, and are never paged out.

A virtual device can register a pager by using the _PagerRegister service. The VWIN32 device registers pagers to support memory mapped files. The service returns a handle that can be specified when pages are committed. To deregister a pager, use the _PagerDeregister service. To retrieve information about an existing pager, use the _PagerQuery service.

Registered pages that use MS-DOS functions to perform file operations must be able to do so during hardware interrupt processing. A file is identified by a file handle and a PSP. Any PSP created after Windows starts is instanced, and therefore may not be addressable by MS-DOS when a hardware interrupt occurs. Therefore, a virtual device must use the Get_PSP_Segment service to retrieve a PSP that is in global memory. It can then initialize the PSP with appropriate values and use nested execution services to call MS-DOS functions.

A virtual device can force a range of committed pages to be immediately paged out by using the _PageFlush service. This service calls the appropriate pager function to page out each page, but the pages remain present.

When referring to a page, the term "virgin" means that the page contents have never been altered. Virgin pages typically do not need to be paged out because they can always be regenerated, either by doing nothing (for uninitialized pages), zero-initialization (for zero-initialized pages), or by reading from a disk file (for demand-paged executables). The term "tainted" refers to a page whose contents have been altered. Tainted pages typically need to be saved to disk (either in the swap file or to a memory-mapped file) because their contents cannot be regenerated otherwise.

If the content of a range of pages is invalid or does not need to be preserved, you can discard the pages by using the _PageDiscardPages service. The pages remain committed, but are considered virgin pages. Therefore, they are not written to disk when they are next paged out, and are not read from disk when they are next paged in. Optionally, the pages can immediately be made not present.

See also Get_PSP_Segment, _PageDiscardPages, _PageFlush, _PagerDeregister, _PagerQuery, _PagerRegister, PD

Reference

_PageChangePager

include vmm.h

ULONG EXTERNAL PageChangePager(ULONG Page, ULONG nPages, ULONG hpd,

 ULONG pagerdata, ULONG flags)

Changes the pager or pager data for a range of pages. This service should only be used to modify the information for pages and pagers under the control of the caller. Uses EAX, ECX, EDX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a non-zero value if successful, zero otherwise.

Page

Linear page number of the first page to modify. All pages of the specified range must be committed and within the same memory object.

nPages

Number of pages to modify.

hpd

Handle of the page descriptor to set in each of the pages in the range. This parameter is used only if the PCP_CHANGEPAGE flag is specified.

pagerdata

New value to store in the page data double-word of each page in the range. This parameter is used only if the PCP_CHANGEPAGERDATA flag is specified.

flags

Operation flags. Can be one or more of these values:

PCP_CHANGEPAGER �Change the pager for the specified range of pages. The hpd parameter specifies the handle of the page descriptor to set in each of the pages. ��PCP_CHANGEPAGERDATA �Store the pagerdata value in the page data double-word of each page in the range. ��PCP_VIRGINONLY �Change only virgin pages. ��PC_INCR �Increment the specified pager data for each page in the range before storing it. ��

If PCP_CHANGEPAGER is specified, the old pager's pd_taintedfree or pd_virginfree callback function is called, just as if the pages had been decommitted.

See also pd

_PageDiscardPages

#include <vmm.h>

ULONG EXTERNAL _PageDiscardPages(ULONG Page, ULONG VM, ULONG nPages,

 ULONG flags);

Marks pages as not recently accessed, making them more likely page-out candidates. The pages can optionally be marked discarded as well, which reverts them to a virgin state, avoiding the need even to page them out. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in the EAX register if successful, zero otherwise.

Page

Linear page number of the first page to mark as page-out candidates. All pages of the specified range must be committed. If the pages are associated with a virtual machine, they must be marked V86Pageable.

VM

Handle of the virtual machine containing the pages to mark as page-out candidates. This parameter is required if the Page parameter is less than 110h; otherwise it is ignored.

nPages

Number of pages to mark as page-out candidates.

flags

Operation flags. Can be zero or more of these values:

Value �Meaning ��PAGEDISCARD �Immediately makes the pages not present. If this value is not specified, the page remains present but is marked not recently accessed. ��PAGEZEROINIT �Fills the pages with zeros when they are next paged in. This value is ignored unless PAGEDISCARD is also specified. If this value is not given, the content of the pages is undefined. See the following comments section for additional remarks. ��

All other values are reserved.

It is an error to attempt to discard pages that are not committed. This service ignores pages that are not present (that is, already paged out) or are locked (and cannot be paged out). This service affects only pages that are subject to demand paging.

The PAGEDISCARD flag causes the system to revert the pages to their virgin state as well as removing the pages from memory. The PAGEZEROINIT flag may only be passed for pages that were originally allocated as normal swappable memory, either uninitialized or zero-initialized; that is, PD_ZEROINIT or PD_NOINIT. It is an error to attempt to PAGEZEROINIT pages that belong to any other type of pager (because they won't know what to do).

See also _SetResetV86Pageable

_PageFlush

#include <vmm.h>

ULONG EXTERNAL _PageFlush(ULONG page, ULONG npages);

Writes a range of committed pages to the backing file by calling the appropriate pager function. This service does not mark the pages as not-present.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value if successful, zero otherwise.

page, npages

Linear page number of the first page to write, and the number of pages to write.

_PagerDeregister

#include <vmm.h>

ULONG EXTERNAL _PagerDeregister(ULONG hpd)

Informs the system that a type of pager is no longer used. All pages using this pager should be freed before calling this service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value if successful, zero otherwise.

hpd

Handle of the registered pager to deregister.

_PagerQuery

#include <vmm.h>

ULONG EXTERNAL _PagerQuery(ULONG hpd, PPD ppd);

Retrieves information about a registered pager.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value if successful, zero otherwise.

hpd

Handle of the registered pager.

ppd

Address of a PD structure that receives information about the pager.

See also PD

_PagerRegister

#include <vmm.h>

ULONG EXTERNAL _PagerRegister(PPD ppd);

Inform system of a new type of pager.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the handle of the registered pager if success, zero otherwise.

ppd

Address of a PD structure containing information about the pager. The system makes its own copy of the structure.

The handle returned by this service may be passed to the _PageCommit service, thus placing the committed pages under the control of the registered pager.

See also _PageCommit, PD

PD

#include <vmm.h>

typedef ULONG _cdecl FUNPAGE(PULONG ppagerdata, PVOID ppage,

 ULONG faultpage);

typedef FUNPAGE *PFUNPAGE;

typedef struct pd_s {

 PFUNPAGE pd_virginin;

 PFUNPAGE pd_taintedin;

 PFUNPAGE pd_cleanout;

 PFUNPAGE pd_dirtyout;

 PFUNPAGE pd_virginfree;

 PFUNPAGE pd_taintedfree;

 PFUNPAGE pd_dirty;

 ULONG pd_type;

} PD, *PPD;

Pager-descriptor structure. Contains pointers to a pager's callback functions, and information about the overcommit characteristics of the pages the pager manages.

pd_virginin and pd_taintedin

Addresses of the pager functions that the system calls swap a page into memory. If the page has never been written to, the system calls the function specified by the pd_virginin member; otherwise it calls the function specified by the pd_taintedin member.

These functions must return a nonzero value if successful, or zero otherwise. The parameters have the following meanings:

ppagerdata �Address of a pager-defined 32-bit value stored with the virtual page. The pager can modify this value during page in and out operations, but not at other times. ��ppage �Ring-zero physical address of the page. ��faultpage �Linear page number that triggered a page fault. A pager should not attempt to access this page number. Note that the same page can be mapped to more than one linear address. ��

pd_cleanout and pd_dirtyout

Addresses of the pager functions that the system calls to swap a page out of memory. If the page has not been written to since it was last paged out, the system calls the function specified by the pd_cleanout member; otherwise it calls the function specified by the pd_dirtyout member.

These functions must return a nonzero value if successful, or zero otherwise. The parameters have the following meanings:

ppagerdata �Address of a pager-defined 32-bit value stored with the virtual page. The pager can modify this value during page in and out operations, but not at other times. ��ppage �Ring-zero physical address of the page. ��faultpage �Always – 1. ��

pd_virginfree and pd_taintedfree

Addresses of the pager functions that the system calls when the last reference to a virtual page controlled by the pager is decommitted. If the page has never been written to since it was committed, the system calls the function specified by the pd_virginfree member; otherwise it calls the function specified by the pd_taintedfree member.

The return value of these functions is ignored. The parameters have the following meanings:

ppagerdata �Address of a pager-defined 32-bit value stored with the virtual page. The pager can modify this value during page in and out operations, but not at other times. ��ppage �Ring-zero physical address of the page if it is in memory, NULL otherwise. ��faultpage �Linear page number of the page being decommitted. ��

pd_dirty

Address of the pager function that the memory manager calls when it detects that a page has been written to. If a page is dirtied in more than one memory context, this function is called once for each context.

The return value of this function is ignored. The parameters have the following meanings:

ppagerdata �Address of a pager-defined 32-bit value stored with the virtual page. The pager can modify this value during page in and out operations, but not at other times. ��ppage �Undefined. ��faultpage �Linear page number of the dirtied page. ��

pd_type

Value specifying the overcommit characteristics of the pages associated with this pager. Can be one of these values:

PD_SWAPPER �Pages controlled by this pager may be paged out. ��PD_PAGERONLY �Pages controlled by this pager are never paged out to the swap file. If this value is specified, the VMM calls the pager's virgin-in function as soon as a page is committed; the tainted-in and page-out functions are never called. ��

See also _PagerRegister

See also

�Chapter

Selector Management

About Selector Management

A selector identifies a protected-mode segment. The VMM provides services for creating and destroying selectors, and for converting between selector:offset and flat addresses. Because virtual devices use a flat memory model, these services are used primarily to share memory with 16-bit protected mode applications.

Each segment has a base linear address, limit, and specific permissions. The limit (size) is measured either in bytes or pages depending on the segment's granularity. The properties of a segment are contained in a hardware-defined data structure called a segment descriptor.

Segment descriptors are contained in two arrays called the global descriptor table (GDT) and the local descriptor table (LDT). There is only one GDT, whereas there is a different LDT for each protected mode virtual machine (VM). If bit 2 (value 4) of a selector is zero, the selector is an index into the GDT; otherwise it is an index into the current LDT.

Virtual devices should not modify the GDT or LDT directly. To define a new segment, use the _Allocate_GDT_Selector or _Allocate_LDT_Selector service. You can modify a segment descriptor by using the _SetDescriptor service. For example, you might allocate multiple selectors and then use the _SetDescriptor service to change the base address and limit associated with all but the first selector. You can retrieve the descriptor associated with a selector by using the _GetDescriptor service. To free a selector, use the _Free_GDT_Selector or _Free_LDT_Selector service.

A segment descriptor is a 64-bit structure consisting of several bit fields. You can use the _BuildDescriptorDWORDs service to initialize a selector, rather than performing the necessary bit field operations yourself. You can use the return value of this service when you allocate or change a descriptor.

You can give an application read-only access to system data without allocating a selector. The _GetAppFlatDSAlias service returns a selector that maps the entire linear address space. The selector has read-only access to ensure system integrity. To give an application read-write access to system data, you should allocate a selector with an appropriate base address and limit.

A virtual device can convert a selector:offset address to a flat linear address by using the _SelectorMapFlat service.

See also _GetAppFlatDSAlias, _GetDescriptor, _SelectorMapFlat, _SetDescriptor, _Allocate_GDT_Selector, _Allocate_LDT_Selector, _BuildDescriptorDWORDs, _Free_GDT_Selector, _Free_LDT_Selector

Reference

Selector Allocation Services

Selector allocation services allocate or free segment descriptors in the global descriptor table (GDT) or local descriptor table (LDT). There are the following selector allocation services:

_Allocate_GDT_Selector

include vmm.inc

VMMcall _Allocate_GDT_Selector, <DescDWORD1, DescDWORD2, flags>

mov ecx, eax ; zero in eax and edx if error

or ecx, edx

jz error

mov [Selector], eax ; new selector

mov word ptr [GDTSel], dx ; selector for the GDT

ror edx, 10h

mov word ptr [SelCount], dx ; number of selectors in GDT

Creates a new selector and adds it to the Global Descriptor Table (GDT). Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the following values in the EAX and EDX registers if successful:

Register �Description ��EAX �Contains the new selector. ��EDX �Contains the selector for and the size of the GDT. The low 16 bits contains the selector for the GDT, and the high 16 bits contains the size of the GDT expressed as the number of selectors in the table. ��

The service returns zero in both registers if an error occurs.

DescDWORD1

High-order doubleword of the segment descriptor. This parameter contains the high 16 bits of the base address, the high 4 bits of the limit, and the status and type bits.

DescDWORD2

Low-order doubleword of the segment descriptor. This parameter contains the low 16 bits of the base address and limit.

flags

Operation flags. Must be 0.

Although this service returns the selector for the GDT, virtual devices should not attempt to edit the GDT directly. Virtual devices can instead use the _SetDescriptor service to change selectors in the GDT.

Virtual devices should use the _BuildDescriptorDWORDs service to set the DescDWORD1 and DescDWORD2 parameters to the appropriate values.

This service sets the RPL of the selector to the DPL of the selector set in the DescDWORD1 parameter.

See also _Allocate_LDT_Selector, _Free_GDT_Selector

_Allocate_LDT_Selector

include vmm.inc

VMMcall _Allocate_LDT_Selector, <VM, DescDWORD1, DescDWORD2,

 Count, flags>

Creates a new selector or selectors, and adds them to the Local Descriptor Table (LDT) for the specified virtual machine. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the following values in the EAX and EDX registers if successful:

Register �Description ��EAX �Contains the new selector. If Count is greater than 1, EAX contains only the first selector. The second selector is EAX+8, the third EAX+16, and so on. The high 16 bits of the selector is always zero. ��EDX �Contains the selector for and the size of the local descriptor table (LDT). The low 16 bits contains the selector for the LDT, and the high 16 bits contains the size of the LDT expressed as the number of selectors in the table. ��

The service returns zero in both registers if an error occurs

VM

Handle of the virtual machine to receive the selectors.

DescDWORD1

High-order doubleword of the segment descriptor. This parameter contains the high 16 bits of the base address, the high 4 bits of the limit, and the status and type bits.

DescDWORD2

Low-order doubleword of the segment descriptor. This parameter contains the low 16 bits of the base address and limit.

Count

Number of contiguous LDT selectors to allocate if the flags parameter does not specify the ALDTSpecSel value. Otherwise, this parameter specifies the LDT selector to allocate.

flags

Specifies the operation flags. Can be zero or the following value:

Value �Meaning ��ALDTSpecSel �Allocates the LDT selector specified by the Count parameter. The service copies the descriptor data to the specified LDT entry and returns the selector. If the LDT selector is already allocated, the service returns an error value instead.

this value is not given, the service allocates the number of selectors specified by Count. ��

All other values are reserved.

The service returns an error if an invalid descriptor is specified, the LDT is full, an invalid virtual machine handle is specified, or a selector is already allocated.

Although this service returns a selector for the LDT, virtual devices should not attempt to edit the LDT directly. A virtual device should use the _SetDescriptor service to change an LDT selector rather than edit the LDT.

This service sets the RPL of the selector to the DPL of the selector set in the DescDWORD1 parameter.

LDT selectors are only valid when the virtual machine for which they are created is the current virtual machine. However, a virtual device can use the _SelectorMapFlat service to examine the region described by an LDT selector in virtual machines which are not the current virtual machine.

Although this service can create multiple selectors, the _Free_LDT_Selector service cannot free multiple selectors. Multiple selectors must be freed individually.

When this service creates multiple selectors, it gives each selector the same descriptor values. It does not change the base address for each selector. It is up to the virtual device to edit the selectors, and assign appropriate base addresses.

Virtual devices should not rely on specific hard-coded LDT selectors, and therefore, they should avoid using the ALDTSpecSel value.

See also _Allocate_GDT_Selector, _Free_LDT_Selector

_BuildDescriptorDWORDs

include vmm.inc

VMMcall _BuildDescriptorDWORDs, <DESCBase, DESCLimit, DESCType, DESCSize, flags>

mov [DescDWORD1], edx ; high doubleword of descriptor

mov [DescDWORD2], eax ; low doubleword of descriptor

Builds the descriptor parameter used in calls to the _Allocate_GDT_Selector and _Allocate_LDT_Selector services. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the low-order doubleword of the segment descriptor in the EAX register and the high-order doubleword in the EDX register.

DESCBase

32-bit value specifying the segment's linear base address.

DESCLimit

20-bit value specifying the segment limit.

DESCType

Present bit, DPL, and type fields for the descriptor (bits 8–15 of the high doubleword). All bits except bits 0 – 7 of this parameter must be zero.

DESCSize

Granularity and big/default fields for the descriptor (bits 20–23 of the high doubleword). All bits except bits 4 – 7 of this parameter must be zero.

flags

Operation flags. Can be zero or the following value:

Value �Meaning ��BDDExplicitDPL �Uses the DPL bits in the DESCType parameters. If this value is not given, the service sets the DPL bits to be equal to the RPL bits for protected-mode applications. ��

All other values are reserved.

Virtual devices must not rely on the privilege level at which protected-mode applications run. When creating selectors for protected-mode applications, a virtual device should not specify the BDDExplicitDPL value. This provides a convenient way to build descriptors without knowing the protection level for protected-mode applications.

See also _Allocate_GDT_Selector, _Allocate_LDT_Selector

_Free_GDT_Selector

include vmm.inc

VMMcall _Free_GDT_Selector, <Selector, flags>

or eax, eax ; nonzero if freed, zero if error

jz not_freed

Frees a GDT selector previously allocated using the _Allocate_GDT_Selector service. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in the EAX register if successful, zero otherwise.

Selector

Selector to free. The selector must have been previously created using the _Allocate_GDT_Selector service.

flags

Operation flags. Must be 0.

Certain system selectors cannot be freed since they are required for Windows operation. (Remember, free only those selectors created by calling _Allocate_GDT_Selector.) This service ignores the RPL bits of the selector.

See also _Allocate_GDT_Selector, _Free_LDT_Selector

_Free_LDT_Selector

include vmm.inc

VMMcall _Free_LDT_Selector, <VM, Selector, flags>

Frees a LDT selector previously allocated using the _Allocate_LDT_Selector service. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in the EAX register if successful, zero otherwise.

VM

Handle of the virtual machine to which the selector belongs.

Selector

Selector to free. The selector must have been previously created using the _Allocate_LDT_Selector service.

flags

Operation flags. Must be 0.

This service ignores the RPL bits of the selector.

See also _Allocate_LDT_Selector, _Free_GDT_Selector

Miscellaneous Selector Services

Miscellaneous selector services can be used to modify or retrieve segment descriptors, or to share system data with protected-mode applications. There are the following miscellaneous selector services:

_GetAppFlatDSAlias

include vmm.inc

VMMcall _GetAppFlatDSAlias

mov [FlatData], eax ; read-only GDT selector

Returns a ring-3, read-only, GDT selector that provides access to the same memory as the system's ring-0 data segment selector. Virtual devices use this service to support protected-mode APIs that let protected-mode applications read from the same memory as the virtual device. Uses EAX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the selector in the EAX register.

Since more than one virtual device may use this selector, a virtual device must never attempt to free the selector using the _Free_GDT_Selector service. Also, a virtual device should not attempt to create a read/write selector using this selector. If a virtual device requires an application to write to any portion of system memory, the virtual device should build its own selector with a base and limit that specifies just the memory the application must modify.

See also _Free_GDT_Selector

_GetDescriptor

include vmm.inc

VMMcall _GetDescriptor, <Selector, VM, flags>

mov ecx, eax ; zero in eax and edx if error

or ecx, edx

jz error

mov [DescDWORD1], edx ; high doubleword of descriptor

mov [DescDWORD2], eax ; low doubleword of descriptor

Retrieves a copy of the descriptor associated with the given LDT or GDT selector. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the low-order doubleword of the descriptor in the EAX register and the high-order doubleword in the EDX register. Both registers contain zero if an error occurs.

Selector

GDT or LDT selector.

VM

Handle of the virtual machine to which the specified LDT selector belongs. This parameter is ignored if the Selector parameter is a GDT selector.

flags

Operation flags. Must be 0.

This service ignores the high 16-bits of the Selector parameter; the 80386 CPU often sets these bits to random values when doubleword operations are performed on segment registers.

This service ignores the RPL bits of the selector.

See also _BuildDescriptorDWORDs, _SetDescriptor

_SelectorMapFlat

include vmm.inc

VMMcall _SelectorMapFlat, <VM, Selector, flags>

cmp eax, 0FFFFFFFFh ; 0FFFFFFFFh if error

je error

mov [Address], eax ; base address of selector

Returns the base linear address of segment identified by the specified GDT or LDT selector. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the base linear address in the EAX register if successful, 0FFFFFFFFh otherwise.

VM

Handle of the virtual machine to which the specified selector belongs. This parameter is not used if Selector is a GDT selector. This parameter must be valid for LDT selectors.

Selector

GDT or LDT selector.

flags

Operation flags. Must be 0.

The address mapper uses this service to convert pointers, consisting of selector and offset pairs, to flat-model linear addresses suitable for use as parameters for the _LinMapIntoV86 service.

This service ignores the high 16 bits of the Selector parameter; the 80386 CPU often sets these bits to somewhat random values when doubleword operations are performed on segment registers.

See also _LinMapIntoV86

_SetDescriptor

include vmm.inc

VMMcall _SetDescriptor, <Selector, VM, DescDWORD1, DescDWORD2, flags>

or eax, eax ; nonzero if set, zero if error

jz not_set

Sets (changes) the descriptor associated with the given selector. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in the EAX register if successful, zero otherwise.

Selector

GDT or LDT selector to set.

VM

Handle of the virtual machine to which the specified LDT selector belongs. This parameter is ignored if the Selector parameter is a GDT selector.

DescDWORD1

High-order doubleword of the new segment descriptor. This parameter contains the high 16 bits of the base address, the high 4 bits of the limit, and the status and type bits.

DescDWORD2

Low-order doubleword of the new segment descriptor. This parameter contains the low 16 bits of the base address and limit.

flags

Operation flags. Must be 0.

This service ignores the high 16-bits of the Selector parameter; the 80386 CPU often sets these bits to random values when doubleword operations are performed on segment registers.

The service ignores the RPL bits of the selector.

See also _GetDescriptor

�Chapter 23

System-Internal Memory Management

About System-Internal Memory Management

System-internal memory management services are used internally, and should not be used by virtual devices. They are as follows:

Service �Description ��_GetDemandPageInfo �Retrieves information used for demand paging. ��_MMGR_Toggle_HMA �Enables or disables the HMA. ��_SetLastV86Page �Sets last page in V86 address space. ��Set_Physical_HMA_Alias �Sets the physical HMA alias. ��

Reference

_GetDemandPageInfo

include vmm.inc

VMMcall _GetDemandPageInfo, <<OFFSET32 DemandInfo>, flags>

Retrieves information used for demand paging, copying the information to the specified structure. This service is for exclusive use by the virtual paging device. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

DemandInfo

Address of a DemandInfoStruc structure containing information for demand paging.

flags

Operation flags. Must be zero.

_MMGR_Toggle_HMA

include vmm.inc

VMMcall _MMGR_Toggle_HMA, <VM, flags>

cmp flags, MMGRHMAQuerry

jne did_toggle

mov [HMAState], eax ; 0 if disabled, 1 if enabled

did_toggle:

or eax, eax ; nonzero if enabled/disabled, zero if error

jz error

Enables or disables the high memory area (HMA). The V86MMGR XMS device uses this service to control the state of the HMA for a specified virtual machine, and to notify the instance data manager that the state is changing. If your virtual device needs to toggle the HMA, use the V86MMGR_Toggle_HMA service instead of this one. This service is for exclusive use by the V86MMGR XMS device. Uses EAX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a value in the EAX register, the meaning of which depends on the operation specified by the flags parameter. If the flags parameter specifies the MMGRHMAEnable or MMGRHMADisable operation, the service returns a nonzero if successful, zero otherwise.

If the flags parameter specifies the MMGRHMAQuerry operation, the service returns a nonzero value if the HMA is enabled, and zero if disabled.

VM

Handle of the virtual machine.

flags

Operation flags. Can be one or more of these values:

Value �Meaning ��MMGRHMADisable �Disables the HMA, causing addresses greater than 1 megabyte to be wrapped back to addresses in pages 0 through 0Fh. ��MMGRHMAEnable �Enables the HMA, allowing addresses greater than 1 megabyte to access pages 100h through 10Fh. If the MMGRHMAPhysical value is given, the service maps physical pages 100h through 10Fh into the linear pages 100h through 10Fh for the virtual machine, enabling the global HMA for this virtual machine and which all virtual machines share.

the MMGRHMAPhysical value is not given, the service marks the linear pages 100h through 10Fh as not present system pages. To prevent a system crash when these pages are accessed, the virtual device must provide its own physical pages to map into these linear pages. This effectively creates a local HMA that is specific to the given virtual machine. ��MMGRHMAQuerry �Returns the current state of the HMA for the virtual machine. ��MMGRHMAPhysical �Specifies whether the service maps physical pages 100h through 10Fh into the HMA or expects the virtual device to map some other physical pages into the area. The value is used only if the MMGRHMAEnable value is also given. ��

The MMGRHMAEnable, MMGRHMADisable, MMGRHMAQuerry values are mutually exclusive.

All other values are reserved.

This service can fail if the MMGRHMAEnable and MMGRHMAPhysical values are given, but the system is already using the physical pages 100h through 10Fh for some other purpose.

A virtual device must not call this service unless it has already used the _Assign_Device_V86_Pages service to assign the pages 100h through 10Fh to itself. For this reason, this service is intended to be used by one and only one virtual device.

When the system creates a virtual machine, it disables the HMA and causes the virtual machine to operate like an 8086 processor. To override this default, the virtual device responsible for the HMA must enable the HMA while processing the VM_Critical_Init message.

Virtual devices must not identify instance data in the HMA.

See also _Assign_Device_V86_Pages, VM_Critical_Init

_SetLastV86Page

include vmm.inc

VMMcall _SetLastV86Page, <PgNum, flags>

or eax, eax ; nonzero if set, zero if error

jz not_set

Sets the page number of the last page in V86 memory for the current virtual machine. This service is intended for exclusive use by the virtual V86 memory manager device, and is only available for Windows version 3.1 or later. Uses EAX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in the EAX register if successful, zero otherwise.

PgNum

New linear page number for the last V86 page.

flags

Operation flags. Must be zero.

This service is intended to help the V86MMGR support backfill machines. These machines have unused, unoccupied memory from the end of MS-DOS memory (typically at 512K) up to 640K (page 0A0h). On such machines, it is desirable to fill out (backfill) this unoccupied space so that virtual machines provide memory up to 640k.

See also _GetLastV86Page

Set_Physical_HMA_Alias

include vmm.inc

mov esi, Entries ; points to page-table entries for physical HMA alias

VMMcall Set_Physical_HMA_Alias

Defines an HMA alias for pages 100h through 10Fh. This service is for the exclusive use of the XMS driver, a part of the virtual V86MMGR device, and is only available during initialization. Uses EAX, ECX, EDI, ESI, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Entries

Address of an array of 16 page-table entries, which define the physical HMA alias.

This service does not map new pages into the HMA. Instead, the virtual device must call the _MMGR_Toggle_HMA service with the MMGRHMAPhysical value after the calling this service. This service specifies which pages are mapped when the MMGRHMAPhysical value is specified in a call to the _MMGR_Toggle_HMA service.

See also _MMGR_Toggle_HMA

DemandInfoStruc

include vmm.inc

DemandInfoStruc struc

DILin_Total_Count dd ? ; pages in linear addr. space

DIPhys_Count dd ? ; see below

DIFree_Count dd ? ; see below

DIUnlock_Count dd ? ; see below

DILinear_Base_Addr dd ? ; always zero

DILin_Total_Free dd ? ; see below

DIPage_Faults dd ? ; total page faults

DIPage_Ins dd ? ; calls to pagers to page in

DIPage_Outs dd ? ; calls to pagers to page out

DIPage_Discards dd ? ; calls to pagers to discard

DIInstance_Faults dd ? ; instance page faults

DIPagingFileMax dd ? ; see below

DIPagingFileInUse dd ? ; see below

DICommit_Count dd ? ; total committed pages

DIReserved dd 2 DUP (?) ; reserved; do not use

DemandInfoStruc ends

The DemandInfoStruc structure contains information about pages that are subject to demand paging. The _GetDemandPageInfo service fills in the members of this structure.

DIPhys_Count

Specifies the total number of physical pages managed by the memory manager.

DIFree_Count

Specifies the number of pages currently in the free pool.

DIUnlock_Count

Specifies the number of pages that are currently unlocked. Free pages are always unlocked.

DILin_Total_Free

Total number of free virtual pages in the current memory context. This value includes only pages in the private arena, the linear address range controlled by the memory context services.

DIPagingFileMax

Current maximum size of the swap file, in pages. This member is zero if swapping is turned off.

DIPagingFileInUse

Number of swap file pages currently in use. This value reflects the number of pages by which physical memory is overcommitted. It is zero if swapping is turned off or if physical memory is available for all swappable pages.

See also _GetDemandPageInfo

�Chapter 30

V86 Address Space Mapping and Allocation

About V86 Address Space Mapping and Allocation

There are the following V86 address space mapping and allocation services:

_Add_Global_V86_Data_Area ���_AddInstanceItem ���_Allocate_Device_CB_Area ���_Allocate_Global_V86_Data_Area ���_Allocate_Temp_V86_Data_Area ���_Assign_Device_V86_Pages ���_Deallocate_Device_CB_Area ���_DeAssign_Device_V86_Pages ���_Free_Temp_V86_Data_Area ���_Get_Device_V86_Pages_Array ���_GetFirstV86Page ���_GetInstanceInfo ���_GetLastV86Page ���_GetV86PageableArray ���_LinMapIntoV86 ���_MapIntoV86 ���_ModifyPageBits ���_PhysIntoV86 ���_SetResetV86Pageable ���_TestGlobalV86Mem ���Hook_V86_Page ���InstDataStruc ���Unhook_V86_Page ���

The HMA and Address Wrapping

In real mode or V86 mode it is possible to form a linear address as large as 10FFEFh (FFFF0h + FFFFh), or roughly 1MB + 64K. On the 8086, which has only 20 address lines, linear addresses greater than 1MB wrap to first 64K of physical memory. Incredibly, some software designed for the 8086 relies on this behavior.

The largest address that can be formed in V86 mode is FFFF:FFFF, which is equivalent to the linear address 10FFEFh (FFFF0h + FFFFh).

Instanced Pages

An instanced page is a page that contains both global and local data. At any given time, a instanced page is marked present for one VM, and not present for all other VMs.

Structure of the DOS Arena

The DOS arena is the range of linear addresses from MINDOSLADDR through MAXDOSLADDR, and is used for virtual machines (VMs). The DOS arena is divided into several areas, parallelling the organization of memory under MS-DOS in real mode. The following illustration shows the structure of the DOS arena: The V86 global area is used for MS-DOS system code, device drivers, and TSRs. Pages in the global area are mapped such that linear and physical addresses are identical. Data in the global area that is not shared by all VMs must be instanced using the _AddInstanceItem service.

The V86 private area is used for MS-DOS application code and data. Pages in this address range are mapped to different physical storage for each VM. The first page of the V86 private area depends on the size of the V86 global area. To get the page numbers of the first and last pages in the V86 private area, use the _GetFirstV86Page and _GetLastV86Page services.

The V86-Mode Memory Manager (V86MMGR) manages the pages in the V86 private area. During device initialization, the V86MMGR assigns the pages to itself by using the _Assign_Device_V86_Pages service.

Video memory is managed by the video display device (VDD). The VDD assigns the pages in this range to itself during device initialization. It then installs its own page fault handler for the pages by using the Hook_V86_Page service.

The VM control block heap is used by virtual devices to allocate memory that is local to each VM. To allocate memory from the VM control block heap, use the _Allocate_Device_CB_Area service.

See also _AddInstanceItem, _Allocate_Device_CB_Area, _Assign_Device_V86_Pages, Hook_V86_Page, _GetFirstV86Page, _GetLastV86Page

Memory Mapping and Hooked Pages

The _Assign_Device_V86_Pages service assigns to a virtual device one or more pages of the V86 address space.

The _DeAssign_Device_V86_Pages service frees a region in the V86 address space which was previously assigned using the _Assign_Device_V86_Pages service.

The _Get_Device_V86_Pages_Array service gets a copy of the assignment array used by the _Assign_Device_V86_Pages and _DeAssign_Device_V86_Pages services.

The _LinMapIntoV86 service maps one or more pages into the V86 address space of the specified virtual machine.

The _MapIntoV86 service maps one or more pages of a memory block into the V86 address space of the specified virtual machine.

The _PhysIntoV86 service maps the specified physical pages in the V86 address space.

The _GetInstanceInfo service retrieves a value indicating whether the given VM address range is fully instanced, partially instanced, or not instanced.

The _TestGlobalV86Mem service tests whether a V86 address range is global, local, or instanced.

The _GetFirstV86Page service gets the page number of the first page in the current virtual machine.

The _GetLastV86Page service gets the page number of the last page of V86 memory in the current virtual machine.

The Hook_V86_Page service installs a callback procedure to handle faults for the specified page.

The _ModifyPageBits service modifies the page attribute bits for pages in the V86 address space of a virtual machine.

Memory Allocation for Virtual Machines

The _Allocate_Device_CB_Area service allocates an area in the control block of the current virtual machine for exclusive use by the virtual device.

The _Add_Global_V86_Data_Area service adds a region to the list of regions available for allocation as global V86 data areas.

The _Allocate_Global_V86_Data_Area service allocates a block of memory from the global V86 data area.

The _Allocate_Temp_V86_Data_Area service allocates a block of memory from the global V86 data area.

The _Free_Temp_V86_Data_Area service frees a block allocated using the _Allocate_Temp_V86_Data_Area service.

Reference

_Add_Global_V86_Data_Area

include vmm.inc

VMMcall _Add_Global_V86_Data_Area, <LinAddr, nBytes, flags>

or eax, eax ; nonzero if added, zero if error

jz not_added

Adds a region to the list of regions available for allocation as global V86 data areas. This service is only available during initialization, and only for Windows version 3.1 or later. Uses EAX, ECX, EDX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in the EAX register if successful, zero otherwise.

LinAddr

Linear address of the first byte of the region. This address must be less than 100000h, and must not lie between the first and last V86 page for the specified virtual machine.

nBytes

Size of the region, in bytes.

flags

Operation flags. Must be zero.

This service supports virtual devices, such as the virtual MS-DOS manager and the V86MMGR device, which can manage high memory above the last V86 page. The service lets these devices add available regions which would otherwise go unused. Typically, such regions are nonpage-aligned fragments which cannot be used for normal operations requiring page-aligned memory.

Calls to this service should be made during processing of the Sys_Critical_Init message. Virtual devices should not wait for the Device_Init or Init_Complete messages because most of the allocation of global V86 data areas is done while processing the Device_Init message.

If this service adds a region that is above the last V86 page, virtual devices should not attempt to allocate the region until the Sys_Critical_Init message has been processed.

See also _Allocate_Global_V86_Data_Area

_AddInstanceItem

include vmm.inc

VMMcall _AddInstanceItem, <<OFFSET32 InstStruc>, flags>

or eax, eax ; nonzero if added, zero if error

jz not_added

Identifies a region of instance data in the V86 address space. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in the EAX register if successful, zero otherwise.

InstStruc

Address of an InstDataStruc structure containing information about the block of memory to instance.

flags

Operation flags. Must be zero.

To prevent errors, a virtual device must not change the location and content of any InstDataStruc structures until after the system has completed its initialization. To achieve this, a virtual can either statically allocate the structures in its INIT data segment or dynamically allocate the structures on the system heap using the _HeapAllocate service. If the structures are in the INIT data segment, the system automatically frees the structure when it reclaims the INIT segment space. If the structures are in the system heap, the virtual device must free the structures using the _HeapFree service while processing the Sys_VM_Init message.

If a virtual device the structures on the system heap, it must not attempt to reallocate the structure before system initialization has completed because this invalidates the structure address.

Only one, contiguous region of instance data can be identified with each structure. The virtual device can cut down the call overhead and data space requirements by coalescing adjacent blocks of instance data and identifying the coalesced blocks as a single instance item.

See also InstDataStruc

_Allocate_Device_CB_Area

include vmm.inc

VMMcall _Allocate_Device_CB_Area, <nBytes, flags>

or eax, eax ; zero if error

jz not_allocated

mov [Offset], eax ; offset from start of control block to new area

Allocates an area in the control block of all virtual machines for exclusive use by the virtual device. Virtual devices typically uses this service to allocate space to store data that is specific to a given virtual machine. This service is only available during initialization. Unlike Windows 3.1 which restricted this service to initialization, Windows 95 supports this service after initialization. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns, in the EAX register, the offset of the new area relative to the start of the control block, if successful. The EAX register is zero if an error occurs, such as insufficient memory to satisfy the request.

nBytes

Number of bytes to allocate.

flags

Operation flags. Must be zero.

If this service returns an error, the virtual device should consider this a fatal error and respond accordingly.

Although this service aligns the new area on a doubleword boundary and rounds the nBytes parameter up to the next multiple of 4, the virtual device must not rely on this behavior.

The service fills the newly allocated area with zeros. When the system creates a new virtual machine, it fills all bytes of the control block with zeros.

See also _Deallocate_Device_CB_Area

_Allocate_Global_V86_Data_Area

include vmm.inc

VMMcall _Allocate_Global_V86_Data_Area, <nBytes, flags>

or eax, eax ; zero if error

jz error

mov [Address], eax ; ring-0 linear address of block

Allocates a block of memory from the global V86 data area. The block is for exclusive use by the virtual device. Virtual devices use this service to allocate memory for device-specific objects which must be accessible to both the virtual device and software running in the virtual machine. This service is only available during initialization. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the ring-0 linear address of the block in the EAX register if successful, zero otherwise.

If GVDAInquire is given, EAX contains the size in bytes of the largest block that satisfies the request, but that does not move the first V86 page. EAX contains zero if all such requests move the first V86 page.

nBytes

Number of bytes to allocate. This parameter should be a multiple of 4096.

flags

Operation flags. Can be zero or more of these values:

Value �Meaning ��GVDADWordAlign �Aligns block on a doubleword boundary. If no alignment value is given, the service aligns the block on a byte boundary. ��GVDAHighSysCritOK �Informs the service that the virtual device can manage a block that resides in high MS-DOS memory. The service allocates from high MS-DOS memory only if such memory is available (for example, implemented as XMS UMBs) and the virtual device specifies this value. A virtual device can use this value only while processing the Sys_Critical_Init message.

n first allocated, a block in high MS-DOS memory may not be immediately usable since memory supporting the area may not yet have been mapped. The system maps the memory for the area at some time during the Sys_Critical_Init message, but there is no guarantee as to when.

 GVDAHighSysCritOK value is only available for Windows version 3.1 or later. ��GVDAInquire �Returns the size in bytes of the largest block that satisfies the requested alignment but does not require the first V86 page to be moved. The nBytes parameter is not used if this value is specified.

irtual device typically uses this value, while processing the Init_Complete message, to allocate portions of the global V86 data area that might otherwise go unused. The GVDAInquire value is only available for Windows version 3.1 or later. ��GVDAInstance �Creates an instance data block allowing the virtual device to maintain different values in the block for each virtual machine. If this value is not given, the service creates a global block in which the same data is available to all virtual machines. ��GVDAOptInstance �Allows the virtual machine manager to determine whether to create an instance data block or a global data block. ��GVDAPageAlign �Aligns block on a page (4 kilobyte) boundary. If no alignment value is given, the service aligns the block on a byte boundary.

 GVDAWordAlign, GVDADWordAlign, GVDAParaAlign, and GVDAPageAlign values are mutually exclusive. ��GVDAParaAlign �Aligns block on a paragraph (16-byte) boundary. If no alignment value is given, the service aligns the block on a byte boundary. ��GVDAReclaim �Unmaps any physical pages in the block while mapping the system nul page into the block. The service places unmapped physical pages in the free list. This value only applies if the GVDAPageAlign value is also given. If this value is not given, the service ignores any physical pages it unmaps. It is up to the virtual device to reclaim these pages.

 GVDAReclaim and GVDAInstance values are mutually exclusive. ��GVDAWordAlign �Aligns block on a word boundary. If no alignment value is given, the service aligns the block on a byte boundary. ��GVDAZeroInit �Fills the block with zeros. If this value is not given, the initial content of the block is undefined. ��

All other values are reserved.

If this service returns an error, the virtual device should consider this a fatal error and respond accordingly.

The size returned when the GVDAInquire value is given may be less than a reasonable minimum. For instance, if GVDAPageAlign is specified, the return size may be less than 4096. It is up to the virtual device to check for this.

For blocks allocated with GVDAInstance, this service calls automatically calls the _AddInstanceItem service.

The _Allocate_Global_V86_Data_Area service is not available and must not be called if the virtual device has allocated a temporary block using the _Allocate_Temp_V86_Data_Area service. The virtual device must free the block before it can call the _Allocate_Global_V86_Data_Area service.

If GVDAReclaim is not given, the virtual device should reclaim the physical addresses of any unmapped physical pages, and map the pages to other addresses. A virtual device reclaims the physical addresses by using the _CopyPageTable service to retrieve the page-table entries for the system virtual machine. The virtual device can then use the _PhysIntoV86 service to map the physical pages into the V86 address space.

See also _CopyPageTable, _PhysIntoV86

_Allocate_Temp_V86_Data_Area

include vmm.inc

VMMcall _Allocate_Temp_V86_Data_Area, <nBytes, flags>

or eax, eax ; zero if error

jz error

mov [Address], eax ; address of temporary block

Allocates a block of memory from the global V86 data area. The block is for exclusive use by the virtual device during system initialization only. A virtual device typically allocates a temporary block to serve as a buffer for calls to MS-DOS or BIOS functions. A virtual device makes such calls using the Simulate_Int service while inside a nested execution block. This service is only available during initialization. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the ring-0 linear address of the block in the EAX register if successful, zero otherwise.

nBytes

Number of bytes to allocate.

flags

Operation flags. Must be zero.

This service always aligns the temporary block on a paragraph boundary and fills the block with zeros.

Virtual devices must free the temporary block as soon as possible. The system provides only one temporary data area, therefore only one temporary block can be allocated at a time. Attempts to allocate a temporary block when it is already allocated will result in an error.

See also _Free_Temp_V86_Data_Area

_Assign_Device_V86_Pages

include vmm.inc

VMMcall _Assign_Device_V86_Pages, <VMLinrPage, nPages, VM, flags>

or eax, eax ; nonzero if assigned, zero if error

jz not_assigned

Assigns to a virtual device one or more pages of the V86 address space. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in the EAX register if successful, zero otherwise.

VMLinrPage

Linear page number of the first page of V86 address space to assign. The page number must be in the range 0 through 10Fh.

nPages

Number of pages to assign. The service returns an error if the page range does not fall entirely within the V86 address space, or if any page in the range is already assigned.

VM

Handle of a virtual machine, or zero. If this parameter is a valid handle, the page assignments are made in the context of the specified virtual machine. If this parameter is zero, the page assignments are made globally.

flags

Operation flags. Must be 0.

A virtual device can make global assignments at any time, including during device initialization. For global assignments, the VM parameter must be zero. The virtual device must not attempt to assign a page that is already assigned. A virtual device can make local assignments only after device initialization is complete.

See also _DeAssign_Device_V86_Pages

_Deallocate_Device_CB_Area

include vmm.inc

VMMcall _Deallocate_Device_CB_Area, <Control_Block_Offset, Flags>

Deallocates part of each virtual machine's control-block, which was previously allocated by _Allocate_Device_CB_Area. Uses EAX, ECX, EDX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns zero on error, nonzero on success.

Control_Block_Offset

Control block offset previously allocated by the _Allocate_Device_CB_Area service.

Flags

Must be zero.

The Control_Block_Offset must be a valid offset that was returned by a previously successful call to _Allocate_Device_CB_Area. Do not pass an invalid value to deallocate.

See also _Allocate_Device_CB_Area

_DeAssign_Device_V86_Pages

include vmm.inc

VMMcall _DeAssign_Device_V86_Pages, <VMLinrPage, nPages, VM, flags>

or eax, eax ; nonzero if unassigned, zero if error

jz not_unassigned

Frees a region in the V86 address space which was previously assigned using the _Assign_Device_V86_Pages service. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in the EAX register if successful, zero otherwise.

VMLinrPage

Linear page number of the first page to free. The page number must be in the range 0 through 10Fh.

nPages

Number of pages to free. The service returns an error if the page range does not fall entirely within the V86 address space, or if any page in the range is not assigned.

VM

Handle of a virtual machine, or zero. If this parameter is a valid handle, the assigned pages are freed in the context of the specified virtual machine. If this parameter is zero, the page assignments are freed globally.

flags

Operation flags. Must be 0.

This service only works after device initialization is complete.

A virtual device must not attempt to free pages that have not been assigned, or attempt to globally free pages that were only assigned in the context of a specific virtual machine.

See also _Assign_Device_V86_Pages

_Free_Temp_V86_Data_Area

include vmm.inc

VMMcall _Free_Temp_V86_Data_Area

or eax, eax ; nonzero if freed, zero if error

jz not_freed

Frees a block allocated using the _Allocate_Temp_V86_Data_Area service. This service is only available during initialization. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in the EAX register if successful, zero otherwise.

The _Allocate_Global_V86_Data_Area service is not available while a temporary block is allocated. The virtual device must free the block before the _Allocate_Global_V86_Data_Area service can be called.

This service invalidates the address of the temporary block. Attempting to use the address can cause a system crash.

See also _Allocate_Temp_V86_Data_Area

_Get_Device_V86_Pages_Array

include vmm.inc

VMMcall _Get_Device_V86_Pages_Array, <VM, <OFFSET32 ArrayBuf>, flags>

or eax, eax ; nonzero if retrieved, zero if error

jz not_retrieved

Gets a copy of the assignment array used by the _Assign_Device_V86_Pages and _DeAssign_Device_V86_Pages services. Virtual devices use the assignment array to determine which regions of the V86 address space are currently assigned, and which are available. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in the EAX register if successful, zero otherwise.

VM

Handle of the virtual machine for which to retrieve the assignment array. If this parameter is zero, the service retrieves the global assignment array.

ArrayBuf

Address of a 36-byte buffer that receives the assignment array.

flags

Operation flags. Must be 0.

The assignment array consists of 110h bits, each of which represents a single page in the V86 address space. A page is assigned if the corresponding bit is 1.

The global assignment array does not indicate which pages are available. A page is available for global assignment only if it is neither globally nor locally assigned. To determine whether a page is available for global assignment, a virtual device must check the global assignment array, and then check the assignment arrays for each virtual machine.

See also _Assign_Device_V86_Pages, _DeAssign_Device_V86_Pages

_GetFirstV86Page

include vmm.inc

VMMcall _GetFirstV86Page

mov [FirstPage], eax ; first page of V86 memory

Gets the page number of the first page in the current virtual machine. Uses EAX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the page number in the EAX register.

The first page in a virtual machine moves during virtual device initialization, so the page number returned by this service during initialization will not be valid at any later time.

See also _GetLastV86Page

_GetLastV86Page

include vmm.inc

VMMcall _GetLastV86Page

mov [LastPage], eax ; last page in V86 memory

Returns the page number of the last page of V86 memory for the current virtual machine. This service is only available for Windows version 3.1 or later. Uses EAX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the page number in the EAX register.

The last page in V86 memory moves during initialization. Virtual devices that retrieve the last page when processing initialization messages must retrieve the page number again to use it later.

See also _GetFirstV86Page

_GetInstanceInfo

include vmm.inc

VMMCall _GetInstanceInfo, <pRegion, cbRegion>

mov [InstanceInfo], eax

Retrieves a value indicating whether the given VM address range is fully instanced, partially instanced, or not instanced. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns, in EAX, a value identifying the region's state if the function succeeds. In can be one of these values:

Value �Meaning ��INSTINFO_NONE (0) �Region is not instanced. ��INSTINFO_SOME (1) �Region is partially instanced. ��INSTINFO_ALL (2) �Region is fully instanced. ��

pRegion

Linear v86 address of region.

cbRegion

Size of region in bytes.

_GetV86PageableArray

include vmm.inc

VMMcall _GetV86PageableArray, <VM, <OFFSET32 ArrayBuf>, flags>

or eax, eax ; nonzero if array retrieved, zero if error

jz error

Returns a copy of the bit array of pages whose behavior has been modified using the _SetResetV86Pageable service. Virtual devices use this service to determine whether regions in the V86 address space in a virtual machine have had the normal lock and unlock behavior modified. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in the EAX register if successful, zero otherwise.

VM

Handle of the virtual machine to examine.

ArrayBuf

Address of the buffer to receive the array. The array contains 100h bits (32 bytes), one bit for each page in the range 0 through 100h. If a bit is set, the lock and unlock behavior for the corresponding page is disabled. Otherwise, the behavior is enabled.

flags

Operation flags. Must be 0.

All bits in the returned bit array are zero if the VMStat_PageableV86 value is not given in the CB_VM_Status field of the control block for the virtual machine.

See also _SetResetV86Pageable

_LinMapIntoV86

include vmm.inc

VMMcall _LinMapIntoV86, <HLinPgNum, VM, VMLinPgNum, nPages, flags>

or eax, eax ; zero if error

jz not_mapped

mov [V86Address], eax ; V86 address for mapped pages

Maps one or more pages into the V86 address space of the specified virtual machine. This service is similar to the _MapIntoV86 service. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in the EAX register if successful, zero otherwise. If EAX is nonzero, the EDX register contains the V86-mode address to which the specified pages are mapped. Otherwise, the value of EDX is undefined.

HLinPgNum

Linear page number of the first page to map. A linear page number is a ring-0 linear address shifted right by 12 bits.

VM

Handle of the virtual machine for which memory is mapped.

VMLinPgNum

Linear page number of an address in the V86 address space. The service maps the specified pages to this address if the HLinPgNum parameter does not already specify a valid V86 address. This parameter must be a page number in the range 10h through 10Fh.

nPages

Number of pages to map.

flags

Operation flags. Can be zero or the MAPV86_IGNOREWRAP value. This value enables the caller to treat the high memory area (HMA) simply as an extension of the V86 address space, whether or not wrap is enabled.

If MAPV86_IGNOREWRAP is specified and wrap is enabled, the service updates only the HMA alias mapping for pages in the HMA, not the currently-visible mapping. The HMA corresponds to page numbers 100h through 10Fh.

A virtual device typically uses this service to map buffers having protected-mode addresses into the V86 address space. This gives software running in the virtual machine a means of passing data to and receiving data from the virtual device.

If HLinPgNum is a V86 page number (that is less than or equal to 100h), this service returns HLinPgNum immediately and does nothing else. Otherwise, the service returns VMLinPgNum.

If the specified linear pages belong to a free physical region, this service calls the _PhysIntoV86 service to carry out the request.

If the specified linear pages belong to the high addressing region for a virtual machine, this service maps the memory from that virtual machine into the virtual machine specified by the VM parameter. The V86MMGR device uses this capability to map a region of V86 address space which is currently local to one VM into a global region that is addressable by all virtual machines. Virtual devices must not use this capability directly; they should always use the V86MMGR services to map local memory into global memory.

Although a virtual device can map the same page into multiple addresses in the V86 address space, this is not recommended.

For each mapped page, this service sets the P_USER, P_PRES, and P_WRITE bits, but clears the P_DIRTY and P_ACC bits. The service sets the page type to be identical to the page type for the pages at the specified protected-mode linear address.

If the virtual page swap device uses MS-DOS or BIOS functions to write to the device, this service automatically locks all mapped pages and unlocks any previously mapped pages.

If a virtual device no longer needs the mapped region, it should map the system nul page into the V86 address space using the _MapIntoV86 service. A virtual device can retrieve the handle for the system nul page using the _GetNulPageHandle service.

This service accepts V86 page numbers between 10h and the page number returned by the _GetFirstV86Page service. This supports virtual devices that use the _Allocate_Global_V86_Data_Area service. Mapping a region which spans across the first V86 page is not allowed. Mapping pages in this region to other addresses can easily crash the system, and should be avoided.

See also _Allocate_Global_V86_Data_Area, _GetFirstV86Page, _GetNulPageHandle, _MapIntoV86, _PageLock, _PhysIntoV86

_MapIntoV86

include vmm.inc

VMMcall _MapIntoV86, <hMem, VM, VMLinPgNum, nPages, PageOff, flags>

or eax, eax ; nonzero if pages mapped, zero if error

jz not_mapped

Maps one or more pages of a memory block into the V86 address space of the specified virtual machine. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in the EAX register if successful, zero otherwise.

hMem

Handle (base linear address) of the memory block to map. This address must have been returned by the PageAllocate, PageReAllocate, or _PageReserve service.

VM

Handle of the virtual machine for which to map the memory.

VMLinPgNum

Linear page number in the virtual machine's address space. The service maps the first page to the corresponding linear address in the V86 address space. This parameter must be in the range 10h through 10Fh.

nPages

Number of pages to map.

PageOff

Offset in pages from the beginning of the memory block to the first page to map.

flags

Operation flags. Can be one of these values:

Value �Meaning ��PageDEBUGNulFault �Enables page faults for system nul pages. If the memory block contains system nul pages, a page fault occurs whenever a nul page is accessed. This value only applies when running the debugging version of the Windows virtual machine manager. If this value is not given or the debugging version is not running, no page faults occur. ��MAPV86_IGNOREWRAP �If the specified pages are in the high memory area (HMA) and wrap is on, only update the HMA alias mapping, not the currently visible mapping. The HMA corresponds to pages in the range 100h to 10Fh. This allows the caller to treat the HMA simply as an extension of the V86 address space, regardless of whether wrap is enabled. ��

All other values are reserved.

A virtual device typically uses this service to map buffers having protected-mode addresses into the V86 address space. This gives software running in the virtual machine a means of passing data to and receiving data from the virtual device.

The service returns an error if the sum of the PageOff and nPages parameters is greater than the size of the memory block.

Although a virtual device can map the same page into multiple addresses in the V86 address space, this is not recommended.

For each mapped page, this service sets the P_USER, P_PRES, and P_WRITE bits and clears the P_DIRTY and P_ACC bits.

If the virtual page swap device uses MS-DOS or BIOS functions to write to the hardware, _MapIntoV86 automatically locks the mapped pages and unlocks any previously mapped pages. If the virtual page swap device writes directly to the hardware, this service neither locks nor unlocks the pages.

If a virtual device no longer needs the mapped region, it should map the system nul page into the V86 address space using the _MapIntoV86 service. A virtual device can retrieve the handle of the system nul page using the _GetNulPageHandle service.

This service accepts V86 page numbers between 10h and the page number returned by the _GetFirstV86Page service. This supports virtual devices that use the _Allocate_Global_V86_Data_Area service. Mapping a region which spans across the first V86 page is not allowed. Mapping pages in this region to other addresses can easily crash the system and should be avoided.

See also _Allocate_Global_V86_Data_Area, _GetFirstV86Page, _GetNulPageHandle, _LinMapIntoV86

_ModifyPageBits

include vmm.inc

VMMcall _ModifyPageBits, <VM, VMLinPgNum, nPages, bitAND, bitOR, pType, flags>

or eax, eax ; nonzero if modified, zero if error

jz not_modified

Modifies the page attribute bits for pages in the V86 address space of a virtual machine. Virtual devices use this service to modify page permissions, or to mark a hooked page as not present. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in the EAX register if successful, zero otherwise.

VM

Handle of the virtual machine owning the pages to modify.

VMLinPgNum

Linear page number of the first page to modify. All pages must be in the 1 megabyte V86 address space. Page numbers below the first page of the specified virtual machine or above 10Fh cause an error.

nPages

Number of pages to modify.

bitAND

AND mask for the page attribute bits. All bits except P_PRES, P_WRITE, and P_USER must be one. The P_PRES, P_WRITE, and P_USER bits can be zero or one to clear or preserve the corresponding page attributes.

bitOR

OR mask for the page attribute bits. All bits except P_PRES and P_WRITE must be zero. The P_PRES and P_WRITE bits can be 0 or 1 to preserve or set the corresponding page attributes.

pType

Page type. This parameter can be be either PG_IGNORE or PG_HOOKED, but must be PG_HOOKED if the P_PRES bit of the bitAND parameter is zero. This parameter has no real effect.

flags

Operation flags. Must be zero.

This service always clears the P_DIRTY and P_ACC bits regardless of the AND and OR mask values.

This service can be used to mark a range of pages as not present (clear the P_PRES bit). In this case, fault handlers must have been previously installed for the specified pages using the Hook_V86_Page service, and the pType parameter must be PG_HOOKED.

This service cannot be used to set the P_PRES bit. Use the _MapIntoV86 or _PhysIntoV86 service to make pages present.

If using the P_WRITE bit to simulate ROM in a virtual machine, a virtual device should map the pages using the _PhysIntoV86 service and immediately call the _ModifyPageBits service to clear the P_WRITE bit.

See also Hook_V86_Page, _MapIntoV86, _PhysIntoV86

_PhysIntoV86

include vmm.inc

VMMcall _PhysIntoV86, <PhysPage, VM, VMLinPgNum, nPages, flags>

or eax, eax ; nonzero if mapped, zero if an error

jz not_mapped

Maps the specified physical pages in the V86 address space. This service is similar to the _MapIntoV86 service, but takes physical page numbers instead of memory handles. Virtual devices use this service to associate physical device memory (such as the video memory) with a particular virtual machine. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in the EAX register if successful, zero otherwise.

PhysPage

Physical page number of the start of the region to map. A physical page number is a physical address shifted right by 12 bits.

VM

Handle of the virtual machine for which the memory is mapped.

VMLinPgNum

Linear page number in the virtual machine's address space. The service maps the first physical page to the corresponding linear address in the V86 address space. This parameter must be in the range 10h through 10Fh.

nPages

Number of pages to map.

flags

Operation flags. Can be zero or the MAPV86_IGNOREWRAP value. This value enables the caller to treat the high memory area (HMA) simply as an extension of the V86 address space, whether or not wrap is enabled.

If MAPV86_IGNOREWRAP is specified and wrap is enabled, the service updates only the HMA alias mapping for pages in the HMA, not the currently-visible mapping. The HMA corresponds to page numbers 100h through 10Fh.

If more than one physical page is specified, this service maps the pages contiguously. If the physical memory is not contiguous, the virtual device must make individual calls for each page.

Virtual devices must not map physical pages that do not contain actual memory, or that belong to some other device.

For each mapped page, this service sets the P_USER, P_PRES, and P_WRITE bits, but clears the P_DIRTY and P_ACC bits.

See also _MapIntoV86

_SetResetV86Pageable

include vmm.inc

VMMcall _SetResetV86Pageable, <VM, VMLinPgNum, nPages, flags>

or eax, eax ; nonzero if set or reset, zero if error

jz error

Modifies the locking and unlocking behavior associated with a specific range of V86 memory. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in the EAX register if successful, zero otherwise.

VM

Handle of the virtual machine for which the behavior is modified.

VMLinPgNum

Linear page number of the first page in 1 megabyte V86 address space to modify. This parameter must not be below the page number for the first V86 page, or above 100h.

nPages

Number of pages to modify.

flags

Operation flags. Can be one of these values:

Value �Meaning ��PageClearV86IntsLocked �Disables locking of all V86 memory that cannot be paged regardless of whether the virtual page swap device uses MS-DOS or BIOS functions. ��PageClearV86Pageable �Enables normal locking behavior. ��PageSetV86IntsLocked �Enables locking of all V86 memory that cannot be paged regardless of whether the virtual page swap device uses MS-DOS or BIOS functions. ��PageSetV86Pageable �Disables normal locking behavior of _MapIntoV86 and allows V86 memory to be paged. ��

All other values are reserved.

This service is intended to be used to support protected-mode applications running in a virtual machine. Virtual devices must not use this service for any other purpose.

This service returns an error if the VMStat_PageableV86 or VMStat_V86IntsLocked state is inconsistent with the specified PageSetV86Pageable, PageClearV86Pageable, PageSetV86IntsLocked, or PageClearV86IntsLocked values.

This service returns an error if the PageClearV86Pageable or PageSetV86IntsLocked values are given, but the service cannot lock the specified memory.

The V86MMGR device uses the PageSetV86IntsLocked value for virtual machines which are created with their base memory specified as locked.

Virtual device should avoid manipulating the locking and unlocking behavior of regions above page 0A0h. A virtual device should not modify these pages unless it owns a global or local region set by the _Assign_Device_V86_Pages service.

If the PageSetV86IntsLocked or PageClearV86IntsLocked value is given, the service applies the modification to every page that that cannot be paged. For this reason the VMLinPgNum and nPages parameters should be set to zero.

By default, the _MapIntoV86 service locks the memory it maps. For a virtual machine running a protected-mode application, it is desirable change this default behavior.

See also _Assign_Device_V86_Pages

_TestGlobalV86Mem

include vmm.inc

VMMcall _TestGlobalV86Mem, <VMLinAddr, nBytes, flags>

mov [Result], eax ; 0 if local, 1 if global, 2 if mixed,

 ; 3 if includes instance data region

Tests whether a V86 address range is global, local, or instanced. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns one of these values in the EAX register:

0 �Address range either contains local memory, or is not a valid V86 address range. ��1 �Address range contains global memory. ��2 �Address range contains both local and global memory. ��3 �Address range contains global memory, but also includes an instance data region. ��

VMLinAddr

Ring-0 linear address of the first byte of the V86 address range. For example, the linear address of the V86 address 02C1h:0FC5h is 3BD5h (02C10h + 0FC5h).

nBytes

Size of the V86 address range, in bytes.

flags

Operation flags. Must be zero.

Global V86 memory has addresses that are valid and identical in all virtual machines. Local memory has addresses that are only valid in one virtual machine. Instanced memory has addresses that are valid in all virtual machines, but the content of the memory varies with each virtual machine.

This service may incorrectly report the type of memory in addresses above page 0A0h (in the device adapter area). If this service returns global for memory in this area, it is global. If the service returns local, however, the memory may actually be global. Generally, this region is local.

Operations involving global address ranges typically do not need to be virtualized since the range is valid and addressable in all virtual machines. Operations involving local address ranges may have to be virtualized since it is possible for software, such as an interrupt handler, to use a local address in the wrong virtual machine.

Hook_V86_Page

include vmm.inc

mov eax, PageNum ; page number

mov esi, OFFSET32 Callback ; points to address of trap routine

VMMcall Hook_V86_Page

Installs a callback procedure to handle faults for the specified page. Virtual devices, such as the virtual display device, use this service to detect when particular address ranges are accessed. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, set otherwise. The service fails if the specified page number is invalid or the page is already hooked.

PageNum

Page number of the V86 page to install the callback procedure for. This number must be within the range specified by the number of the last V86 page and 0FFh.

Callback

Address of the callback procedure to install. For more information about the callback procedure, see below.

The system calls the callback procedure whenever a page fault occurs for the specified page regardless of the current virtual machine. It calls the procedure as follows:

mov eax, Page ; faulting page number

mov ebx, VM ; current VM handle

call [Callback]

The Page parameter specifies the number of the page that caused the page fault, and the VM parameter is the handle of the current virtual machine. The EBP register does not point to a client register structure.

The callback procedure must either map physical memory into pages causing the page fault, or terminate the virtual machine. In unusual circumstances, the virtual device may need to map the system nul page into the faulting page.

Virtual devices must not rely on the contents of the CR2 (page fault) register. Instead, the callback procedure must use the Page parameter to determine which page caused the fault.

Call Unhook_V86_Page to remove the hook procedure.

See also Unhook_V86_Page

InstDataStruc

include vmm.inc

InstDataStruc struc

InstLinkF dd ? ; reserved; do not use

InstLinkB dd ? ; reserved; do not use

InstLinAddr dd ? ; linear address of start of block

InstSize dd ? ; size of block in bytes

InstType dd ? ; type of the block

InstDataStruc ends

The InstDataStruc structure contains information about an instance data block.

InstLinkF

Reserved. This field is filled by the instance data manager, and must not be used.

InstLinkB

Reserved. This field is filled by the instance data manager, and must not be used.

InstLinAddr

Specifies the linear address of the start of the block of instance data. Thus, the correct value for 40:2F would be 42F.

InstSize

Specifies the size in bytes of the instance data block.

InstType

Specifies the instance data type. It can be one of the following values:

Value �Meaning ��ALWAYS_FIELD �Indicates that the field must always be switched when a virtual machine is switched. All instance data specified by devices should be of this type. ��INDOS_FIELD �Reserved for special types of MS-DOS internal data which only need to be switched with the virtual machine if the virtual machine is currently InDOS. ��OPTIONAL_FIELD �Indicates optional instance data. ��

See also _AddInstanceItem

Unhook_V86_Page

include vmm.inc

mov eax, PageNum

mov esi, TrapProc

VMMCall Unhook_V86_Page

jc error

Allows VxDs to stop intercepting page faults in portions of the V86 address space of every virtual machine. It is used to undo the work of the Hook_V86_Page service. Uses Flags.

You must specify a page number and address of a call-back routine to this service. If the given page is currently hooked with the specified call-back routine, the hook will be removed. Otherwise, the carry flag will be set on return to indicate error.

After being unhooked the page will be mapped to a null page.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful; otherwise sets the carry flag.

PageNum

Page number (Last_VM_Page - 10Fh) to unhook.

TrapProc

Address of callback procedure.

See also Hook_V86_Page

�Chapter 4

Error Conditions

About Error Condition Services

There are the following error condition services:

Service �Description ��Crash_Cur_VM �Terminates the current VM. ��Fatal_Error_Handler �Terminates Windows. ��Fatal_Memory_Error �Terminates Windows. ��

Reference

Crash_Cur_VM

include vmm.inc

VMMcall Crash_Cur_VM

Terminates the current VM.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This service does not return.

A virtual device should call this service when a catastrophic error has occurred in the VM, such as executing an illegal instruction or attempting to program a piece of hardware in a way incompatible with the device virtualization.

If the system VM is the current VM, Windows quits with a fatal error without explicitly crashing the other VMs.

Fatal_Error_Handler

include vmm.inc

mov esi, <MsgPtr> ; points to message to display

mov eax, <ErrFlags> ; exit flags

VMMcall Fatal_Error_Handler

Terminates Windows by informing all initialized virtual devices that an unrecoverable error has occurred and should return to real mode (optionally printing an error message). A virtual device should call this service when it detects a fatal error.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This service does not return.

MsgPtr

Address of a null-terminated string specifying the message to display. If this parameter is 0, no message is displayed.

ErrFlags

Exit flags. Can be the following value:

Value �Meaning ��EF_Hang_On_Exit �Hangs the system on a fatal exit. ��

All other values are reserved.

This service should not be called directly. Use the Fatal_Error macro instead.

See also Fatal_Error, Fatal_Memory_Error

Fatal_Memory_Error

include vmm.inc

VMMcall Fatal_Memory_Error

Terminates Windows, and displays an error message indicating that there was not enough memory to initialize one or more virtual devices. A virtual device should call this service during initialization if there is not enough memory to initialize.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This service does not return.

This service uses the Fatal_Error_Handler service to terminate Windows. Fatal_Memory_Error sets the exit flags to zero before calling the Fatal_Error_Handler.

See also Fatal_Error_Handler

�Chapter 7

Information Services

About Information Services

There are the following information services:

Service �Description ��Get_Cur_VM_Handle �Returns current virtual machine handle. ��Get_Next_VM_Handle �Returns the next valid virtual machine handle. ��Get_Sys_VM_Handle �Returns the system virtual machine handle. ��Get_VMM_Reenter_Count �Returns number of time VMM re-entered. ��Get_VMM_Version �Returns the VMM version number. ��GetSet_HMA_Info �Returns or sets HMA information. ��Test_Cur_VM_Handle �Tests for current virtual machine handle. ��Test_DBCS_Lead_Byte �Tests for legal DBCS lead byte. ��Test_Debug_Installed �Tests for debugger. ��Test_Sys_VM_Handle �Test for system virtual machine handle. ��Validate_VM_Handle �Validates a virtual machine handle. ��

Reference

Get_Cur_VM_Handle

include vmm.inc

VMMcall Get_Cur_VM_Handle

mov [VM], ebx ; current VM handle

Gets the handle of the currently running virtual machine. This is an asynchronous service. Uses EBX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the handle of the current virtual machine in the EBX register.

See also Get_Sys_VM_Handle, Test_Cur_VM_Handle

Get_Next_VM_Handle

include vmm.inc

mov ebx, VM ; VM handle

VMMcall Get_Next_VM_Handle

mov [NextVM], ebx ; next VM handle

Returns the handle of the next virtual machine in the virtual machine list maintained by the system. Uses EBX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the handle of the next virtual machine in the EBX register.

VM

Handle of a virtual machine. The return value identifies the next virtual machine after the specified virtual machine.

Although each virtual machine appears only once in the list, the order of the handles is not guaranteed. The list is circular, so a virtual device scanning the list should stop scanning when the latest handle returned is equal to the first handle returned.

The following example modifies the state of every virtual machine by using the Get_Next_VM_Handle service to retrieve handles of all valid virtual machines:

 VMMcall Get_Cur_VM_Handle

Scan_Loop:

 ; modify the VM state

 VMMcall Get_Next_VM_Handle

 VMMcall Test_Cur_VM_Handle

 jne Scan_Loop

See also Get_Cur_VM_Handle, Test_Cur_VM_Handle

GetSet_HMA_Info

include vmm.inc

mov ecx, Action ; zero to get, nonzero to set

mov dx, A20Enable ; A20 enable count (if ecx is nonzero)

VMMcall GetSet_HMA_Info

mov [NoGlobalHMA], eax ; nonzero if no global HMA user

mov [XMSCallAddr], ecx ; loader XMS call address

mov [A20Enable], edx ; A20 enable count before Windows started

Gets and sets information related to the high-memory area (HMA) region. This service is always valid (not restricted to initialization). Uses EAX, ECX, EDX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the following information in the following registers:

Register �Description ��EAX �Specifies whether a global HMA user is present. If this register is 0, Windows did not allocate the HMA meaning either there is a global HMA user or there is no HMA. If this register is nonzero, Windows has allocated the HMA, meaning there is no global HMA user. ��ECX �Specifies the V86-mode address (segment:offset) that Windows used to call the XMS driver when loading. The segment address is in the high 16 bits of the register. ��EDX �Specifies the A20 enable count before Windows started. ��

Action

Value specifying whether to get or set information. If zero, the service gets the HMA information; otherwise it sets the information.

A20Enable

A20 enable count to set for the Windows VMM loader. The service uses this parameter only if the Action parameter is nonzero.

This service lets the XMS driver (in the V86MMGR device) determine whether a global HMA user existed before Windows started and gives the driver access to the HMA enable count. Other devices should not call this service.

The global HMA flag and loader XMS call address cannot be set.

Get_Sys_VM_Handle

include vmm.inc

VMMcall Get_Sys_VM_Handle

mov [SysVM], ebx ; system VM handle

Retrieves the handle of the system virtual machine. This is an asynchronous service. Uses EBX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the handle of the system virtual machine in the EBX register.

See also Get_Cur_VM_Handle, Test_Sys_VM_Handle

Get_VMM_Reenter_Count

include vmm.inc

VMMcall Get_VMM_Reenter_Count

jecxz not_reentered ; ecx is zero if VMM not re-entered

mov [Count], ecx ; otherwise, number of times re-entered

Returns the number of times the VMM has been re-entered as a result of a hardware interrupt, page fault, or other processor exception. Virtual devices typically use this service to determine whether they can call VMM services that do not re-enter. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the number of times the VMM has been reentered in the ECX register (zero if the VMM has not been reentered).

If this service returns a nonzero value, a virtual device may call only VMM services that are asynchronous. If a virtual device must call other VMM services, the virtual device can schedule an event using a service such as Schedule_Global_Event. The system calls the event's callback procedure when all VMM services are available.

The Call_Global_Event and Call_VM_Event services call this service to determine whether the event callback procedure should be called immediately.

See also Call_Global_Event, Call_VM_Event, Schedule_Global_Event, Schedule_VM_Event

Get_VMM_Version

include vmm.inc

VMMcall Get_VMM_Version

mov [Major], ah ; major version number

mov [Minor], al ; minor version number

mov [Debug], ecx ; debug development revision number

Returns the version number for the Windows virtual machine manager (VMM). Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear and the following values in the following registers:

Register �Description ��AH �Specifies the major version number. For Windows version 95, this number is 4. ��AL �Specifies the minor version number. For Windows version 95, this number is 0. ��ECX �Specifies the debug development revision number. ��

Test_Cur_VM_Handle

include vmm.inc

mov ebx, VM ; VM handle to test

VMMcall Test_Cur_VM_Handle

je is_current ; zero flag set if current VM handle

Determines whether the given virtual machine handle is the handle of the currently running virtual machine. This is an asynchronous service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the zero flag set if the given handle identifies the current virtual machine, clear otherwise.

VM

Virtual machine handle to test.

See also Get_Cur_VM_Handle, Test_Sys_VM_Handle

Test_DBCS_Lead_Byte

include vmm.inc

mov eax, Value ; value to test

VMMcall Test_DBCS_Lead_Byte

jc not_valid ; carry flag set if not legal DBCS lead byte

Determines whether the given value is in the legal range for a DBCS lead byte. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if the specified value is in the legal range for DBCS lead bytes, set otherwise.

Value

Value to test.

For non-DBCS versions of Windows, this service always sets the carry flag.

Test_Debug_Installed

include vmm.inc

VMMcall Test_Debug_Installed

je not_installed ; zero flag set if not installed

Determines whether a debugger is currently connected. is running. This is not the same as checking whether the debugging version of the Windows VMM is running. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the zero flag set if a debugger is not installed, clear otherwise.

Test_Sys_VM_Handle

include vmm.inc

mov ebx, VM ; VM handle to test

VMMcall Test_Sys_VM_Handle

je is_system ; zero flag set if system VM handle

Determines whether the given virtual machine handle is the handle of the system virtual machine. This is an asynchronous service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the zero flag set if the given handle identifies the system virtual machine, clear otherwise.

VM

Virtual machine handle to test.

See also Get_Sys_VM_Handle, Test_Cur_VM_Handle

Validate_VM_Handle

include vmm.inc

mov ebx, VM ; VM handle to test

VMMcall Validate_VM_Handle

jc not_valid ; carry flag set if VM handle not valid

Determines whether the specified virtual machine handle is valid. This is an asynchronous service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag set if the handle is not valid, clear otherwise.

VM

Virtual machine handle to test.

See also Test_Cur_VM_Handle, Test_Sys_VM_Handle

�Chapter 8

Initialization Information

About Initialization Information

There are the following initialization information services:

Service �Description ��Convert_Boolean_String �Converts string to a Boolean value. ��Convert_Decimal_String �Converts a string to a decimal value. ��Convert_Fixed_Point_String �Converts a string to a fixed-point value. ��Convert_Hex_String �Converts a string to a hexadecimal value. ��Get_Config_Directory �Returns to the WINDOWS directory. ��Get_Environment_String �Returns the value of an environment variable. ��Get_Exec_Path �Returns the full path of Windows VMM. ��Get_Machine_Info �Returns machine information. ��Get_Name_Of_Ugly_TSR �Returns the name of uncooperative TSR. ��Get_Next_Arena �Returns information about the MS-DOS arena. ��Get_Next_Profile_String �Returns the value of the next profile string. ��Get_Profile_Boolean �Returns the value of a Boolean entry. ��Get_Profile_Decimal_Int �Returns the value of a decimal entry. ��Get_Profile_Fixed_Point �Returns the value of a fixed-point entry. ��Get_Profile_Hex_Int �Returns the value of a hexadecimal entry. ��Get_Profile_String �Returns value of a profile string. ��Get_PSP_Segment �Returns the segment address of a PSP. ��Get_Set_Real_DOS_PSP �Gets or sets the PSP for the specified VM ��GetDOSVectors �Returns original interrupt handler addresses. ��Locate_Byte_In_ROM �Locates a byte value in system ROM. ��OpenFile �Opens a file and returns an MS-DOS file handle. ��VMM_GetSystemInitState �Retrieves the current system initialization state. ��

Reference

Convert_Boolean_String

include vmm.inc

mov edx, OFFSET32 String ; address of Boolean string

VMMcall Convert_Boolean_String

jc not_valid ; carry set if invalid string

mov [Result], eax ; 0 if false, -1 if true

Converts a string representing a Boolean value, and returns either – 1 or 0 to indicate that the string is true or false. This service is available during initialization only. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag is clear if the string represents a valid Boolean value, set otherwise. If the carry flag is clear, the EAX register contains either 0 (false) or – 1 (true).

String

Address of a null-terminated string representing a Boolean value.

Valid boolean strings that signify false are 0, False, N, No, and Off. Valid boolean strings that signify true are 1, On, True, Y, and Yes. Non-English versions of Windows may have language-specific additions to this list.

See also Convert_Decimal_String, Convert_Fixed_Point_String, Convert_Hex_String

Convert_Decimal_String

include vmm.inc

mov edx, OFFSET32 String ; address of decimal string

VMMcall Convert_Decimal_String

mov [Value], eax ; decimal value of string

mov [TermChar], edx ; address of terminating character

Converts a string representing a decimal number into a value. The service also returns a pointer to the character in the string that marked the end of the decimal number. This service is only valid during initialization. Uses EAX, EDX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the value of the decimal string in the EAX register, and the address of the terminating character (first unparseable character) in the EDX register.

String

Address of the null-terminated string to convert. The string can be any combination of decimal digits and may preceded by a plus sign (+) or minus sign (-) to indicate a positive or negative value.

If the string is empty or does not contain a valid decimal integer, the service returns zero in the EAX register and the address of the first character in the EDX register.

See also Convert_Boolean_String, Convert_Fixed_Point_String, Convert_Hex_String

Convert_Fixed_Point_String

include vmm.inc

mov ecx, Places ; number of decimal places

mov edx, String ; address of fixed-point string

VMMcall Convert_Fixed_Point_String

mov [Value], eax ; fixed-point value

mov [TermChar], edx ; address of terminating character

Converts a string representing a fixed-point number into a fixed-point value. The service also returns a pointer to the character in the string that marked the end of the number. This service is only valid during initialization. Uses EAX, EDX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the normalized value of the fixed-point number in the EAX register, and the address of the terminating character in the EDX register. The actual value is equal to EAX / (10^Places).

Places

Number of digits after the decimal point to convert. The service skips over any extra digits without calculating them into the fixed-point value.

String

Address of the null-terminated string to convert. For more information about the format of the string, see below.

A fixed-point number is a decimal number that consists of an integer, a fraction, or a combination of integer and fraction. The integer can be any combination of decimal digits and may be preceded by a plus sign (+) or a minus sign (-) to indicate a positive or negative fixed-point value. The fraction can be any combination of decimal digits but must be preceded with a decimal point (.).

See also Convert_Boolean_String, Convert_Decimal_String, Convert_Hex_String

Convert_Hex_String

include vmm.inc

mov edx, OFFSET32 String ; address of hexadecimal string

VMMcall Convert_Hex_String

mov [Value], eax ; value of string

mov [TermChar], edx ; address of terminating character

Converts a string representing a hexadecimal number into a value. The service also returns a pointer to the character in the string that marked the end of the hexadecimal number. This service is only valid during initialization. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the value of the hexadecimal string in the EAX register, and the address of the terminating character in the EDX register. If the letter H terminates the number, EDX contains the address the character after the H.

String

Address of the null-terminated string to convert. The string can be any combination of hexadecimal digits (0–9, A-F), and may terminated with an uppercase or lowercase letter H.

See also Convert_Boolean_String, Convert_Decimal_String, Convert_Fixed_Point_String

Get_Config_Directory

include vmm.inc

VMMcall Get_Config_Directory

mov [WinDir], edx ; address of the directory name

Gets the name of the directory containing the Windows configuration files, such as SYSTEM.INI. For Windows 95, this service is available following initialization. Uses EDX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns, in the EDX register, the address of a null-terminated string containing the fully qualified path of the configuration directory. The string always ends with a backslash (\).

If the WINDIR environment variable is defined when Windows starts, the string associated with WINDIR is returned, regardless of whether it specifies the actual directory where SYSTEM.INI is located.

GetDOSVectors

include vmm.inc

VMMcall GetDOSVectors

mov [Int23], eax ; V86 address of original Int 23 handler

mov [Int24], edx ; V86 address of original Int 24 handler

Returns the Interrupt 23h and Interrupt 24h vectors originally set by MS-DOS for the Windows virtual machine manager (VMM). This service is valid only during initialization. Uses EAX, EDX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the Interrupt 23h vector in the EAX register and the Interrupt 24h vector in the EDX register. Each register contains a V86-mode address, with the segment in the high-order word, and the offset in the low-order word.

Virtual devices must not use this service; this service is reserved for exclusive use by the virtual MS-DOS manager.

When Windows starts, the VMM changes the original Interrupt 23h and 24h vectors to the addresses of its own handlers. When a virtual machine starts, the virtual MS-DOS manager resets these vectors to the original handlers using this service to retrieve the original addresses.

See also Get_PSP_Segment

Get_Environment_String

include vmm.inc

mov esi, OFFSET32 Variable ; environment variable name

VMMcall Get_Environment_String

jc not_found ; carry set if variable not found

mov [Value], edx ; addr. of null-terminated string

Returns the value of the specified environment variable. For Windows 95, this service is available following initialization. Uses EDX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, set otherwise. If the carry flag is clear, the EDX register contains the address of a null-terminated string specifying the value of the environment variable.

Variable

Address of a null-terminated string specifying the name of an MS-DOS environment variable. This service is not sensitive to case, so the name may be given in any combination of uppercase and lowercase letters. If zero is passed, the service returns a pointer to the environment block. Additional information about the environment block follows the environment variables comment.

Environment variables, set using the MS-DOS set command, are a limited resource. Although some virtual devices use environment variables as a way to set operating parameters, this is not recommended unless the variable is used by a set of programs, MS-DOS device drivers, and virtual devices.

When zero is passed as the name of the environment variable, a pointer to the 'global environment' is returned in the EDX register. The global environment has the same format as in MS-DOS: A packed array of zero-terminated ASCII strings, each of the form '<variable>=<value>', all terminated by an extra null byte. The VMM also creates a fake 16-byte MS-DOS arena header in front of the environment block so that you can determine its size:

GLOBAL_ENVIRONMENT_HEADER struc

		db		'M'

		dw		0FFFFh

		dw		paraSize			; Size in paragraphs, not incl. header

		db		11 dup (?)		; Padding

GLOBAL_ENVIRONMENT_HEADER ends

Do not attempt to resize the environment. You may, however, edit the environment, provided you do so during system initialization. Changes to the global environment after system initialization will not take effect the way you expect.

Do not keep pointers into the global environment. The global environment moves around during the running of the system, so any pointer you keep into it may be stale by the time you use it. If you need to retain the value of an environment variable, make a private copy.

Get_Exec_Path

include vmm.inc

VMMcall Get_Exec_Path

mov [Path], edx ; address of full path of VMM32.VXD

mov [Length], ecx ; count of chars up to and including the

 ; last backslash (\).

Gets the fully qualified path of the Windows virtual machine manager (VMM). For Windows 95, this service is available following initialization. Uses ECX, EDX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns, in the EDX register, the address of a null-terminated string containing the fully qualified path of the VMM (VMM32.VXD). The ECX register contains the length of the directory portion of the string, up to and including the last backslash (\).

Get_Machine_Info

include vmm.inc

VMMcall Get_Machine_Info

mov [Major], AH ; MS-DOS major version number

mov [Minor], AL ; MS-DOS minor version number

mov [OEM], BH ; MS-DOS OEM serial number

mov [Model], BL ; machine model byte

shr EBX, 16 ; machine type flags returned in the

mov [Type], BX ; high-order word of EBX

mov [SysConf], ECX ; address of System Config. Parameters

mov [Equip], EDX ; equipment flags

Returns information about the computer system that Windows is running on. Uses EAX, EBX, ECX, EDX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the following information in the following registers:

Register �Description ��AH �MS-DOS major version number ��AL �MS-DOS minor version number ��BH �MS-DOS OEM serial number ��BL �Machine model byte (from address F000:FFFE in system ROM) ��EBX �Machine type flags, in the high-order word. For a list of possible values, see below. ��ECX �Ring 0 linear address to System Configuration Parameters (as returned from BIOS service Interrupt 15h, AH=C0h). Applies only to PS/2 or computers with extended BIOS. See the PS/2 BIOS documentation for details. ��EDX �Equipment flags (as returned from Interrupt 11h) ��

The machine type flags, returned in the high-order word of the EBX register, can include zero or more of these values:

Value �Meaning ��GMIF_80486 �80486 processor or higher ��GMIF_PCXT �PCXT accelerator ��GMIF_MCA �Micro Channel ��GMIF_EISA �EISA ��GMIF_CPUID �CPUID instruction supported by this processor ��

The address returned in the ECX register points to a copy of the system configuration parameters because the actual parameters may have been moved into a buffer which is subject to page remapping.

Note

The CPUID instruction is supported by the Intel® Pentium™ processor and other non-Pentium processors. CPU support of the CPUID instruction does not guarantee that the CPU is a Pentium processor.

Get_Name_Of_Ugly_TSR

include vmm.inc

VMMcall Get_Name_Of_Ugly_TSR

jz no_ugly_TSR ; zero flag set if no ugly TSRs present

mov [Name], eax ; first 4 characters of TSR name

mov [Name+4], ebx ; last 4 characters of TSR name

Returns the name of an uncooperative TSR. This service is available only during initialization, and only for Windows version 3.1 and later. Uses EAX, EBX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the zero flag clear if any uncooperative TSRs are present, set otherwise. If the zero flag is clear, the EAX and EBX registers contain the first four and last four characters of the TSR name. Otherwise both registers are zero.

During its real-mode initialization, the virtual MS-DOS manager checks for and records the names of any TSRs that may prevent other MS-DOS programs from running. Get_Name_Of_Ugly_TSR checks the list and returns one of the TSR names (if any) so that virtual devices can determine whether they can successfully operate. Although more than one ugly TSR may be present in the list, the service chooses only one name to return.

Get_Next_Arena

include vmm.inc

mov ecx, 0 ; must be zero

VMMcall Get_Next_Arena

mov [Data], eax ; data value

mov [Flags], ecx ; high MS-DOS memory flags

mov [Memory], edx ; points to array of Common_Memory_struc

Returns a pointer to an MS-DOS data structure. Uses EAX, ECX, EDX, Flags.

Virtual devices must not use this service; it is intended for exclusive use by the virtual MS-DOS manager.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the following values in the following registers:

Register �Description ��EAX �Contains a data value. ��ECX �Contains the high MS-DOS flags. For more information, see below. ��EDX �Contains the address of an array of Common_Memory_struc structures. For more information, see below. ��

The high MS-DOS flags, returned in the ECX register, can be zero or more of these values:

Value �Meaning ��GNA_HiDOSLinked �Set if high MS-DOS arenas were linked in when Windows was started. ��GNA_IsHighDOS �Set if high MS-DOS arenas exist. ��

The EDX register contains the address of an array of Common_Memory_Struc structures, each specifying the address and size of a high MS-DOS memory segment. The last element in the array contains zero. The structure has the following form:

Common_Memory_struc struc

 CM_seg dw ? ; segment address of start

 CM_size dw ? ; size in paragraphs

Common_Memory_struc ends

Get_Next_Profile_String

include vmm.inc

mov edx, Profile ; points to the previous entry value

mov edi, Keyname ; points to the keyname for the entry

VMMcall Get_Next_Profile_String

jc no_next ; carry flag set if no more entries

mov [Next], edx ; address of next profile string

Searches the SYSTEM.INI file for the next entry with a given keyname following the specified entry. Virtual devices typically use this service if they have more than one entry with the same keyname. This service is available only during initialization. Uses EDX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if an entry is found, set otherwise. If the carry flag is clear, the EDX register contains the address of the next string with the specified keyname.

Profile

Address of a null-terminated string specifying the value of the previous entry. The string must have been previously returned using the Get_Profile_String or Get_Next_Profile_String service.

Keyname

Points to a null-terminated string identifying the keyname for the entry.

A virtual device retrieves the first string using the Get_Profile_String service, then uses Get_Next_Profile_String to retrieve all subsequent entries. In all cases, the virtual device must not modify the returned string.

See also Get_Profile_String

Get_Profile_Boolean

include vmm.inc

mov eax, Default ; default value

mov esi, OFFSET32 Profile ; points to section name

mov edi, OFFSET32 Keyname ; points to entry name

VMMcall Get_Profile_Boolean

jc not_found ; carry set if entry not found

jz no_value ; zero set if entry has no value

mov [Value], eax ; 0 or -1 returned in EAX

Returns the value of a Boolean entry in the SYSTEM.INI file. This service is only available during initialization. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry and zero flags clear if the entry is found. In this case, the EAX register contains – 1 or 0 indicating that the entry value evaluates to true or false, respectively.

If the carry flag is clear and the zero flag is set, the entry exists but has no corresponding value. If the carry flag is set, the entry does not exist or is not a valid boolean string. In these cases, the EAX register contains the value of the Default parameter.

Default

Default value to return if the entry has no corresponding value, does not exist, or is not a valid boolean string.

Profile

Address of a null-terminated string identifying the section in the SYSTEM.INI file to search. Can be zero, in which case the service searches the [386Enh] section.

Keyname

Address of a null-terminated string specifying keyname to search for.

Valid boolean strings that signify false are 0, False, N, No, and Off. Valid boolean strings that signify true are 1, On, True, Y, and Yes. Non-English versions of Windows may have language-specific additions to this list.

See also Get_Profile_Decimal_Int, Get_Profile_Fixed_Point, Get_Profile_Hex_Int

Get_Profile_Decimal_Int

include vmm.inc

mov eax, Default ; default value

mov esi, OFFSET32 Profile ; points to section name

mov edi, OFFSET32 Keyname ; points to entry name

VMMcall Get_Profile_Decimal_Int

jc not_found ; carry set if entry not found

jz no_value ; zero set if entry has no value

mov [Value], eax ; entry value

Returns the value of a decimal-number entry in the SYSTEM.INI file. This service is only available during initialization. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry and zero flags clear if the entry is found. In this case, the EAX register contains the value of the decimal number.

If the carry flag is clear and the zero flag is set, the entry exists but has no corresponding value. If the carry flag is set, the entry does not exist or does not represent a decimal number. In these cases, the EAX register contains the value of the Default parameter.

Default

Default value to return if the entry has no corresponding value, does not exist, or does not represent a decimal number.

Profile

Address of a null-terminated string identifying the section in the SYSTEM.INI file to search. Can be zero, in which case the service searches the [386Enh] section.

Keyname

Address of a null-terminated string specifying keyname to search for.

A valid decimal number consists of one or more decimal digits and contains no embedded spaces or decimal points. The decimal number can be preceded with a plus sign (+) or minus sign (-) to indicate a positive or negative number, respectively.

See also Get_Profile_Boolean, Get_Profile_Fixed_Point, Get_Profile_Hex_Int

Get_Profile_Fixed_Point

include vmm.inc

mov eax, Default ; default value

mov ecx, Places ; number of digits after decimal point

mov esi, OFFSET32 Profile ; points to section name

mov edi, OFFSET32 Keyname ; points to entry name

VMMcall Get_Profile_Fixed_Point

jc not_found ; carry flag set if entry not found

jz no_value ; zero flag set if entry has no value

mov [Value], eax ; entry value

Returns the value of a fixed-point-number entry in the SYSTEM.INI file. This service is only available during initialization. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry and zero flags clear if the entry is found. In this case, the EAX register contains the normalized value of the fixed-point number. The actual value is equal to EAX / (10^Places)

If the carry flag is clear and the zero flag is set, the entry exists but has no corresponding value. If the carry flag is set, the entry does not exist or does not represent a fixed-point number. In these cases, the EAX register contains the value of the Default parameter.

Default

Default value to return if the entry has no corresponding value, does not exist, or does not represent a fixed-point number.

Places

Number of digits after the decimal point to convert. The service skips over any extra digits without calculating them into the fixed-point value.

Profile

Address of a null-terminated string identifying the section in the SYSTEM.INI file to search. Can be zero, in which case the service searches the [386Enh] section.

Keyname

Address of a null-terminated string specifying keyname to search for.

A fixed-point number is a decimal number that consists of an integer, a fraction, or a combination of integer and fraction. The integer can be any combination of decimal digits and may be preceded by a plus sign (+) or a minus sign (-) to indicate a positive or negative fixed-point value. The fraction can be any combination of decimal digits but must be preceded with a decimal point (.).

See also Get_Profile_Boolean, Get_Profile_Decimal_Int, Get_Profile_Hex_Int

Get_Profile_Hex_Int

include vmm.inc

mov eax, Default ; default value

mov esi, OFFSET32 Profile ; points to section name

mov edi, OFFSET32 Keyname ; points to entry name

VMMcall Get_Profile_Hex_Int

jc not_found ; carry set if entry not found

jz no_value ; zero set if entry has no value

mov [Value], eax ; entry value

Returns the value of a hexadecimal-number entry in the SYSTEM.INI file. This service is only available during initialization. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry and zero flags clear if the entry is found. In this case, the EAX register contains the value of the hexadecimal number.

If the carry flag is clear and the zero flag is set, the entry exists but has no corresponding value. If the carry flag is set, the entry does not exist or does not represent a hexadecimal number. In these cases, the EAX register contains the value of the Default parameter.

Default

Default value to return if the entry has no corresponding value, does not exist, or does not represent a hexadecimal number.

Profile

Address of a null-terminated string identifying the section in the SYSTEM.INI file to search. Can be zero, in which case the service searches the [386Enh] section.

Keyname

Address of a null-terminated string specifying keyname to search for.

A valid hexadecimal number consist of any combination of hexadecimal digits (0–9, A-F), and can be terminated with the uppercase or lowercase letter H.

See also Get_Profile_Boolean, Get_Profile_Decimal_Int, Get_Profile_Fixed_Point

Get_Profile_String

include vmm.inc

mov edx, OFFSET32 Default ; optional default string

mov esi, OFFSET32 Profile ; section name

mov edi, OFFSET32 Keyname ; entry name

VMMcall Get_Profile_String

jc not_found ; carry set if entry not found

mov [Value], edx ; address of profile string

Searches the SYSTEM.INI file for a specified entry, and returns a pointer to a null-terminated string representing the entry value. This service is only available during initialization. Uses EDX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if the entry is found, set otherwise. If the carry flag is clear, the EDX register contains the address of the null-terminated string representing the entry value.

Default

Address of a null-terminated string to be returned if the entry is not found, or has no current value.

Profile

Address of a null-terminated string identifying the section in the SYSTEM.INI file to search. Can be zero, in which case the service searches the [386Enh] section.

Keyname

Address of a null-terminated string specifying keyname to search for.

A virtual device must not modify the string pointed to by the EDX register. If modification is required, copy the string and modify the copy.

See also Get_Next_Profile_String

Get_PSP_Segment

include vmm.inc

VMMcall Get_PSP_Segment

mov [PSP], eax ; segment address of PSP

Returns the segment address of program segment prefix (PSP) for the Windows virtual machine manager (VMM32.VSD). This service is only available during initialization. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the PSP segment address in the EAX register. The high-order word is zero. To convert the segment address to a linear address, shift it left by 4 bits.

Virtual devices typically use this service to retrieve values from the PSP that can not be retrieved using the Get_Exec_Path and Get_Environment_String services.

See also Get_Environment_String, Get_Exec_Path

Get_Set_Real_DOS_PSP

include vmm.inc

mov ebx, VMHandle

mov ax, NewPSP

mov ecx, dwFlags

VMMCall Get_Set_Real_DOS_PSP

Gets or sets the PSP for the specified VM. Uses the EAX, ECX, and EDX registers.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	If performing a set operation, returns the previous PSP value in the AX register. If performing a get operation, returns the the current PSP value in the AX register.

VMHandle

Handle to the VM.

NewPSP

New PSP to set if dwFlags is GSRDP_Set.

dwFlags

Specify GSRDP_Set to set the PSP to a new value. Or, specify zero to retrieve the current PSP value.

Locate_Byte_In_ROM

include vmm.inc

mov al, Byte ; byte to locate

VMMcall Locate_Byte_In_ROM

jc not_found ; carry flag set if byte not found

mov [Location], eax ; linear address of byte

Scans the system ROM for a specified byte. Virtual devices use this service to locate single-byte instructions, such as the iret instruction, that must be protected from modification by programs running in a virtual machine. This service is only available during initialization. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the carry flag clear if the byte was found. The EAX register contains the linear address of the byte. The carry flag is set if the byte was not found or the user disabled the service.

Byte

Byte value to search for.

Users can disable this service by setting to false the SystemROMBreakpoint setting in the [386Enh] section of the SYSTEM.INI file.

OpenFile

include vmm.inc

mov edx, OFFSET32 Filename ; address of name of file to open

mov edi, OFFSET32 Buffer ; buffer to receive full path

VMMcall OpenFile

jc not_found ; carry set if file not found

mov [Handle], eax ; MS-DOS file handle

Opens the specified file for reading (in compatibility mode). For Windows 95, this service can be called during or following initialization. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, set otherwise. If the carry flag is clear, the EAX register contains an MS-DOS file handle.

Filename

Address of a null-terminated string specifying the name of the file to open.

Buffer

Address of a buffer that receives the full path of the file, if found. If this service is called during initialization, the buffer must be at least 128 bytes. If this service is called following initialization, the buffer size, in bytes, must be at least VMM_OPENFILE_BUF_SIZE.

If the specified filename includes a drive letter or path, the service looks for the file only in the specified drive and directory. Otherwise, the service searches for the file in the directories specified by the following:

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	WINDIR environment variable

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	First command-line argument (argv[0]) of Windows

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Current working directory

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	PATH environment variable

Otherwise, the service does not search for the file. In either case, the service attempts to opens the file for reading (in compatibility mode), and returns the MS-DOS file handle if it is successful.

If WINDIR and PATH environment variables are not well formed, this service cannot guarantee that the full path copied to the Buffer parameter will be well formed.

This service fails if the current virtual machine cannot support a call to the Exec_Int service.

This service fails during initialization if the virtual machine has already used the _Allocate_Temp_V86_Data_Area service to allocate the temporary buffer.

See also _Allocate_Temp_V86_Data_Area, Exec_Int

VMM_GetSystemInitState

include vmm.inc

VMMCall VMM_GetSystemInitState

mov [InitState], eax

Retrieves the current system initialization state. Uses EAX, ECX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the current system initialization state in the EAX register.

The following table identifies initialization milestones and return values for VMM_GetSystemInitState. Milestones are listed in the table in chronological order. When a milestone completes, this service returns the value (one of the values) listed to the right of the milestone. The first value is returned if the first milestone has not been completed.

Milestone �VMM_GetSystemInitState return value ��SYSSTATE_PRESYSCRITINIT (00000000h) �SYS_CRITICAL_Init is broadcast ��SYSSTATE_PREDEVICEINIT (10000000h) �DEVICE_INIT is broadcast ��SYSSTATE_PREINITCOMPLETE (20000000h) �INIT_COMPLETE is broadcast ��SYSSTATE_VXDINITCOMPLETED (40000000h) �KERNEL32_INITIALIZED is broadcast ��SYSSTATE_KERNEL32INITED (50000000h) �KERNEL32_SHUTDOWN is broadcast ��SYSSTATE_KERNEL32TERMINATED (A0000000h)

STATE_PRESYSVMTERMINATE (B0000000h) �SYS_VM_TERMINATE is broadcast ��SYSSTATE_PRESYSTEMEXIT (E0000000h) �SYSTEM_EXIT is broadcast ��SYSSTATE_PRESYSTEMEXIT2 (E4000000h) �SYSTEM_EXIT2 is broadcast ��SYSSTATE_PRESYSCRITEXIT (F0000000h) �SYS_CRITICAL_EXIT is broadcast ��SYSSTATE_PRESYSCRITEXIT2 (F4000000h) �SYS_CRITICAL_EXIT2 is broadcast. ��SYSSTATE_POSTSYSCRITEXIT2 (FFF00000h) �Return to real mode ��

Future versions of Windows may have additional initialization states with values between the ones defined here, which implies that you should use a relational comparison to test the initialized state. Currently, this service returns zero in ECX, but additional information may be returned in this register in the future.

�Chapter 10

Linked Lists

About Linked Lists

There are the following linked list services:

Service �Description ��List_Allocate �Allocates a new node for a list. ��List_Attach �Attaches a node to the head of the list. ��List_Attach_Tail �Attaches a node to the end of the list. ��List_Create �Creates a list. ��List_Deallocate �Deallocates a node. ��List_Destroy �Destroys a list. ��List_Get_First �Returns the address of the first node. ��List_Get_Next �Returns the address of next node in the list. ��List_Insert �Inserts a node into a list. ��List_Remove �Removes a node from the list. ��List_Remove_First �Removes the first node in list. ��

Reference

List_Allocate

include vmm.inc

mov esi, List ; list handle

VMMcall List_Allocate

jc not_allocated ; carry flag set if error

mov [Node], eax ; address of new node

Allocates a new node for the specified list. A virtual device can attach the new node to the list using the List_Attach, List_Attach_Tail or List_Insert service. The contents of the new node are undefined. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear and the address of the new node in the EAX register if successful. For lists created using the LF_Alloc_Error value, the service returns with the carry flag set if a node cannot be allocated. For other lists, the service does not return if a node cannot be allocated. (It crashes the current virtual machine instead.)

List

Handle of the list.

If the list is created using the LF_Use_Heap value, this service calls the _HeapAllocate service for each node, in which case all the rules regarding heap access apply to List_Allocate as well.

Otherwise, the service allocates nodes from a pool of free nodes. This avoids the overhead of calling the _HeapAllocate service for every node allocation. This non-reliance on _HeapAllocate has both positive and negative consequences. On the positive side, it means that List_Allocate can be called at times when _HeapAllocate cannot be called, such as during hardware interrupts. On the negative side, this means that if the VMM cannot satisfy the allocation request from its pool of free nodes, it cannot obtain more memory from the heap because it might not be safe to call _HeapAllocate at the time the call to List_Allocate made. VMM maintains an emergency pool of memory into which it can dip when faced with this situation. The emergency pool is refreshed from the system heap at a time when _HeapAllocate is safe to call.

The consequence of this tradeoff is that virtual devices should not allocate large numbers of nodes in rapid succession from lists not marked LF_Use_Heap, because that would dry up the free list and emergency pool, causing List_Allocate to fail.

See also List_Attach, List_Attach_Tail, List_Create, List_Deallocate, List_Insert

List_Attach

include vmm.inc

mov esi, List ; list handle

mov eax, Node ; address of node to attach

VMMcall List_Attach

Attaches a list node to the head (front) of a list. A virtual device can attach a node to any list that has a matching node size and was created with the same flags. (It is an error, for example, to attach a node allocated from a list created as LF_Use_Heap to a list created without that flag, even if the node sizes agree.) This service can be used, for example, to move a node from one list to another. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

List

Handle of the list. The handle must have been previously created using the List_Create service.

Node

Address of the node to attach. The node must have been previously created using the List_Allocate service.

The service attaches the node to the head of the list. Subsequent calls to the List_Get_First service return the address of this node. The address of the previous head of the list can be retrieved using the List_Get_Next service.

See also List_Allocate, List_Create, List_Get_First, List_Get_Next, List_Remove, List_Remove_First

List_Attach_Tail

include vmm.inc

mov esi, List ; list handle

mov eax, Node ; address of node to attach

VMMcall List_Attach_Tail

Attaches a list node to the tail (end) of a list. A virtual device can attach a node to any list that has a matching node size and was created with the same flags. (It is an error, for example, to attach a node allocated from a list created as LF_Use_Heap to a list created without that flag, even if the node sizes agree.) This service can be used, for example, to move a node from one list to another. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

List

Handle of the list. The handle must have been previously created using the List_Create service.

Node

Address of the node to attach. The node must have been previously created using the List_Allocate service.

The service attaches the node to the end of the list. A virtual device can retrieve the address of the node by calling the List_Get_Next service and specifying the address of the previous end of the list.

See also List_Allocate, List_Create, List_Get_Next, List_Remove

List_Create

include vmm.inc

mov eax, Flags ; creation flags

mov ecx, NodeSize ; size in bytes of each node in list

VMMcall List_Create

jc error ; carry flag set if error

mov [List], esi ; list handle

Creates a new list and returns a list handle that virtual devices use in subsequent calls to other list services. Uses ESI, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear and the list handle in the ESI register, if successful. The carry flag is set if an error occurs.

Flags

Creation flags. Can be zero or more of these values:

Value �Meaning ��LF_Alloc_Error �Directs the List_Allocate service to returns with carry flag set if new node could not be allocated. ��LF_Async �Creates an asynchronous list that can be used while processing interrupts. ��LF_Use_Heap �Allocates nodes on the system heap. This value must not be used in combination with the LF_Async value. ��LF_Swap �Allocates nodes from the swappable system heap. This value must not be used in combination with the LF_Async value. ��

NodeSize

Size, in bytes, of each node in the list.

If a virtual device requires large nodes, it should specify the LF_Use_Heap value to force the nodes to be allocated from the system heap. All allocate and deallocate calls for lists created in this way use the _HeapAlloc and _HeapFree services to create and destroy nodes.

To access a list during hardware interrupts, a virtual device must set the LF_Async value when creating the list. This forces list operations to be atomic operations which cannot be re-entered. When using an asynchronous list, the virtual device must disable interrupts before calling the list services. The virtual device must disable interrupts even if when not calling during an interrupt. The virtual device must use the pushf, cli, and popf instructions to disable and re-enable interrupts. It must not use the sti instruction to enable interrupts unless other documentation states that this is premitted.

If the LF_Alloc_Error value is not specified, the system crashes the current virtual machine if the List_Allocate service fails. If this value is specified, List_Allocate returns with the carry flag set when an allocation fails.

If the LF_Swap value is specified, then list nodes are allocated from the swappable system heap. Consequently, all list services related to swappable list nodes become subject to constraints on accessing swappable memory.

See also List_Allocate, List_Deallocate, List_Destroy

List_Deallocate

include vmm.inc

mov esi, List ; list handle

mov eax, Node ; address of node to free

VMMcall List_Deallocate

Frees the specified node. Once a virtual device frees a node, it must not attempt to use the node. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

List

Handle of the list. The handle must have been previously created using the List_Create service.

Node

Address of the node to free. The node must have been previously created using the List_Allocate service.

This service normally never destroys a node. Instead, the service places the node back in the free pool. The node can then quickly be reclaimed when the List_Allocate service is called. If the list is created using the LF_Use_Heap value, this service calls the _HeapFree service for each node.

See also _HeapFree, List_Allocate, List_Create

List_Destroy

include vmm.inc

mov esi, List ; list handle

VMMcall List_Destroy

Frees all nodes in a list, and destroys the list handle. Once a virtual device destroys a list, it must not attempt to use the list handle. Uses ESI, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

List

Handle of the list. The handle must have been previously created using the List_Create service.

See also List_Create

List_Get_First

include vmm.inc

mov esi, List ; list handle

VMMcall List_Get_First

jz empty_list ; zero flag set if list is empty

mov [Node], eax ; address of first node

Returns the address of the first node in a list. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the zero flag clear and the address of the first node in the EAX register if successful. If the list is empty, the zero flag is set and EAX is zero.

List

Handle of the list. The handle must have been previously created using the List_Create service.

See also List_Attach, List_Create, List_Get_Next

List_Get_Next

include vmm.inc

mov esi, List ; list handle

mov eax, Node ; address of node

VMMcall List_Get_Next

jz empty_list ; zero set if no more nodes in list

mov [Node], eax ; address of next node

Returns the next node in a list after the specified node. This service is typically used in conjunction with the List_Get_First service to scan an entire list. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the zero flag clear and the address of the next node in the EAX register if successful. If there are no more nodes, the zero flag is set and EAX is zero.

List

Handle of the list. The handle must have been previously created using the List_Create service.

Node

Address of a node in the list. The address must have been previously retrieved using the List_Get_First or List_Get_Next service.

See also List_Create, List_Get_First

List_Insert

include vmm.inc

mov esi, List ; list handle

mov eax, NewNode ; address of node to insert

mov ecx, Node ; address of node to insert after (0 to attach to head)

VMMcall List_Insert

Inserts a node immediately after the specified node in a list. A virtual device can insert a node into any list that has a matching node size and was created with the same flags. (It is an error, for example, to attach a node allocated from a list created as LF_Use_Heap to a list created without that flag, even if the node sizes agree.) This can be used, for example, to move a node from one list to another. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

List

Handle of the list. The handle must have been previously created using the List_Create service.

NewNode

Address of the node to insert. The node must have been previously created using the List_Allocate service.

Node

Address of a node in the list. The address must have been previously retrieved using the List_Get_First or List_Get_Next service. If this parameter is zero, the service attaches the new node to the head of the list.

This service inserts the new node between the specified node and the node immediately following the specified node. A virtual device can retrieve the address of the new node by calling the List_Get_Next service, and specifying the Node parameter.

See also List_Attach, List_Attach_Tail

List_Remove

include vmm.inc

mov esi, List ; list handle

mov eax, Node ; address of node to remove

VMMcall List_Remove

jc not_removed ; carry flag set if error

Removes the specified node from the list. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, set otherwise.

List

Handle of the list. The handle must have been previously created using the List_Create service.

Node

Address of the node to remove. The node must have been previously retrieved using the List_Get_First or List_Get_Next service.

This service does not deallocate the node. It is up to the virtual device to free the node, or attach it to another list.

See also List_Create, List_Remove_First

List_Remove_First

include vmm.inc

mov esi, List ; list handle

VMMcall List_Remove_First

jz list_empty ; zero flag set if list is empty

mov [Node], eax ; address of node removed

Removes the first node from a list. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the zero flag clear if successful, or set if the list is empty. The EAX register contains the address if the removed node, or zero if none.

List

Handle of the list. The handle must have been previously created using the List_Create service.

This service does not free the node. It is up to the virtual device to free the node, or attach it to another list.

See also List_Create, List_Remove

�Chapter

Miscellaneous Services

About Miscellaneous Services

There are the following miscellaneous services:

Service �Description ��_AddReclaimableItem �Identifies regions of VM memory that can be reclaimed. ��Begin_Reentrant_Execution �Start re-entrant execution. ��_CallRing3 �Reserved for internal use. ��Close_Boot_Log �Closes the system boot log. ��Directed_Sys_Control �Jumps to the VxD's device-control procedure. ��EnableDisable_Boot_Log �Enables or disables boot logging from the virtual machine manager (VMM). ��End_Reentrant_Execution �End re-entrant execution. ��_EnumReclaimableItem �Enumerates reclaimable regions of VM memory declared by a previous call to the _AddReclaimableIem. ��Get_Boot_Flags �Retrieves the boot-time flags. ��Get_DDB �Determines whether or not a VxD is installed for the specified device and returns a DDB for that device if it is installed. ��GetSetDetailedVMError �Gets and sets error information. ��_GetVxDName �Retrieves the name of the VxD that contains the specified linear address. ��Hook_Device_PM_API �Installs a protected-mode API callback. ��Hook_Device_Service �Installs a hook for a device service. ��Hook_Device_V86_API �Installs a V86-mode API callback. ��Install_Exception_Handler �Installs an exception handler. ��_LocalizeSprintf �To be supplied. ��_LocalizeStackSprintf �To be supplied. ��Log_Fault_Call_Out �Callout service that the VMM calls when it is about to report a fault to the user. ��Map_Flat �Converts a V86 or protected-mode address. ��Map_Lin_To_VM_Addr �Converts a linear address. ��MMGR_SetNULPageAddr �Sets the physical address of system nul page. ��Open_Boot_Log �Opens the system boot log. ��_Register_Win32_Services �Copies the location of the calling VxD's Win32 service-table in the DDB. ��Remove_Exception_Handler �Removes an exception handler. ��Set_Boot_Flags �Sets the boot-time flags. ��Set_Delete_On_Exit_File �Adds a file to the list to delete when exiting. ��_SetReclaimableItem �Marks as fully reclaimable or restorable, the regions of reclaimable VM memory declared by a previous call to the _AddReclaimableItem service. ��Set_System_Exit_Code �Sets the Windows exit code value. ��System_Control �Sends a control message to all virtual devices. ��Unhook_Device_Service �Unhooks a device service. ��VMM_Add_DDB �Adds a Vxd_Desc_Block structure (DDB) to the appropriate location in the device list (the locations are based on the inititialization order). ��VMM_GetDDBList �Retrieves the address of the DDB list. ��VMM_GetVxDLocationList �Returns the address of the VxD location list in EAX, returns the count of VxDs in EDX, and returns the list size (in bytes) in ECX. ��VMM_Remove_DDB �Removes a Vxd_Desc_Block structure (DDB) from the device list. ��VMMAddImportModuleName �Adds the specified import-module name to an internal table. ��

Reference

Functions

_AddReclaimableItem

#include vmm.h

_AddReclaimableItem(ReclaimStruc *pReclaim, DWORD Flags);

Identifies regions of VM memory that may be reclaimable. Uses C calling convention and the EAX, ECX, EDX, and Flags registers.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns non-zero in the EAX register if successful; otherwise returns zero in EAX.

pReclaim

Address of ReclaimStruc structure to add. The callback in the RS_CallBack member of the ReclaimStruc structure is called using the CDECL calling and register conventions, and has no defined return value. The reference data for the callback, if any, is not passed separately, since it is already available in the ReclaimStruc.

Flags

Reserved; must be 0.

If a region is already reclaimable, then RS_RECLAIM should be specified in the RS_Flags member of the specifed ReclaimStruc structure. Otherwise, a subsequent call to _SetReclaimableItem must be made to set RS_RECLAIM sometime prior to Init_Complete in order for the block to be re-used.

If the block's contents must be restored prior to System_Exit, then RS_RESTORE must also be specified in the RS_Flags member. If an optional callback address is also provided, then it will be called immediately after the contents have been restored, prior to System_Exit.

If the system elects to not use a fully-reclaimable block (for example, if the block's alignment or size makes it unsuitable), it will still call the caller's callback address, if any, so that any external references to the block can still be restored.

In the unlikely event a block marked reclaimable cannot later be reclaimed, call _SetReclaimableItem with the RS_RECLAIM flag clear.

See also _EnumReclaimableItem, ReclaimStruc, _SetReclaimableItem

Begin_Reentrant_Execution

include vmm.inc

VMMcall Begin_Reentrant_Execution

mov [Count], ecx ; re-entrancy count

Starts re-entrant execution. Virtual devices use this service when hooking VMM faults (re-entrant processor exceptions) so that they may call nonasynchronous VMM or virtual device services, or execute a virtual machine. Uses ECX, Flags.

Most virtual devices have no reason to use this service. Do not use this service to avoid scheduling events on hardware interrupts.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the old re-entrancy count in the ECX register. This count must be passed to the End_Reentrant_Execution service.

See also End_Reentrant_Execution

_CallRing3

This service is reserved for the Shell VxD to implement application-time events. Do not call this service directly. To call ring 3 code from a VxD, use the SHELL_CallAtAppyTime service.

Close_Boot_Log

include vmm.inc

VMMcall Close_Boot_Log

Requests that the system boot log be closed.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

See also EnableDisable_Boot_Log, Open_Boot_Log

Directed_Sys_Control

include vmm.inc

mov ecx, DDB

VMMCall Directed_Sys_Control

Jumps to the VxD's device-control procedure. Use this service instead of calling the control procedure directly.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Return value depends on the message sent to the virtual device.

DDB

VxD's DDB that contains device control procedure. All other registers are passed unaltered to the control procedure.

EnableDisable_Boot_Log

include vmm.inc

move eax, fEnable

VMMcall EnableDisable_Boot_Log

Enables or disables boot logging from the virtual machine manager (VMM). This service is intended to be used by the system (IOS) to indicate whether it is safe to write to the disk; other VxDs should not use this service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

fEnable

Enable flag. If non-zero, enables boot logging; if zero, disables it.

See also Close_Boot_Log, Open_Boot_Log

End_Reentrant_Execution

include vmm.inc

mov ecx, Count ; re-entrancy count

VMMcall End_Reentrant_Execution

Ends re-entrant execution. A virtual device that calls the Begin_Reentrant_Execution service must call this service before returning. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Count

Re-entrancy count previously returned by the Begin_Reentrant_Execution service.

See also Begin_Reentrant_Execution

_EnumReclaimableItem

#include vmm.h

DWORD _EnumReclaimableItem(DWORD enumKey, ReclaimStruc *pReclaim,

 DWORD Flags);

Enumerates regions of potentially reclaimable VM memory that were added by a previous call to the _AddReclaimableItem service. The items are enumerated in ascending order according to their addresses. Uses C calling convention and the EAX, ECX, EDX, and Flags registers.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the enumeration key in EAX for each reclaimable region, or zero if there are no reclaimable regions or the last region has been enumerated.

enumKey

Enumeration key. Set this parameter to zero to begin enumeration. Subsequent calls to this service specify enumeration keys returned by previous calls.

pReclaim

Address of the ReclaimStruc structure that receives information about a reclaimable region.

Flags

Reserved; must be 0.

See also _AddReclaimableItem, ReclaimStruc, _SetReclaimableItem

Get_Boot_Flags

include vmm.inc

VMMCall Get_Boot_Flags

mov [BootFlags], eax

Retrieves the boot-time flags. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the boot time flags in the EAX register which may be one of the following:

BOOT_CLEAN (00000001H) ���BOOT_DOSCLEAN(00000002H) ���BOOT_NETCLEAN (00000004H) ���BOOT_INTERACTIVE (00000008H) ���

Get_DDB

include vmm.inc

mov eax, Device_ID

mov edi, Device_Name

VMMCall Get_DDB

mov [DDB], ecx

Determines whether or not a VxD is installed for the specified device and returns a DDB for that device if it is installed. Uses ECX, flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a DDB for the specified device if the function succeeds; otherwise, returns zero.

Device_ID

The device identifier. This parameter can be zero for name-based devices.

Device_Name

An eight-character device name that is padded with blank characters. This parameter is only required if Device_ID is zero. The device name is case-sensitive.

GetSetDetailedVMError

include vmm.inc

mov ebx, VM ; VM handle or 0 if Create_VM error

mov ecx, GetSet ; zero if get, nonzero zero if set

mov eax, Error ; error code if ecx nonzero

mov edx, RefData ; reference data if ecx is nonzero

VMMcall GetSetDetailedVMError

jz no_error_info ; zero set if no error information

mov [Error], eax ; error code

mov [RefData], edx ; reference data for the error code

Sets detailed error code for a virtual machine crash or start-up error. This service is only available for Windows version 3.1 or later. Uses EAX, EDX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the zero flag clear if detailed error information was found, set otherwise. If the zero flag is clear, the EAX register contains an error code and the EDX register contains reference data associated with the error code.

VM

Handle of the virtual machine. If this parameter is zero, the service gets or sets error information for the Create_VM message.

GetSet

Value specifying the action to take. If zero, the service retrieves error information. If nonzero, the service sets error information.

Error

Error code to set. This parameter is ignored if the GetSet parameter is zero. There are the following error code values:

Value �Meaning ��GSDVME_CrtNoMsg �Problem creating the VM. The system will not display any error message; it is the responsibility of the virtual device to use the SHELL_Message service to display a custom error message. ��GSDVME_DevNuke �Device-specific problem. ��GSDVME_DevNukeHdwr �Device-specific problem caused by software running in the virtual machine. ��GSDVME_InsMemEMS �Available EMS memory is less than requested; set by the virtual V86 mode memory manager. ��GSDVME_InsMemV86 �Insufficient V86 memory; set by the virtual V86 mode memory manager. ��GSDVME_InsMemV86Hi �Insufficient high MS-DOS memory; set by the virtual MS-DOS manager. ��GSDVME_InsMemVid �Insufficient base video memory; set by the virtual display device. ��GSDVME_InsMemVM �Insufficient base virtual machine memory for control block or instance buffer. ��GSDVME_InsMemXMS �Available XMS memory is less than requested; set by the virtual V86 mode memory manager. ��GSDVME_InsV86Space �Available V86 address space is less than requested; set by the virtual V86 mode memory manager. ��GSDVME_InvalFlt �Invalid fault. ��GSDVME_InvalGpFlt �Invalid GP fault. ��GSDVME_InvalInst �Attempt to execute an invalid instruction. ��GSDVME_InvalPgFlt �Invalid page fault. ��GSDVME_InsMemDev �Could not allocate base virtual machine memory for device. ��GSDVME_NukeNoMsg �Fatal problem forcing the VM to be destroyed. The system will not display any error message; it is the responsibility of the virtual device to use the SHELL_Message service to display a custom error message. ��GSDVME_OkNukeMask �Reserved for the exclusive use of the virtual MS-DOS manager. ��GSDVME_PrivInst �Attempt to execute a privileged instruction. ��GSDVME_UserNuke �User requested running virtual machine be terminated. ��

Error values that have the high word set to 2 are intended to be used when a virtual machine fails on start up.

RefData

Reference data to set. If the Error parameter is GSDVME_PrivInst, GSDVME_InvalInst, GSDVME_InvalPgFlt, GSDVME_InvalGpFlt, or GSDVME_InvalFlt, this parameter is the address of a VMFaultInfo structure that contains data associated with the error. Otherwise, RefData is a pointer to an eight-character buffer giving the name of the virtual device that reported the error.

This parameter is ignored if the GetSet parameter is zero. This parameter is zero if there is no associated reference data.

_GetVxDName

#include vmm.h

_GetVxDName(DWORD laddr, DWORD pszName);

mov [BaseAddr], eax

Retrieves the name of the VxD that contains the specified linear address.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the base address of the VxD in the EAX register if successful; otherwise returns 0 in EAX. Uses C calling convention.

laddr

Linear address to locate.

pszName

Buffer to receive the object name. If the function fails, pszName is filled in with the ASCII version of laddr. This buffer must be at least 80 bytes in size.

Object names consist of the VxD name, segment number, and offset; for example, VTDAPI(03) + 27C.

Hook_Device_PM_API

include vmm.inc

mov eax, ID ; device ID

mov esi, OFFSET32 Callback ; points to new API callback

VMMcall Hook_Device_PM_API

Installs an API callback procedure allowing a virtual device to intercept calls to the protected-mode API of another virtual device. This service is intended to support virtual devices that need to monitor calls to the APIs of other virtual devices. Most virtual devices will never need this service. Uses ESI, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, set if the specified virtual device does not support a protected-mode API. If successful, the ESI register contains the address of the previous callback procedure.

ID

Identifier of the virtual device to monitor.

Callback

Address of the callback procedure to install. For more information about the callback procedure, see below.

The system calls the callback procedure whenever an application in a virtual machine calls the API for the specified virtual machine. The system calls the callback as follows:

mov ebx, VM ; current VM handle

mov ebp, OFFSET32 crs ; points to Client_Reg_Struc

call [Callback]

The VM parameter is a handle identifying the current virtual machine and the crs parameter points to a Client_Reg_Struc structure containing the register values of the current virtual machine. Other registers contain the parameter values intended for the API.

The callback procedure can carry out tasks, but eventually must pass execution to the previous API callback procedure, preserving the EBX and EBP registers when it calls.

See also Hook_Device_V86_API

Hook_Device_Service

include vmm.inc

GetDeviceServiceOrdinal eax, Service

mov esi, OFFSET32 HookProc ; points to the hook procedure to install

VMMcall Hook_Device_Service

jc not_installed ; carry flag set if error

IF WIN31COMPAT

mov [Real_Proc], esi

ENDIF

Allows one virtual device to monitor or replace the services of another virtual device, or of the VMM itself. Uses ESI, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, set otherwise. If successful, the ESI register contains the address of the specified service.

Service

Virtual device or VMM service to hook.

HookProc

Address of the hook procedure to install. The hook procedure is called with the same parameters as the service specified by the Service parameter.

When a dynamically-loaded VxD is unloaded, it must remove any service hook procedures it has installed by using the Unhook_Device_Service service.

Virtual devices that use this service must use extreme care to preserve the full functionality of the virtual device whose services are monitored or replaced.

More than one virtual device can hook a device service. The last hook installed is the first one called.

The hook procedure must save and restore registers that are not modified by the hooked service. Also, if flags are a passed as an entry or exit parameter, the hook procedure must also preserve the flags.

If the hooked service uses the C calling convention, the hook procedure must copy the entire parameter stack frame before attempting to call the hooked service. If the hooked service uses a register-based calling convention, the hook procedure must preserve all registers, even registers that are not currently used as input or output parameters.

The hook procedure must have been declared with the HOOK_PROC attribute to the BeginProc macro.

See also Unhook_Device_Service

Hook_Device_V86_API

include vmm.inc

mov eax, ID ; device ID

mov esi, OFFSET32 Callback ; points to new API callback

VMMcall Hook_Device_V86_API

Installs an API callback procedure allowing a virtual device to intercept calls to the V86 mode API of another virtual device. This service is intended to support virtual devices that need to monitor calls to the APIs of other virtual devices. Most virtual devices will never need this service. Uses ESI, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, set if the specified virtual device does not support a V86-mode API. If successful, the ESI register contains the address of the previous callback procedure.

ID

Identifier of the virtual device to monitor.

Callback

Address of the callback procedure to install. For more information about the callback procedure, see below.

The system calls the callback procedure whenever an application in a virtual machine calls the API for the specified virtual machine. The system calls the callback as follows:

mov ebx, VM ; current VM handle

mov ebp, OFFSET32 crs ; points to Client_Reg_Struc

call [Callback]

The VM parameter is a handle identifying the current virtual machine and the crs parameter points to a Client_Reg_Struc structure containing the register values of the current virtual machine. Other registers contain the parameter values intended for the API.

The callback procedure can carry out tasks but eventually must pass execution to the previous API callback procedure, preserving the EBX and EBP registers when it calls.

See also Hook_Device_PM_API

Install_Exception_Handler

include vmm.inc

mov esi, Exception ; points to an Exception_Handler_Struc

VMMcall Install_Exception_Handler

jc not_installed ; carry flag set if error

Installs a ring-0 exception handler. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, set otherwise.

Exception

Address of an Exception_Handler_Struc structure containing information about the exception handler to install.

The system saves a pointer to the specified Exception_Handler_Struc structure instead of copying it. Therefore, the structure must not be in pageable memory, and must not be freed or overwritten until the exception handler is removed.

The system calls the exception handler only if the exception occurs within the range of addresses specified by the EH_StartIP and EH_EndIP fields in the Exception_Handler_Struc structure. The system calls the exception handler with the stack and all registers in same state as when exception occurred.

You can use the Remove_Exception_Handler service to remove an exception handler that was installed using this service.

See also Exception_Handler_Struc, Remove_Exception_Handler

_LocalizeSprintf

$include vmm.inc

VMMCall _LocalizeSprintf, <pOutBuf, pmab, RelativeMessageNumber,

 Param1, Param2, ...>

Format a localizable string. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

pOutBuf

Address of a buffer to receive formatted message.No limit checking is done on the buffer.

pmab

Address of a message anchor block constructed by the message macros.

RelativeMessageNumber

Message number relative to the base message number for the message class.

Param1, Param2, ...

Parameters for the formatted message.

Virtual devices typically use the LOCALIZE_SPRINTF macro instead of calling this service directly.

_LocalizeStackSprintf

This service is for internal use only. Use one of the PUSH_SPRINTF macros instead of this service.

Log_Fault_Call_Out

include vmm.inc

mov edi, ThreadHandle

mov esi, FaultNumber

mov eax, OFFSET32 EventProc

mov edx, UpperStackLimit

mov ebp, FrameClient_Regs

VMMcall Log_Fault_Call_Out

jnc not_handled

This is a callout service that the VMM calls when it is about to report a fault to the user. It is provided so that a supplemental VxD can hook this service and log faults that are reported. The supplemental VxD can also handle the fault notification itself and indicate to the VMM that it shouldn't duplicate the notification. Virtual deices should not call this service directly.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Sets the carry flag if the notification has been handled, indicating that the VMM should not do its own notification.

VMHandle

Handle of the current virtual machine.

FaultNumber

Number of the fault to report.

FrameClient_Regs

Ring 0 client registers of the fault stack frame.

EventProc

Address of the event procedure for the event being processed, address of the timeout procedure associated with the timeout being processed, or zero if neither an event nor a timeout was processed.

UpperStackLimit

Upper limit of stack used by event being processed, or garbage if neither an event nor a timeout was processed.

Before calling this service (that is, on entry to the hook procedure), the stack looks like this:

esp <undefined area between the current ESP and EBP-16>

ebp-16 -> saved gs

ebp-12 -> saved fs

ebp-8 -> saved es

ebp-4 -> saved ds

ebp -> pushad frame

 -> error code

 -> faulting eip

 -> faulting cs

 -> flags

edx -> upper limit of stack used by event being processed

Notifications can not be suppressed if the fault was not caused by an event or timeout.

This service can modify any of the registers

Map_Flat

include vmm.inc

mov ah, SegOffset ; client register containing the segment

mov al, OffOffset ; client register containing the offset

VMMcall Map_Flat

cmp eax, -1 ; -1 if error

je error

mov [LinAddr], eax ; ring-0 linear address

Converts the address contained in the specified client registers to a linear address. The given address is either a selector:offset or segment:offset address, depending on the execution mode of the current virtual machine. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a ring-0 linear address in the EAX register if successful, – 1 if the specified selector is invalid.

SegOffset

Offset of the client register containing the segment address or selector.

OffOffset

Offset of the client register containing the offset address. Can be – 1, in which case the offset address is zero.

The SegOffset and OffOffset parameters specify offsets, in bytes, relative to the beginning of the Client_Reg_Struc structure for the current virtual machine.

Before converting an address, Map_Flat checks the current execution mode and, for protected-mode applications, the bitness of the DPMI client. If the virtual machine is running a 32-bit protected mode application, it uses 32-bit address offsets. For V86 and 16-bit protected-mode applications, it uses 16-bit address offsets and ignores the high word if the OffOffset parameter specifies a 32-bit register.

The following example converts the address Client_DS:Client_DX and returns the linear address in EAX:

mov ax, (Client_DS SHL 8) + Client_DX

VMMcall Map_Flat

It is typically more convenient to use the Client_Ptr_Flat macro instead.

See also Client_Ptr_Flat

Map_Lin_To_VM_Addr

include vmm.inc

mov eax, LineAddr ; linear address to convert

mov ecx, Limit ; segment limit in bytes

VMMcall Map_Lin_To_VM_Addr

jc error ; carry flag set if error

mov [SegSel], cx ; segment or selector

mov [Offset], edx ; address offset

Converts a 32-bit ring-0 linear address into an V86 or protected-mode address. This service converts the address for use with the current execution mode of the current virtual machine. Uses ECX, EDX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, set otherwise. If the carry flag is clear, the CX register contains the segment address or selector, and the EDX register contains the offset address. The offset is always zero if the virtual machine is running a protected-mode application.

LinAddr

Linear address to convert.

Limit

Zero-based segment limit (0 specifies a one-byte segment, 1 is a two-byte segment, and so on). This parameter is used only if the service creates an LDT selector.

If the virtual machine is running in V86 mode, the LineAddr parameter must specify a linear address that is within the 1 megabyte V86 address space of the current virtual machine. The service returns a segment:offset pair.

If the virtual machine is running a protected-mode application, the service returns a selector:offset pair. This service creates a new selector in the current virtual machine's LDT if the specified base and limit values do not match a selector the service previously allocated. The service returns an error if no LDT is available.

A virtual device must never free a selector that is returned by this service. For this reason, this service should be used sparingly.

See also Map_Flat

MMGR_SetNULPageAddr

include vmm.inc

mov eax, PhysAddr ; physical address for system nul page

VMMcall MMGR_SetNULPageAddr

Sets the physical address of the system nul page. Uses Flags.

This service is for the exclusive use of the virtual V86MMGR device. The virtual device calls this service, while processing the Init_Complete message, to set the address of a known nonexistent page in the system.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

PhysAddr

Physical address of the system nul page. This parameter is the page number for the nul page shifted left by 12 bits.

See also _GetNulPageHandle

Open_Boot_Log

include vmm.inc

VMMcall Open_Boot_Log

xor eax, eax

jnz log_not_enabled

Opens the system boot log. Any data written to the system boot log after calling this service is appended to the end of the log. Uses EAX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns zero in EAX if boot logging is enabled, or non-zero otherwise.

See also Close_Boot_Log, EnableDisable_Boot_Log

_Register_Win32_Services

include vmm.inc

push DDB_Offset

push OFFSET32 Service_Table

VMMCall _Register_Win32_Services

Copies the location of the calling VxD's Win32 service-table in the DDB. Uses ESP, flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

DDB_Offset

Specifies the offset to the DDB.

Service_Table

The calling VxD's Win32 service table.

If the VxD ID is below the CDEVIDSYS value, it is recorded in the apWin32SvcTbl table in order to allow fast dispatching.

A bit in the DDB_Flags member is set ot indicate that this service has been called.

Remove_Exception_Handler

include vmm.inc

mov esi, Exception ; points to an Exception_Handler_Struc

VMMcall Remove_Exception_Handler

jc not_removed ; carry flag set if error

Removes the specified exception handler. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, set otherwise.

Exception

Address of an exception handler structure containing information about the exception handler to remove. This exception handler must have been previously installed using the Install_Exception_Handler service.

See also Install_Exception_Handler

Set_Boot_Flags

include vmm.inc

mov eax, BootFlags

VMMCall Set_Boot_Flags

Sets the boot-time flags. Virtual devices should have no need to call this service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value

BootFlags

Boot time flags. Can be one of the following:

BOOT_CLEAN (00000001H) ���BOOT_DOSCLEAN(00000002H) ���BOOT_NETCLEAN (00000004H) ���BOOT_INTERACTIVE (00000008H) ���

_SetReclaimableItem

#include vmm.h

DWORD _SetReclaimableItem(DWORD enumKey, ReclaimStruc *pReclaim,

 DWORD Flags);

Marks as fully reclaimable or restorable, the regions of reclaimable VM memory declared by a previous call to the _AddReclaimableItem service. Uses C calling convention and the EAX, ECX, EDX, and Flags registers.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns non-zero in the EAX register if successful; otherwise returns zero in EAX.

enumKey

Enumeration key. Set this parameter to zero to begin enumeration. Subsequent calls to this service specify enumeration keys returned by previous calls.

pReclaim

Address of ReclaimStruc structure to copy. The callback in the RS_CallBack member of the ReclaimStruc structure is called using the CDECL calling and register conventions, and has no defined return value. The reference data for the callback, if any, is not passed separately, since it is already available in the ReclaimStruc.

Flags

Reserved; must be 0.

If the block's contents must be restored prior to System_Exit, RS_RESTORE must also be specified in the RS_Flags member. If the RS_Callback member specifies the address of an optional callback function, the function is called immediately after the contents have been restored, prior to System_Exit.

If the system does not use a fully-reclaimable block (for example, if the block's alignment or size makes it unsuitable), it still calls the caller's callback address, if any, so that any external references to the block can still be restored.

If a block marked reclaimable cannot later be reclaimed, call SetReclaimableItem with the RS_RECLAIM flag clear.

See also _AddReclaimableItem, _EnumReclaimableItem, ReclaimStruc

Set_Delete_On_Exit_File

include vmm.inc

mov esi, Filename ; points to filename to add

VMMcall Set_Delete_On_Exit_File

jc not_added ; carry flag set on error

Adds the specified filename to the list of files to delete when Windows terminates. Uses All registers except EBX, EBP, and the segment registers.

This service is for the exclusive use of the virtual swap file device; other virtual devices must not use this service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if the service adds a file to the list, set otherwise.

Filename

Address of a null-terminated string identifying the file to delete. The string must specify a drive letter and full path.

Set_System_Exit_Code

include vmm.inc

mov al, ExitCode ; exit code to set

VMMcall Set_System_Exit_Code

Sets the exit code value that Windows returns to MS-DOS when Windows terminates. The system copies this value to the AL register when it executes the MS-DOS End Program function (Interrupt 21h Function 4Ch). Uses EDX, Flags.

This service is intended for the exclusive use of the virtual shell device.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

ExitCode

Exit code value.

This exit code is associated only with the exit of the system not the system virtual machine.

In the case of an abnormal termination, the system may set its own exit code value and ignore the value set by this service.

System_Control

include vmm.inc

mov eax, Message ; system control message

mov ebx, VM ; VM handle (if needed by message)

mov esi, Param1 ; message-specific parameter

mov edi, Param2 ; message-specific parameter

mov edx, Param3 ; message-specific parameter

VMMcall System_Control

jc error ; carry flag set if error

Sends system control messages to all the virtual devices and, depending on the message, to the VMM. Uses Flags, and possibly other registers depending on the service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, set otherwise.

If the Create_VM message is specified and the service is successful, the EBX register contains the new virtual machine handle.

If the Create_Thread message is specified and the service is successful, the EDI register contains the new thread handle.

Message

System control message to send. Can be one of the values listed in VMM Messages, or a private message in the reserved private system control range described above.

VM

Handle of a virtual machine. This parameter is not required by every system control message.

Param1

Message-specific parameter.

Param2

Message-specific parameter.

Param3

Message-specific parameter.

Although virtual devices may receive many of the system control messages, they may send only the following messages:

Message �Description ��Create_VM �May only be sent by the virtual shell device. ��Destroy_VM �May only be sent by the virtual shell device. ��Set_Device_Focus �May be sent by any virtual device. If the device ID is zero, all devices with a focus that can be set, must set their focus to the specified virtual machine. ��End_PM_App �May only be sent by the virtual MS-DOS manager. ��

The system never uses message numbers in the range BEGIN_RESERVED_PRIVATE_SYSTEM_CONTROL through END_RESERVED_PRIVATE_SYSTEM_CONTROL, which remain free for use by virtual devices. Microsoft has not defined a protocol for virtual devices to reserve regions of the private system control message space and thus avoid accidentally colliding.

Virtual devices must send and reply to messages correctly to prevent erratic system behavior.

This service uses the ECX register, therefore the register cannot be used to pass data through to the virtual device receiving the control message.

Unhook_Device_Service

include vmm.inc

GetDeviceServiceOrdinal eax, Service

mov esi, HookProc

VMMCall Unhook_Device_Service

Unhooks a device service that was previously hooked with the Hook_Device_Service service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if successful; otherwise sets the carry flag because of one of the following errors:

The service number is invalid.

The hook procedure could not be found in the chain.

A non-HookProc hook existed in the chain.

ServiceOrdinal

The highword is the VxD ID and the low word is the service number. If the VxD ID is UNDEFINED_DEVICE_ID, then the EDI register should contain the address of the eight character space-padded VxDName.

Service

Name of the service being unhooked.

HookProc

Hook procedure to remove from the list.

In order for Hook_Device_Service to succeed, the hook to be unhooked and all hooks that were made after the specified hook must have been declared as Hook_Proc's using the BeginProc macro. This macro is provided to correctly generate the procedure header necessary for creating a hook chain that can be processed quickly and still allows hooks to be removed from the chain.

See also BeginProc, Hook_Device_Service

VMM_Add_DDB

include vmm.inc

mov edi, OFFSET32 ddb

VMMcall VMM_Add_DDB

jc DDB_Already_Exists;

Adds a Vxd_Desc_Block structure (DDB) to the appropriate location in the device list (the locations are based on the inititialization order).

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the DDB was added to the internal list; the carry flag is set if a duplicate entry already exists.

ddb

A Vxd_Desc_Block structure that contains the driver version numbers, the addresses of various required procedures, and so on.

Virtual devices should call this service with extreme caution. DDBs added in this manner are treated by the virtual machine manager as full-fledged VxDs. If you want to load a VxD, you would be much better off using the VxD loader services than trying to manipulate the DDB list directly.

VMM_GetDDBList

include vmm.inc

VMMCall VMM_GetDDBList

mov [DDBList], eax

Retrieves the address of the DDB list. Uses EAX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the DDB list address in EAX.

Virtual devices can walk the list of DDBs by following the DDB_Next field in the DDB. The end of the list is marked with a DDB_Next field equal to zero. Note that the DDB list can change as a result of dynamically-loaded VxDs, so virtual devices should not attempt to retain the value returned by this service for an extended period of time.

VMM_GetVxDLocationList

include vmm.inc

VMMCall VMM_GetVxDLocationList

jz ErrorHandler

mov [TableAddress], eax

mov [VxDCount], edx

mov [TableSize], ecx

Returns the address of the VxD location list in EAX, returns the count of VxDs in EDX, and returns the list size (in bytes) in ECX. Uses EAX, ECX, and EDX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the address of the VxD if the function succeeds; otherwise, sets the zero flag.

The VxD location list is a packed array of variable-length Device_Location_List structures.

VMM_Remove_DDB

include vmm.inc

mov edi, OFFSET32 ddb

VMMcall VMM_Remove_DDB

jc DDB_Not_Found

Removes a Vxd_Desc_Block structure (DDB) from the device list.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the DDB was removed; the carry flag is set if the DDB was not found.

ddb

A Vxd_Desc_Block structure that contains the driver version numbers, the addresses of required procedures, and so on.

Virtual devices should call this service with extreme caution. DDBs removed in this manner are removed from the system without being given any opportunity to clean up. If you want to unload a VxD, you would be much better off using the VxD loader services than trying to manipulate the DDB list directly. Removing a DDB at a bad time destabilizes the system.

VMMAddImportModuleName

include vmm.inc

mov esi, OFFSET32 Mod_Lngth_And_Name

VMMcall VMMAddImportModuleName

mov [Internal_Index], eax;

jc Name_Already_Present

Adds the specified import-module name to an internal table.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the internal index for the module name in EAX. Sets the carry flag if the module name is already present; otherwise, clears the carry flag.

Mod_Lngth_And_Name

The module-name string. The first byte of this string specifies the number of characters in the string; the remaining bytes contain the actual characters.

The first byte of the module-name string must specify the length of the string in bytes. The remaining bytes contain the ASCII characters that compose the string.

This service is reserved for the VxDLDR device. Other virtual devices should not use this service.

Sprintf

include vmm.inc

VMMcall _Sprintf, <pOutBuf, pFormat, Param1, Param2, ...>

Formats a string in a manner analogous to the C procedure. This service uses the C calling convention. Uses EAX, ECX, EDX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the number of bytes written to the output buffer, not including the terminating null.

pOutBuf

Address of a buffer that receives the formatted string. There is no limit checking performed on the buffer; it must be large enough to handle the formatted output.

pFormat

Address of an ASCIIZ format string.

Param1, Param2, ...

Optional parameters. It is an error to pass too few parameters to satisfy the format string. String insertions may not exceed 255 bytes in length.

Structures

ReclaimStruc

ReclaimStruc STRUC

 RS_Linear DD ?

 RS_Bytes DD ?

 RS_CallBack DD ?

 RS_RefData DD ?

 RS_HookTable DD ?

 RS_Flags DD ?

ReclaimStruc ENDS

Contains information about a region of VM memory.

RS_Linear

Low (ie, less than 1meg+64K) address of region.

RS_Bytes

Size of region in bytes.

RS_CallBack

Function to call prior to System_Exit, NULL if none.

RS_RefData

Reference data passed to callback, if any.

RS_HookTable

Address of Reclaim_Hook_Table as defined in int2fapi.h, NULL if none.

RS_Flags

May be any combination of the following:

RS_RECLAIM (00000001H) ���RS_RESTORE (00000002H) ���RS_DOSARENA (00000004H) ���

See also _AddReclaimableItem

See also

�Chapter 21

String Management

About String Management

There are the following string management services:

Service �Description ��_lmemcpy �Performs a forward memory move. ��_lstrcmpi �Compares two strings. ��_lstrcpyn �Copies a string into a buffer. ��_lstrlen �Determines the length of a string. ��_lstrupr �Converts lowercase characters in a string to uppercase. ��

Reference

_lmemcpy

include vmm.inc

cld

VMMcall _lmemcpy, <OFFSET32 pvDst, OFFSET32 pvSrc, dwNumBytes>

mov OFFSET32 pBuf, eax

mov OFFSET32 pEndBuf, edx

Performs a forward memory move. Unlike the KERNEL function of a similar name, this service does not support backward memory moves. If the source and destination buffers overlap, the results of this service are undefined. Uses the C calling convention. Uses EAX, ECX, EDX, and Flags. The direction flag must be clear.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the address of the beginning of the destination buffer in EAX, and the address of the end of the buffer in EDX.

pvDst

Address of the destination buffer.

pvSrc

Address of the source buffer.

dwNumBytes

Number of bytes to move to the destination buffer.

Note that the VxD that calls this service is responsible for enabling or disabling interrupts as appropriate. Interrupts must be disabled if atomicity is desired, enabled if pageable data is involved.

No validation is done on any of the parameters of this service.

This is an asynchronous service.

_lstrcmpi

include vmm.inc

VMMcall _lstrcmpi, <OFFSET32 pString1, OFFSET32 pString2>

cmp eax, 0

je strings_equal

jg string1_greater

jl string2_greater

Compares two strings by checking the first characters against each other, the second characters against each other, and so on, until it finds an inequality or reaches the ends of the strings. The service returns a value based on the result of the last comparison. For example, _lstrcmpi determines that "abcz" is greater than "abcdefg" and returns a positive number. Uses the C calling convention. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns zero in EAX if the two strings are equal, a positive value if pString1 is greater that pString2, and a negative value if pString1 is less than pString2.

pString1, pString2

Addresses of the strings to compare.

With a double-byte character set (DBCS) version of Windows, this service can compare two DBCS strings.

Unlike some other string functions, this service resides in pageable memory. It must only be called when pageable code can be executed.

Until the INIT_COMPLETE phase of VxD initialization, this service will not correctly convert case for non-US English languages. A VxD should delay all calls to this function until the INIT_COMPLETE phase of VxD initialization.

_lstrcpyn

include vmm.inc

cld

VMMcall _lstrcpyn, <OFFSET32 pszDst, OFFSET32 pszSrc, dwBufSize>

mov pszDst, eax

mov cbUnused, ecx

mov pszNull, edx

Copies a zero-terminated ASCII string to a sized buffer. Uses the C calling convention. Uses EAX, ECX, EDX, and Flags. The direction flag must be clear.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the following information:

EAX �Address of the destination buffer. ��ECX �Number of unused bytes in the buffer, not including the terminating null character. ��EDX �Address of the terminating null byte in the destination buffer. ��

pszDst

Address of destination buffer.

pszSrc

Address of source buffer.

dwBufSize

Size, in bytes, of the destination buffer. Set this parameter to – 1 if the size is unlimited.

If the destination buffer is larger than the source string, the unused portion of the buffer is not padded with null characters. If the destination buffer is smaller than the source string (dwBufSize - 1), characters from the source string are copied, followed by a (premature) terminating null character. If dwBufSize is set to zero, no bytes are copied to the destination buffer.

Setting pszSrc to zero is equivalent to specifying a null source string. This service accesses only bytes from pszSrc that are copied. If the destination buffer fills before the end of the source buffer is reached, the remaining bytes of the source buffer are not accessed.

The source and destination buffers must not overlap. This is an asynchronous service.

_lstrlen

include vmm.inc

VMMcall _lstrlen, <OFFSET32 psz>

Determines the length of a null-terminated ASCII string. The length does not include the terminating null character. Uses the C calling convention. Uses EAX, ECX, EDX, and Flags. The direction flag must be clear.

 Returns the following information:

EAX �Length, in bytes, of the string. ��EDX �Address of the terminating null character, or undefined if psz is NULL. ��

psz

Address of the string.

Setting pszSrc to zero is equivalent to specifying a null source string. This service will crash if pszSrc is set to anything other than the address of a null-terminated ASCII string

This is an asynchronous service.

_strupr

include vmm.inc

VMMcall _strupr, <OFFSET32 psz>

Converts any lowercase characters in the specified string to uppercase. Uses the C calling convention. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns, in EAX, the address of the converted string.

psz

Address of string to convert.

Unlike some other string functions, this service resides in pageable memory. It must only be called when pageable code can be executed.

Until the INIT_COMPLETE phase of VxD initization, this service will not correctly convert case for non-US English languages. A VxD should delay all calls to this function until the INIT_COMPLETE phase of VxD initialization.

�Chapter 25

Timing Services

About Time Services

Timing Query Services

Time query services allow a virtual device to obtain information about how long the system, a virtual machine, or a thread has been executing, in milliseconds.

When the system creates a thread or virtual machine, it sets the execution time for the thread or virtual machine to zero. The system increases the execution time only when the thread or virtual machine actually runs. Therefore the execution does not reflect the length of time the thread or virtual machine has existed, but indicates the amount of time the thread or virtual machine has run. Note however that any code executed in the indicated thread or virtual machine contributes to the tally; it is not the case that one second of thread execution time or virtual machine execution time translates into one second of actual CPU time given to the application.

For each query service there are two variants, the standard form and the last updated form (for example, _GetThreadExecTime and _GetLastUpdatedThreadExecTime). The standard form returns the time to millisecond accuracy, whereas the last updated form returns the time only to an accuracy of approximately 50 milliseconds. The difference is that the standard form will ask the timer device to give the time to millisecond accuracy, and use the result to compute the value to return, whereas the last updated form returns the value most recently obtained by a standard form call, or by the timer device explicitly updating the system clock (which happens on every timer tick).

If the interval being measured is on the order of seconds or minutes, the last updated form is sufficient because a 50 milliseconds variation will not make a noticeable difference. If the interval being measured is less than one half second, you may be better off with the standard form.

Note also that all of the query services return 32-bit unsigned values. This value overflows every 49 1/2 days. If a virtual device is sensitive to rollover, it should schedule a time-out every 30 days.

Make certain to handle the boundary cases correctly. For example, the following code is incorrect when the system time is close to rollover.

VMMcall Get_System_Time

add eax, 60000 ; Do it for one minute

mov StopTime, eax

...

VMMcall Get_System_Time

cmp eax, StopTime ; Q: Time to stop?

jae StopMe ; Y: Stop doing it

If the operation starts less than one minute before a timer rollover, the operation will halt prematurely, because StopTime will contain a very small number due to addition overflow. Conversely, if the operation starts slightly earlier than one minute before timer rollover, it may never stop because StopTime will be extremely close to 0xFFFFFFFF. The correct way to handle the boundary cases is as follows:

VMMcall Get_System_Time

mov StartTime, eax

...

VMMcall Get_System_Time

sub eax, StartTime

cmp eax, 60000 ; Q: Time to stop?

jae StopMe ; Y: Stop doing it

Time-Out Callback Procedures

When the specified amount of time has elapsed for a time-out, the callback procedure is called. For asynchronous time-outs, the callback procedure is called at hardware interrupt time; for other time-outs, the callback procedure is called at unrestricted event time. At hardware interrupt time, only asynchronous services may be called. See Events for restrictions on what can and cannot be done at event time.

All time-out callback procedures receive a tardiness value in the ECX register. This value is the number of milliseconds by which the time-out is late. For example, if you scheduled a time-out for 100 milliseconds, but it does not get dispatched until 115 milliseconds have elapsed, the ECX register will contain the value 15. Time-outs are often delayed by 10 milliseconds or more, because the normal system timer runs at 20 milliseconds or slower. If a virtual device needs more accurate time-outs, it must increase the timer interrupt frequency using virtual timer device (VTD) services.

Note that the value in ECX is accurate only to the last updated resolution. If you need the tardiness to millisecond resolution, you must first ensure that the virtual machine manager originally scheduled the time-out to millisecond resolution (see Timing Query Services), then use the following algorithm to convert the last-updated resolution to system-time resolution:

; On entry, ECX = tardiness in milliseconds relative to

; Last_Updated_System_Time

VMMcall Get_Last_Updated_System_Time

sub ecx, eax ;ECX = Remove Last_Updated_System_Time bias

VMMcall Get_System_Time

add ecx, eax ; ECX = Apply System_Time bias

 ; ECX = true tardiness to millisecond resolution

Alternatively, you could record the system time when the time-out was scheduled, and subtract it from the current system time at the time the callback is made, rather than doing the above.

If you need to convert the tardiness of a thread time-out or virtual machine time-out, you should use _GetLastUpdatedThreadExecTime and _GetThreadExecTime, or Get_Last_Updated_VM_Exec_Time and Get_VM_Exec_Time, respectively. Note that, since _GetLastUpdatedThreadExecTime and _GetThreadExecTime use the C calling convention, you need to preserve the EDX and ECX registers around the calls.

Reference

Cancel_Time_Out

include vmm.inc

mov esi, TimeOut ; time-out handle

VMMcall Cancel_Time_Out

Cancels a time-out that was scheduled using the Set_Async_Time_Out, Set_Thread_Time_Out, Set_VM_Time_Out or Set_Global_Time_Out service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

TimeOut

Handle of the time-out to cancel. If this parameter is zero, the service returns immediately (does nothing). If this parameter is non zero, it must be the handle of a time-out which has not yet been processed or canceled.

This service makes the time-out handle invalid; the virtual device must not attempt to use the handle in subsequent calls to services.

See also Set_Global_Time_Out, Set_VM_Time_Out

Get_Last_Updated_System_Time

include vmm.inc

VMMcall Get_Last_Updated_System_Time

mov [SysTime], eax ; system time in milliseconds

The Get_Last_Updated_System_Time service returns the time in milliseconds since Windows was started. This service is accurate to approximately 50 milliseconds. This is an asynchronous service. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns in the EAX register, the elapsed time, in milliseconds, since Windows was started.

See Timing Query Services for a discussion of timer rollover and a comparison of Get_System_Time with Get_Last_Updated_System_Time.

See also Get_System_Time

_GetLastUpdatedThreadExecTime

include vmm.inc

VMMcall _GetLastUpdatedThreadExecTime, <ThreadHandle>

mov [ThreadExecTime], eax;

Retrieves the amount of time in milliseconds that the specified thread has run. This service is accurate to approximately 50 milliseconds. This is an asynchronous service. This service uses the C calling convention. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns in the EAX register, the amount of time, in milliseconds, that the thread has executed.

ThreadHandle

Handle of the thread to obtain execution time information for.

See Timing Query Services for a definition of thread execution time, a discussion of timer rollover, and a comparison of _GetThreadExecTime with _GetLastUpdatedThreadExecTime.

Get_Last_Updated_VM_Exec_Time

include vmm.inc

mov ebx, [VMHandle]

VMMcall Get_Last_Updated_VM_Exec_Time

mov [ExecTime], eax ; time in milliseconds that VM has run

Returns the amount of time that the specified virtual machine has run. This service is accurate to approximately 50 milliseconds. This is an asynchronous service. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns in the EAX register the execution time, in milliseconds, for the specified virtual machine.

VMHandle

Handle of the virtual machine to obtain execution time information for.

When the system creates a virtual machine, it sets the execution time for the virtual machine to zero. The system increases the execution time only when the virtual machine actually runs. Therefore the execution does not reflect the length of time the virtual machine has existed, but indicates the amount of time the current virtual machine has run. Note however that any code executed in the indicated virtual machine contributes to the tally; it is not the case that one second of virtual machine execution time translates into one second of actual CPU time given to the application.

See Timing Query Services for a definition of virtual machine execution time, a discussion of timer rollover, and a comparison of Get_VM_Exec_Time with Get_Last_Updated_VM_Exec_Time.

See also Get_VM_Exec_Time

Get_System_Time

include vmm.inc

VMMcall Get_System_Time

mov [SysTime], eax ; system time in milliseconds

Returns the time in milliseconds since Windows started. This service is accurate to 1 millisecond. This is an asynchronous service. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns in the EAX register the elapsed time, in milliseconds, since Windows was started.

See Timing Query Services for a discussion of timer rollover and a comparison of Get_System_Time with Get_Last_Updated_System_Time.

See also Get_Last_Updated_System_Time

Get_System_Time_Address

include vmm.inc

VMMcall Get_System_Time_Address

mov [System_Time_Addr], eax

Retrieves the address of the system-time variable.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns in the EAX register the address of the system time variable.

The system time variable is the 32-bit value returned by the Get_Last_Updated_System_Time service. This service is provided as a convenience (primarily to C-language callers), so that the return value can be stored into a pointer variable and accessed directly, thus avoiding the overhead of a C wrapper and dynalink call.

_GetThreadExecTime

include vmm.inc

VMMcall _GetThreadExecTime, <hThread>

mov [ExecTime], eax

Retrieves the amount of time that a particular thread has executed. The value returned indicates the amount of time the specified task has been the currently running thread. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns in EAX the amount of time in milliseconds that thread has executed.

hThread

Handle of the thread to get the execution time for.

This service can be called at interrupt time.

See Timing Query Services for a definition of thread execution time, a discussion of timer rollover, and a comparison of _GetThreadExecTime with _GetLastUpdatedThreadExecTime.

Get_VM_Exec_Time

include vmm.inc

mov ebx, [VMHandle]

VMMcall Get_VM_Exec_Time

mov [ExecTime], eax ; time in milliseconds that VM has run

Returns the amount of time that the specified virtual machine has run. This service is accurate to 1 millisecond. This is an asynchronous service. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns in the EAX register the execution time for the specified virtual machine.

VMHandle

Handle of the virtual machine to obtain the execution time information for.

See Timing Query Services for a definition of virtual machine execution time, a discussion of timer rollover, and a comparison of Get_VM_Exec_Time with Get_Last_Updated_VM_Exec_Time.

See also Get_Last_Updated_VM_Exec_Time

Async_Time_Out_Proc

include vmm.inc

mov ecx, Tardiness

mov edx, Reference_Data

call [Async_Time_Out_Proc]

Callback procedure installed by Set_Async_Time_Out.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Tardiness

Number of extra milliseconds that have elapsed.

Reference_Data

Data that is returned by the callback procedure to the calling procedure.

Note that asynchronous time-outs do not receive a pointer to the client registers in the EBP register.

Asynchronous time-outs differ from other time-outs in that they are called at hardware interrupt time. Thus, stricter rules are in force during the time-out callback. The time-out callback procedure may only call asynchronous services, must reside in locked code, and must restrict itself to locked code and data.

Set_Async_Time_Out

include vmm.inc

mov eax, TimeOut_Delay

mov edx, Reference_Data

mov esi, Async_Time_Out_Proc

VMMcall Set_Async_Time_Out

mov [TimeOut_Handle], esi

Schedules a time-out callback procedure that will be called after the specified length of time. Uses ESI, flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	If the time-out was scheduled, returns in ESI a handle that identifies it; otherwise, ESI is zero.

TimeOut_Delay

The specified number of milliseconds that must transpire before the time-out occurs.

Reference_Data

Data that's returned to the procedure.

Async_Time_Out_Proc

A callback procedure that is called when the time-out occurs.

Set_Global_Time_Out

include vmm.inc

mov eax, Time ; number of milliseconds

mov edx, RefData ; reference data

mov esi, OFFSET32 TimeOutCallback ; callback procedure

VMMcall Set_Global_Time_Out

mov [TimeOut], esi ; time-out handle

Schedules a time-out to occur after the specified number of milliseconds have elapsed. Uses ESI, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the handle of the time-out in the ESI register if successful, zero if the time-out could not be scheduled.

Time

Number of milliseconds to wait before calling the time-out callback procedure.

RefData

Reference data to be passed to the callback procedure.

TimeOutCallback

Address of the callback procedure. For more information about the callback procedure, see below.

The system calls the time-out callback procedure when the specified number of milliseconds elapse. The system calls the procedure as follows:

mov ebx, VMHandle ; current VM handle

mov ecx, Tardiness ; number of milliseconds since time-out

mov edx, RefData ; reference data

mov ebp, OFFSET32 crs ; points to Client_Reg_Struc

call [TimeOutCallback]

The VMHandle parameter is a handle specifying the current virtual machine. The RefData parameter specifies the reference data for the callback procedure, and the crs parameter points to a Client_Reg_Struc structure that contains the register values for the current virtual machine.

The Tardiness parameter specifies the number of milliseconds that have elapsed since the actual time-out occurred. See Time-Out Callback Procedures for a description of this value.

See also Set_VM_Time_Out

Thread_Time_Out_Proc

include vmm.inc

mov ebx, VMHandle

mov ecx, Tardiness

mov edx, Reference_Data

mov edi, ThreadHandle

mov ebp, OFFSET32 Client_Reg_Struc

call [Thread_Time_Out_Proc]

The thread time-out callback procedure is called when the corresponding thread has executed for the amount of time specified when the time-out was set.

VMHandle

Handle of current virtual machine.

Tardiness

Number of extra milliseconds that have elapsed. See Time-Out Callback Procedures for a description of this value.

Reference_Data

Reference data originally provided when the time-out was scheduled.

ThreadHandle

Handle of current thread.

Client_Reg_Struc

Address of Client_Reg_Struc structure containing the contents of the virtual machine's registers.

The time-out will occur after the thread has run for the specified number of milliseconds. If there is more than one thread executing, it may take more than the specified time to occur. See Time-Out Callback Procedures for more information about time-out callbacks.

Set_Thread_Time_Out

include vmm.inc

mov eax, TimeOut_Delay

mov edx, Reference_Data

mov esi, OFFSET32 Thread_Time_Out_Proc

mov edi, ThreadHandle

VMMcall Set_Thread_Time_Out

mov [TimeOut_Handle], esi

Schedules a time-out that will occur after the specified thread has executed for the specified length of time. Uses ESI, flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	If the time-out was scheduled, ESI contains a handle that identifies it; otherwise, ESI is zero.

TimeOut_Delay

The specified number of milliseconds that must transpire in the thread before the time-out occurs.

Reference_Data

Data that is provided to the callback procedure.

Thread_Time_Out_Proc

A callback procedure that is called when the time-out occurs.

The time-out will occur after the thread has run for the specified number of milliseconds. If there is more than one thread executing, it may take more than the specified time to occur. See Timing Query Services for more information about time-outs.

Set_VM_Time_Out

include vmm.inc

mov eax, Time ; number of milliseconds

mov ebx, VMHandle ; VM handle

mov edx, RefData ; reference data

mov esi, OFFSET32 TimeOutCallback ; callback procedure

VMMcall Set_VM_Time_Out

mov [TimeOut], esi ; time-out handle

Schedules a time-out that occurs after the specified virtual machine has run for the specified length of time. The system calls the time-out callback procedure only after the virtual machine has run for Time milliseconds. Time that elapses while other virtual machines run is not counted. Uses ESI, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the handle of the time-out in the ESI register if successful, zero if the time-out could not be scheduled.

Time

Number of milliseconds to wait before calling the time-out callback procedure.

VMHandle

Handle of the virtual machine.

RefData

Reference data to be passed to the callback procedure.

TimeOutCallback

Address of the callback procedure. For more information about the callback procedure, see below.

The system calls the time-out callback procedure after the virtual machine has run for the specified number of milliseconds. The system calls the procedure as follows:

mov ebx, VMHandle ; current VM handle

mov ecx, Tardiness ; number of milliseconds since time-out

mov edx, RefData ; reference data

mov ebp, OFFSET32 crs ; points to Client_Reg_Struc

call [TimeOutCallback]

The VMHandle parameter is a handle specifying the virtual machine for which the time-out was scheduled. The RefData parameter specifies the reference data for the callback procedure, and the crs parameter points to a Client_Reg_Struc structure that contains the register values for the virtual machine.

The Tardiness parameter specifies the number of milliseconds that have elapsed since the actual time-out occurred. See Timing Query Services for more information about time-outs.

See also Set_Global_Time_Out

Update_System_Clock

include vmm.inc

mov ecx, Time ; elapsed time in milliseconds

VMMcall Update_System_Clock

Updates the current system time, and the current virtual machine's execution time. Uses Flags.

This service is reserved for exclusive use by the virtual timer device. If other virtual devices call this service, the VMM timing services will behave incorrectly.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Time

Number of milliseconds that have elapsed since the last call to this service. The service adds this amount to the system time maintained by the VMM.

The virtual timer device must disabled interrupts before calling this service.

�Chapter 13

Nested Execution

About Nested Execution

Terms

client state �The state of the registers in a virtual machine. ��nested execution �The execution of code in a virtual machine at the direction of a virtual device. ��nested execution block �A block of code in virtual device that is delimited by calls to Begin_Nest_Exec (or Begin_Nest_V86_Exec) and End_Nest_Exec. ��

Nested Execution

Often, a virtual device (VxD) handles an interrupt or fault by calling code in a virtual machine (VM). The code might be an MS-DOS routine or a BIOS interrupt handler, for example. When the virtual device calls into the virtual machine, it must do so within the context of a nested execution block, which is a block of code delimited by calls to Begin_Nest_Exec (or Begin_Nest_V86_Exec) and End_Nest_Exec.

Begin_Nest_Exec changes the execution mode of the virtual machine to the mode of the application running in the VM. For example, if the virtual machine is running a protected-mode program but happens to be in V86 mode at the moment, Begin_Nest_Exec changes the virtual machine to protected-mode. Begin_Nest_Exec is typically used to call callback procedures registered by an application.

Begin_Nest_V86_Exec is like Begin_Nest_Exec, except that it forces the mode of the virtual machine to V86-mode, even if the program running in the virtual machine is a protected-mode program. Begin_Nest_V86_Exec is typically used to call the BIOS, a TSR, or other V86-mode code.

End_Nest_Exec restores the virtual machine to its original mode, regardless of how nested execution was entered.

The code in the virtual machine can modify the virtual machines registers. It is rarely desirable that changes to the registers resulting from nested execution be propagated back to the virtual machine when nested execution is complete. To be able to restore the state of the virtual machine after the code executes, a virtual device must save the state of the virtual machine's registers before entering a nested execution block. To save the registers, a virtual device can use the Save_Client_State service, which stores the registers in a buffer, or the Push_Client_State macro, which pushes the registers onto the virtual device's stack. After completing the nested execution block, the virtual device can restore the registers by calling the Restore_Client_State service or using the Pop_Client_State macro.

Once inside a nested execution block, virtual device uses simulation services, followed by the Resume_Exec service to call into a virtual machine. Alternatively, a virtual machine can use the Exec_Int service, which combines the functionality of Simulate_Int and Resume_Exec. Multiple calls to Resume_Exec can occur while inside a single nested execution block; you don't need to exit and re-enter nested execution if you need to simulate multiple operations.

For the curious: So how does your virtual device manage to regain control after a Resume_Exec? When Begin_Nest_Exec or Begin_Nest_V86_Exec is called, the virtual machine manager changes the mode of the virtual machine, then points the client CS:EIP registers at a pre-allocated breakpoint address. When far calls or interrupts are simulated, this breakpoint gets pushed onto the client's stack as the return address. Then when the simulated call or interrupt returns, it returns to this breakpoint address, at which point the virtual machine manager regains control, does some bookkeeping, and returns control to your virtual device. When End_Nest_Exec is called, the mode of the virtual machine is restored, and the original CS:EIP is replaced. This information is provided to aid in understanding nested execution; Microsoft reserves the right to alter the details of the implementation in future versions of Windows, so you shouldn't rely on it.

Examples

Nested execution suffers from being relatively important yet poorly-understood. To help close the gap, various examples illustrating common scenarios are given here. All of the examples assume that EBX contains the handle of the current virtual machine and that EBP contains a pointer to the client registers.

The first example is the prototypical case, where a virtual device wishes to obtain information from MS-DOS. Note that in general, this is a dangerous thing to do without first ensuring that the call will not result in MS-DOS being re-entered.

Push_Client_State ; Save all registers

VMMcall Begin_Nest_V86_Exec	 ; Enter nested execution in V86-mode

mov [ebp.Client_AH], 30h ; 30h = get MS-DOS version #

mov eax, 21h 	; Execute an Int 21h in the

VMMcall Exec_Int 	; current VM to call MS-DOS

mov ax, [ebp.Client_AX] ; Load MS-DOS version into AX register

VMMcall End_Nest_Exec ; end of nested exec calls

Pop_Client_State ; Restore all registers when done

 ; At this point, AX = MS-DOS version

Notice that the Exec_Int service was used here to simulate and execute the interrupt. It is equivalent to calling Simulate_Int followed by Resume_Exec.

For software interrupts, an alternative method is to execute the interrupt "directly" from ring zero:

mov ah, 30h ; 30h = get MS-DOS version #

VxD_Int 21h ; Execute the Int 21h directly

 ; At this point, AX = MS-DOS version

This mechanism's main benefit is convenience. The drawback is that all changes to registers (other than segment registers) made by the software interrupt are propagated back into ring 0. This is dangerous because the software interrupt might modify a register you expected to be preserved. This is particularly true of software interrupts 21h and 13h, which are often hooked by TSRs or device drivers which do not preserve all the registers properly. Specifically, we've found TSRs and even BIOSes which destroy the high words of extended registers across these calls.

Furthermore, the VxD_Int method cannot be used to call services which return information in segment registers, because the ring zero segment registers SS, DS and ES must always remain equal to flat selector.

Another drawback to the VxD_Int method is that it is not always available. For example, translation services for Int 21h calls is not ready until DOSMGR and IFSMGR complete their initialization; similar remarks apply to Int 13h calls and provided by BIOSXLAT and INT13. Attempting to VxD_Int an MS-DOS call before the translation services are ready will result in very random behavior. Other services might not even be translated at all. (For example, you cannot use VxD_Int to call Int 33h because nobody provides translation services for that software interrupt.)

The moral of the story is that you should exercise caution when using VxD_Int.

Sometimes software interrupts aren't enough. You might find it necessary to call a far procedure in V86-mode, possibly with arguments passed on the stack or in registers. Suppose that you need to call a procedure in V86-mode (for example, a TSR or a device driver) with a word parameter on the stack and with a function code in the DX register. The procedure returns with a 'retf' instruction, relying on the caller to clean the stack on return.

Push_Client_State ; Save client state on stack

VMMCall Begin_Nest_V86_Exec ; Prepare to execute V86-mode code

mov ax, wStackParameter ; the parameter that goes on the stack

VMMCall Simulate_Push ; Push it onto the client stack

mov [ebp].Client_DX, 0 ; Function code in client DX

mov cx, segV86Proc ; CX = segment of the V86-mode procedure

movzx edx, word ptr ofsV86Proc ; EDX = offset of the V86-mode

 ; procedure (hiword must be 0)

VMMCall Simulate_Far_Call ; Make it look like client did a "call far"

 ; instruction

VMMCall Resume_Exec ; Run the procedure until it returns

VMMCall Simulate_Pop ; Pop the parameter off the stack

 ; <<Inspect the return value here>>

VMMCall End_Nest_Exec ; Finished with nested execution

Pop_Client_State ; Restore client state from stack

Note that there is no equivalent to VxD_Int for far procedures. You have to use nested execution explicitly.

A final example is a callback procedure registered by an application. Suppose that an application registered an address that it expects to be called back asynchronously based on some condition. You can call the procedure back with the following mechanism, assuming that the procedure uses the Pascal calling convention and takes two arguments:

Push_Client_State ; Save client state on stack

VMMCall Begin_Nest _Exec ; Prepare to execute application-mode code

mov ax, wParam1 ; Pascal calling convention says

VMMCall Simulate_Push ; you push arguments from left to right

mov ax, wParam2

VMMCall Simulate_Push

mov cx, segAppProc ; CX = segment of the procedure to call

mov edx, word ptr ofsAppProc ; EDX = offset of the procedure to

 ; call (hiword must be 0 if V86 or

 ; 16-bit PM)

VMMCall Simulate_Far_Call ; Make it look like client did a "call

 ; far" instruction

VMMCall Resume_Exec ; Run the procedure until it returns

VMMCall End_Nest_Exec ; Finished with nested execution

Pop_Client_State ; Restore client state from stack

Be aware that this mechanism does not work for Win32 applications. Note also that this callback is made completely asynchronously with respect to the application. At a minimum, you should wait until the client interrupt flag is clear.

Reference

There are the following nested execution services:

Begin_Nest_Exec �Exec_VxD_Int ��Begin_Nest_V86_Exec �Get_Nest_Exec_Status ��Begin_V86_Serialization �Restore_Client_State ��End_Nest_Exec �Resume_Exec ��End_V86_Serialization �Save_Client_State ��Exec_Int ���

Begin_Nest_Exec

include vmm.inc

VMMcall Begin_Nest_Exec

Starts a nested execution block. This service is used in conjunction with the End_Nest_Exec service to create a nested execution block in which a virtual device may call Exec_Int, Resume_Exec, and the various simulation services. Virtual devices use these services to call software in the virtual machine. Uses Client_CS, Client_IP, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a break point in Client_CS and Client_IP that is used by nested execution services.

While in a nested execution block, a virtual device may call the Exec_Int and Resume_Exec services any number of times.

If one of these calls changes the virtual machine registers, these changes are also made to the client state. Before creating the nested execution block, a virtual device should save the client state by using the Save_Client_State service. After ending the nested execution block, a virtual device should restore the client state by using the Restore_Client_State service.

This service forces the virtual machine into protected-mode execution if there is a protected-mode application running in the current virtual machine. Otherwise, the virtual machine remains in V86 mode. The End_Nest_Exec service restores the virtual machine to its mode prior to the call to Begin_Nest_Exec.

If the execution mode changes to protected mode, this service automatically switches the virtual machine to the locked protected-mode stack and End_Nest_Exec switches it back. This allows most devices to change execution modes without worrying about demand paging issues.

See also Begin_Nest_V86_Exec, End_Nest_Exec, Exec_Int, Restore_Client_State, Resume_Exec, Save_Client_State

Begin_Nest_V86_Exec

include vmm.inc

VMMcall Begin_Nest_V86_Exec

Sets the current virtual machine to V86 mode and prepares the virtual machine for nested execution. This service is used in conjunction with the End_Nest_Exec service to create a nested execution block in which a virtual device may call the Exec_Int, Resume_Exec, and various simulation services. Virtual devices use these services to call software in the virtual machine. Uses Client_CS, Client_IP, and Flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a break point in Client_CS and Client_IP that is used by nested execution services.

When in a nested execution block, a virtual device may call the Exec_Int and Resume_Exec services any number of times.

This service should only be used by virtual devices that convert protected-mode calls into V86 calls. For example, the virtual MS-DOS manager uses this service to map calls to MS-DOS functions (Interrupt 21h) issued by protected-mode programs into calls to MS-DOS functions in V86 mode.

This service should be used by virtual devices that need to be sure that they are calling V86-mode code. A typical usage is translating a protected-mode call into a V86-mode call. After the parameters are translated, Begin_Nest_V86_Exec is used to ensure that the subsequent simulation is into V86-mode.

This service saves the current execution mode of the virtual machine, and End_Nest_Exec restores the mode.

See also Begin_Nest_Exec, End_Nest_Exec, Exec_Int, Resume_Exec

Begin_V86_Serialization

include vmm.inc

mov ecx, flags

VMMcall Begin_V86_Serialization

Serializes access to V86 mode among the threads in the system VM by using a mutex called the "V86 mutex". Because the mutex is taken automatically when Begin_Nest_V86_Exec is called in the system VM, a VxD typically does not directly call this service. A VxD might call this service when it needs to perform a nested execution operation into protected mode, and the operation will be reflected into V86 mode at the end of the protected mode chain. Using this service would prevent the VxD's thread from potentially getting blocked at the end of the protected mode chain. Uses Flags.

 No return value.

flags

Operation flags. Can be a combination of these values:

Block_Svc_Ints �Service events (and simulated interrupts) in the VM if the thread blocks for the critical section. ��Block_Svc_If_Ints_Locked �Service events (and simulated interrupts) in the VM if the thread blocks for the critical section and the VMStat_V86IntsLocked flag is set. ��Block_Enable_Ints �Service interrupt events in the VM even if the VM does not currently have interrupts enabled (force interrupts to be enabled). This flag is relevant only if either Block_Svc_Ints or Block_Svc_If_Ints_Locked is set. ��Block_Thread_Idle �If the thread blocks for the critical section this thread should be considered idle. ��

There is a hierarchy between the V86 mutex and the critical section mutex. The V86 mutex can be taken in the system VM when the critical section is owned by another VM, but in the system VM the critical section can only be owned if the V86 mutex is already owned. Calling Begin_Critical_Section in a thread in the system VM takes both mutexes.

Each call to Begin_V86_Serialization should have a corresponding call to End_V86_Serialization.

See also Begin_Critical_Section, Begin_Nest_V86_Exec, End_V86_Serialization

End_Nest_Exec

include vmm.inc

VMMcall End_Nest_Exec

Ends a nested execution block. This service is used in conjunction with the Begin_Nest_Exec or Begin_Nest_V86_Exec service to create a nested execution block in which virtual devices may call the Exec_Int and Resume_Exec services. Uses Client_CS, Client_IP, Flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns, in Client_CS and Client_IP, the original values saved when the nested execution block was created.

A virtual device must end all nested execution blocks before returning to the virtual machine manager.

This service restores the execution mode to the mode prior to the start of the nested execution block. It also restores the Client_CS and Client_IP registers, but does not restore any other client registers. A virtual device should save and restore other registers using the Save_Client_State and Restore_Client_State macros.

See also Begin_Nest_Exec, Begin_Nest_V86_Exec, Exec_Int, Restore_Client_State, Resume_Exec, Save_Client_State

End_V86_Serialization

include vmm.inc

VMMcall End_V86_Serialization

Decrements the usage count of the V86 mutex. When the count reaches zero, the mutex is no longer owned by the current system VM thread. (For more information, see the description of the Begin_V86_Serialization service.) Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

See also Begin_V86_Serialization

Exec_Int

include vmm.inc

mov eax, Interrupt

VMMcall Exec_Int

Simulates the specified interrupt, and resumes execution of the virtual machine. This service may only be called in a nested execution block created using the Begin_Nest_Exec or Begin_Nest_V86_Exec service. Uses Flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Interrupt

Number of the interrupt to simulate.

When in a nested execution block, this service can be called any number of times.

This service is comparable to combining the Simulate_Int and Resume_Exec services.

See also Begin_Nest_Exec, Begin_Nest_V86_Exec, Resume_Exec

Exec_VxD_Int

include vmm.inc

push dword ptr Interrupt

VMMcall Exec_VxD_Int

Executes the specified software interrupt. Virtual devices use this service to call MS-DOS or BIOS functions outside the context of a nested execution block.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns values in one or more registers, depending on the function of the specified interrupt.

Interrupt

Number of the interrupt to execute.

Before calling this service, a virtual device must set registers to values that are appropriate for the specified software interrupt. This service supports all MS-DOS and BIOS functions that are supported in protected-mode programs.

This service does not change the client registers and flags, so there is no need for the virtual device to save and restore the client register structure. This service also pops the interrupt number from the stack.

The following examples calls the MS-DOS function Get Version (Interrupt 21h, Function 30h):

mov ax, 3000h

push dword ptr 21h

VMMcall Exec_VxD_Int

mov [Major], al ; major MS-DOS version

mov [Minor], ah ; minor MS-DOS version

Get_Nest_Exec_Status

include vmm.inc

VMMCall Get_Nest_Exec_Status

Retrieves information about whether the current thread is in nested ring 3 execution. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the Z-flag set if the thread is not in nested execution. Otherwise, returns the following:

Register �Meaning ��EAX �Original ring 3 EIP ��EDX �Original ring 3 CS ��ESI �Original ring 3 SS:SP ��ECX �Ring 0 stack pointer returned from Resume_Exec or Exec_Int, if ; waiting for completion of ring 3 code. ��

There should be no need for a virtual device to call this service.

Restore_Client_State

include vmm.inc

mov esi, Buffer

VMMcall Restore_Client_State

Restores a virtual machine execution state that was saved using the Save_Client_State service. Uses Flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Buffer

Address of the buffer containing the client state previously saved using the Save_Client_State service.

This service can have the following side effects:

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Changes the execution mode if the state being restored is in a different execution mode from the current one.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	May change the state of the current virtual machine's interrupt flag and cause the system to call event callback procedures that were previously scheduled using the Call_When_VM_Ints_Enabled and Call_Priority_VM_Event services.

This service is typically not called directly; a virtual device typically uses the Pop_Client_State macro which, in turn, calls this service.

See also Call_Priority_VM_Event, Save_Client_State

Resume_Exec

include vmm.inc

VMMcall Resume_Exec

Executes the current virtual machine immediately. This service may only be called in a nested execution block created using the Begin_Nest_Exec or Begin_Nest_V86_Exec service. Uses Flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

This service can be used any number of times in a nested execution block.

This service returns when the virtual machine returns to the same point it was at when Begin_Nest_Exec was called.

See also Begin_Nest_Exec, Begin_Nest_V86_Exec

Save_Client_State

include vmm.inc

mov edi, Buffer

VMMcall Save_Client_State

Copies the contents of the current virtual machine's Client_Reg_Struc structure to the specified buffer. The saved state can later be restored by calling the Restore_Client_State service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Buffer

Address of the buffer to receive the client state. The buffer must have the same size as a Client_Reg_Struc structure.

Virtual devices typically use this service to save client registers prior to creating a nested execution block with the Begin_Nest_Exec or Begin_Nest_V86_Exec service.

Never attempt to restore the client state by directly copying saved register values back to the Client_Reg_Struc structure; this will almost certainly cause the virtual machine manager to crash.

This service is typically not called directly; a virtual device typically uses the Push_Client_State macro which, in turn, calls this service.

See also Begin_Nest_Exec, Begin_Nest_V86_Exec, Client_Reg_Struc, Restore_Client_State

�Chapter 18

Protected-Mode Execution

About Protected-Mode Execution

Term �Definition ��locked protected mode stack �After switching a virtual machine to protected mode, a virtual device must lock into physical memory the protected mode stack used by the virtual machine so the stack won't be removed by demand paging. ��protected mode application control block �Storage that is allocated when a virtual machine enters protected mode. When a virtual machine switches to protected mode, all virtual machines are notified, and one of the pieces of information included in the notification is a pointer to the protected mode application control block. ��

There are the following protected-mode execution services:

Allocate_PM_App_CB_Area �Get_Cur_PM_App_CB ��Begin_Use_Locked_PM_Stack �Set_PM_Exec_Mode ��End_Use_Locked_PM_Stack �Set_V86_Exec_Mode ��Exec_PM_Int ���

Reference

Allocate_PM_App_CB_Area

include vmm.inc

mov ecx, Size

VMMcall Allocate_PM_App_CB_Area

mov [acb], eax

Requests that additional space be reserved in the application control block when a virtual machine enters protected mode. This service is only available during initialization. Uses EAX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns, in EAX, the offset from the beginning of the application control block to the memory block reserved by the virtual device.

Size

Number of bytes to reserve for the control block.

Begin_Use_Locked_PM_Stack

include vmm.inc

VMMcall Begin_Use_Locked_PM_Stack

Moves the current virtual machine to the protected-mode locked stack. Doing so serves two purposes: It helps ensure that the client stack does not overflow (in case the client was previously on a very small private stack), and it ensures that the memory used by the stack is always available. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the address of the locked stack in Client_SS and Client_SP if the stack was not already locked. Otherwise, these registers remain unchanged.

Before calling this service, the virtual device must ensure that the current virtual machine is running in protected mode. This means the VMStat_PM_Exec value must be specified in the CB_VM_Status field of the control block for the virtual machine.

The Begin_Nest_Exec service automatically switches to the locked stack if the system determines that the virtual machine should be placed into (or be left in) protected-mode execution. Since most virtual devices rely on the Begin_Nest_Exec service to switch stacks, this service is only useful for virtual devices, such as the virtual PIC device, which explicitly change the execution mode of a virtual machine.

A virtual device can call this service any number of times. Only the first call switches stacks; all subsequent calls increment a counter. If a virtual device locks the stack, it must eventually unlock it using the End_Use_Locked_PM_Stack service.

For Windows 95, the size of the protected-mode locked stack is 4K bytes.

See also Begin_Nest_Exec, End_Use_Locked_PM_Stack

End_Use_Locked_PM_Stack

include vmm.inc

VMMcall End_Use_Locked_PM_Stack

Unlocks the protected-mode stack. This service decrements the locked-stack counter, and restores the previous stack of the virtual machine if the counter is zero. To unlock the stack, a virtual device must call this service once for each call made to the Begin_Use_Locked_PM_Stack service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns Client_SS, Client_SP, and Client_EIP to the values they had before the Begin_Use_Locked_PM_Stack service was called, if locked-stack counter drops to zero. Otherwise, these registers remain unchanged.

See also Begin_Use_Locked_PM_Stack

Exec_PM_Int

include vmm.inc

mov eax, Interrupt

VMMCall Exec_PM_Int

jc ErrorHandler

Simulates the specified interrupt in a protected mode virtual machine while in nested execution. Uses flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Sets the carry flag if an error occurs.

Interrupt

Interrupt to be simulated.

This service is intended to be used only by the Windows kernel; external virtual devices should not use it. External virtual devices should use the Exec_Int service instead.

All DOS and BIOS calls that are supported in protected mode programs are supported by this service.

All client registers and flags modified by the interrupt will be changed in the client virtual machine.

The simulated interrupts will be routed through virtual-device interrupt hooks; however, they will bypass any hook that the application has installed in protected mode.

If the service is called within a must-complete section and a fatal error occurs, the carry flag is set and the client registers are left in an unknown state.

See also Exec_Int

Get_Cur_PM_App_CB

include vmm.inc

mov ebx, VMHandle

VMMcall Get_Cur_PM_App_CB

mov [ControlBlock], edi

Retrieves a pointer to the application control block for a protected-mode application. Uses EDI.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the address of the application control block in EDI.

VMHandle

Handle of the virtual machine in which the protected-mode application is running.

It is an error to call this service if the virtual machine is not running a protected-mode application.

Set_PM_Exec_Mode

include vmm.inc

VMMcall Set_PM_Exec_Mode

Forces the current virtual machine into protected mode. If the current virtual machine is already in protected mode, this service has no effect. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Whenever possible, a virtual device should use the Begin_Nest_Exec service instead of this service.

Changing the execution mode of a virtual machine does not change the virtual machine's EAX, EBX, ECX, EDX, ESI, EDI, and EBP registers or most flags. The VM flag and IOPL flags change. The DS, ES, FS, GS, SS, ESP, CS, and EIP registers are restored to the previous values for V86 mode.

See also Begin_Nest_Exec, Set_V86_Exec_Mode

Set_V86_Exec_Mode

include vmm.inc

VMMcall Set_V86_Exec_Mode

Forces the current virtual machine into V86 mode. If the current virtual machine is already in V86 mode, this service has no effect. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Whenever possible, a virtual device should use the Begin_Nest_V86_Exec service instead of this service.

Changing the execution mode of a virtual machine does not change the virtual machine's EAX, EBX, ECX, EDX, ESI, EDI, and EBP registers or most flags. The VM flag and IOPL flags change. The DS, ES, FS, GS, SS, ESP, CS, and EIP registers are restored to the previous values for V86 mode.

See also Begin_Nest_V86_Exec, Set_PM_Exec_Mode

�Chapter 17

Processor Faults

About Processor Faults

A processor fault (also called a processor exception) is an interruption of execution typically caused by the currently running program rather than by an external source. There are the following processor fault services:

Service �Description ��Get_Fault_Hook_Addrs �Returns addresses for fault handlers. ��Get_NMI_Handler_Addr �Returns NMI handler address. ��Hook_Invalid_Page_Fault �Installs a hook procedure for page faults. ��Hook_NMI_Event �Installs a non-maskable interrupt event procedure. ��Hook_PM_Fault �Installs a fault handler for protected mode. ��Hook_V86_Fault �Installs a fault handler for V86 mode. ��Hook_VMM_Fault �Installs a fault handler for VMM. ��NMIEventCallback �Developer-defined callback function for a NMI event. ��Set_NMI_Handler_Addr �Sets the NMI handler address. ��Unhook_Invalid_Page_Fault �Removes a hook procedure for page faults. ��Unhook_NMI_Event �Unhooks a non-maskable interrupt event procedure. ��Unhook_PM_Fault �Removes the hook procedure for the specified protected-mode fault. ��Unhook_V86_Fault �Removes the hook procedure for the specified virtual 8086 mode fault. ��Unhook_VMM_Fault �Removes the hook procedure for the specified fault. ��

Reference

Get_Fault_Hook_Addrs

include vmm.inc

mov eax, FaultNo ; fault number

VMMcall Get_Fault_Hook_Addrs

Returns addresses of the V86 mode, protected-mode, and VMM fault handlers for a specified fault. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, set otherwise. If the carry flag is clear, the following registers contain the following values:

Register �Description ��EDI �Contains the address of the handler for VMM faults. This register contains zero if no handler has been installed. ��EDX �Contains the address of the handler for V86 mode faults. This register contains zero if no handler has been installed. ��ESI �Contains the address of the handler for protected-mode faults. This register contains zero if no handler has been installed. ��

FaultNo

Fault number for which to retrieve information.

A virtual device cannot get the hook address for the Non-Maskable Interrupt (Interrupt 2). It must use the Get_NMI_Handler_Addr and Set_NMI_Handler_Addr services to hook Interrupt 2.

See also Get_NMI_Handler_Addr, Set_NMI_Handler_Addr

Get_NMI_Handler_Addr

include vmm.inc

VMMcall Get_NMI_Handler_Addr

mov [NMI], esi ; offset to current NMI handler

Returns the address of the current Non-Maskable Interrupt (NMI) handler. Uses ESI, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the offset of the current NMI handler in the ESI register.

If a virtual device needs to hook the Non-Maskable Interrupt it must first call this service to get and save the original NMI handler address. The virtual device can then install the new NMI handler by using the Set_NMI_Handler_Addr service. The new handler should create an NMI handler chain by passing execution to the original NMI handler whenever it does not process the NMI.

See also Set_NMI_Handler_Addr

Hook_Invalid_Page_Fault

include vmm.inc

mov esi, OFFSET32 Callback ; procedure to install

VMMcall Hook_Invalid_Page_Fault

jc not_installed ; carry flag set if procedure not installed

Installs a procedure to handle any invalid-page faults not handled by the system invalid-page-fault handler. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, set otherwise.

Callback

Address of the procedure to install. For more information about the procedure, see below.

The system enables interrupts, and calls the procedure as follows:

mov ebx, VM ; current VM handle

mov edi, OFFSET32 ipf ; points to an IPF_Data

call [Callback]

jc not_corrected ; carry flag set if procedure did

 ; not correct fault

The VM parameter is a handle identifying the current virtual machine, and the ipf parameter points to an IPF_Data structure containing information about the page fault.

If the callback procedure handles the page fault (for example, by mapping a page into the VM or by altering the page protections), it should return carry clear. Otherwise, the callback should return carry set to indicate that the system should pass the fault to the next procedure in the chain.

The procedure may use all registers except the segment registers.

See also Unhook_Invalid_Page_Fault

Hook_NMI_Event

include vmm.inc

mov esi, OFFSET32 NmiProc

VMMcall Hook_NMI_Event

Installs a Non-Maskable Interrupt (NMI) event procedure. Virtual devices use this service to install event procedures to carry out tasks that are not permitted in NMI handlers. This service is available only during initialization. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

NmiProc

Address of NMI event procedure. For more information about the procedure, see NMIEventCallback.

The system calls each installed NMI event procedure after the last handler in the NMI handler chain has executed. If more than one NMI event procedure is installed, the system calls the procedures in the order in which they were installed.

See also NMIEventCallback, Unhook_NMI_Event

Hook_PM_Fault

include vmm.inc

mov eax, FaultNo ; fault number to hook

mov esi, OFFSET32 FaultProc ; points to a fault handler

VMMcall Hook_PM_Fault

jc not_installed ; carry flag set if not installed

; The following line is optional. See the following comments section.

mov [Previous], esi ; points to previous fault handler (if any)

Installs a fault handler procedure for faults encountered by protected mode applications. Virtual devices typically install fault handlers while processing the Sys_Critical_Init control message to handle faults, such as general protection faults, that the VMM fault handlers cannot handle. The VMM installs its fault handlers only after the Sys_Critical_Init control message. Virtual devices install fault handlers after Sys_Critical_Init to handle faults before the fault is passed to the VMM fault handlers. Uses ESI, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, set otherwise. If the carry flag is clear, and if FaultProc is a hook procedure, the address of the previous handler is stored into the hook variable. If there was no previous handler, the address of the default handler is stored in the hook variable. Whether or not FaultProc is a hook procedure, the ESI register contains the address of the previous fault handler (zero if there was no previous handler). The return value in ESI exists solely for backwards compatibility with Windows 3.1.

FaultNo

Fault number for which to install the fault handler. The fault number cannot be 02h, and must not be greater than 4Fh.

FaultProc

Points to the fault handler to install, which should be a hook procedure in order to be compatible with future versions of Windows. For more information about the handler, see below.

A virtual device can install a fault handler while processing the Sys_Critical_Init message or at a later time. When a fault occurs, fault handlers installed after the Sys_Critical_Init message receive control first, the VMM fault handlers receive control next, and fault handlers installed during the Sys_Critical_Init message receive control last. (Of course, dynamically-loaded VxDs have no choice but to install the fault handler after Sys_Critical_Init, since they haven't yet been loaded at the time the Sys_Critical_Init message is broadcast.

The system disables interrupts, and calls the fault handler as follows:

mov ebx, VM ; current VM handle

mov ebp, OFFSET32 crs ; points to a Client_Reg_Struc

call [FaultProc]

The VM parameter is a handle identifying the current virtual machine, and the crs parameter points to a Client_Reg_Struc structure containing the register values for the current virtual machine.

If the fault procedure does not process the fault, it should pass the fault to the previous fault handler as stored into the hook variable, making sure that all registers are preserved (not just the registers containing input parameters).

The default fault handler calls the fault vector installed by the protected-mode application. (Protected-mode fault hooks gain control before the application sees the fault.)

If the fault handler processes the fault, the handler should return without chaining by executing a near ret instruction (not an iret instruction).

The fault handler can modify the EAX, EBX, ECX, EDX, ESI, and EDI registers.

Do not use this service to install a fault handler for the Non-Maskable Interrupt (NMI). Instead, a virtual device must use the Get_NMI_Handler_Addr and Set_NMI_Handler_Addr services.

Do not use this service to install handlers for hardware interrupts. Instead, a virtual device must use virtual PIC device services.

See also Hook_V86_Fault, Hook_VMM_Fault

Hook_V86_Fault

include vmm.inc

mov eax, FaultNo ; fault number

mov esi, OFFSET32 FaultProc ; points to a fault handler

VMMcall Hook_V86_Fault

jc not_installed ; carry flag set if not installed

; The following line is optional. See the following comments section.

mov [Previous], esi ; points to previous fault handler (if any)

Installs a fault handler procedure for V86 mode faults. Virtual devices typically install fault handlers while processing the Sys_Critical_Init message to handle faults, such as general protection faults, that the VMM fault handlers cannot handle. The VMM installs its fault handlers after the Sys_Critical_Init control message. Virtual devices install fault handlers after Sys_Critical_Init to handle faults before the fault is passed to the VMM fault handlers. Uses ESI, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, set otherwise. If the carry flag is clear, and if FaultProc is a hook procedure, the address of the previous handler is stored in the hook variable. If there was no previous handler, the address of the default handler is stored in the hook variable. Regardless of whether FaultProc is a hook procedure, the ESI register contains the address of the previous fault handler (zero if there was no previous handler). The return value in ESI exists solely for backward compatibility with Windows 3.1.

FaultNo

Fault number for which to install the fault handler. The fault number cannot be 02h, and must not be greater than 4Fh.

FaultProc

Address of the fault handler to install. For more information about the handler, see below.

A virtual device can install a fault handler while processing the Sys_Critical_Init message or at a later time. When a fault occurs, fault handlers installed after the Sys_Critical_Init message receive control first, the VMM fault handlers receive control next, and fault handlers installed during the Sys_Critical_Init message receive control last. (Of course, dynamically-loaded VxDs have no choice but to install the fault handler after Sys_Critical_Init, because they haven't yet been loaded at the time the Sys_Critical_Init message is broadcast.)

The system disables interrupts and calls the fault handler as follows:

mov ebx, VM ; current VM handle

mov ebp, OFFSET32 crs ; points to a Client_Reg_Struc

call [FaultProc]

The VM parameter is a handle identifying the current virtual machine, and the crs parameter points to a Client_Reg_Struc structure containing the register values for the current virtual machine.

If the fault procedure does not process the fault, it should pass the fault to the previous fault handler, as stored into the hook variable, making sure that all registers are preserved (not just the registers containing input parameters).

The default fault handler crashes the virtual machine, except for faults 0 (divide), 1 (trace), 3 (breakpoint), 4 (overflow), 5 (bound), and 7 (coprocessor), which are reflected as interrupts.

If the fault handler processes the fault, or if there is no previous fault handler, the handler should return without chaining by executing a near ret instruction (not an iret instruction).

The fault handler can modify the EAX, EBX, ECX, EDX, ESI, and EDI registers.

Do not use this service to install a fault handler for the Non-Maskable Interrupt (NMI). Instead, a virtual device must use the Get_NMI_Handler_Addr and Set_NMI_Handler_Addr services.

Do not use this service to install handlers for hardware interrupts. Instead, a virtual device must use virtual PIC device services.

See also Hook_PM_Fault, Hook_VMM_Fault

Hook_VMM_Fault

include vmm.inc

mov eax, FaultNo ; fault number

mov esi, OFFSET32 FaultProc ; points to a fault handler

VMMcall Hook_VMM_Fault

jc not_installed ; carry flag set if not installed

; The following line is optional. See the following comments section.

mov [Previous], esi ; points to previous fault handler (if any)

Installs a fault handler procedure for faults encountered by VMM or other virtual devices. Virtual devices typically install fault handlers while processing the Sys_Critical_Init control message to handle faults, such as general protection faults, that the VMM fault handlers cannot handle. The VMM installs its fault handlers after the Sys_Critical_Init control message. Virtual devices install fault handlers after Sys_Critical_Init to handle faults before the fault is passed to the VMM fault handlers. Uses ESI, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, set otherwise. If the carry flag is clear, and if FaultProc is a hook procedure, the address of the previous handler is stored into the hook variable. If there was no previous handler, the address of the default handler is stored into the hook variable. Regardless of whether FaultProc is a hook procedure, the ESI register contains the address of the previous fault handler (zero if there was no previous handler). The return value in ESI exists solely for backwards compatibility with Windows 3.1.

FaultNo

Fault number for which to install the fault handler. The fault number cannot be 02h, and must not be greater than 4Fh.

FaultProc

Address of the fault handler to install. For more information about the handler, see below.

A virtual device can install a fault handler while processing the Sys_Critical_Init message, or at a later time. When a fault occurs, fault handlers installed after the Sys_Critical_Init message receive control first, the VMM fault handlers receive control next, and fault handlers installed during the Sys_Critical_Init message receive control last. (Of course, dynamically-loaded VxDs have no choice but to install the fault handler after Sys_Critical_Init, since they haven't yet been loaded at the time the Sys_Critical_Init message is broadcast.)

The system disables interrupts and calls the fault handler as follows:

mov ebx, VM ; current VM handle

mov ebp, OFFSET32 stkfrm ; points to VMM re-entrant stack frame

call [FaultProc]

The VM parameter is a handle identifying the current virtual machine, and the stkfrm parameter points to the VMM re-entrant fault stack frame.

The EBP register does not point to a client register structure.

The fault handler may call asynchronous services only.

If the fault handler does not process the fault, it should pass the fault to the previous fault handler (if any), making sure that all registers are preserved (not just the registers containing input parameters).

If the fault handler processes the fault or if there is no previous fault handler, the handler should return without chaining by executing a near ret instruction (not an iret instruction).

The fault handler can modify the EAX, EBX, ECX, EDX, ESI, and EDI registers.

Do not use this service to install a fault handler for the Non-Maskable Interrupt (NMI). Instead, a virtual device must use the Get_NMI_Handler_Addr and Set_NMI_Handler_Addr services.

Do not use this service to install handlers for hardware interrupts. Instead, a virtual device must use virtual PIC device services.

See also Hook_PM_Fault, Hook_V86_Fault

NMIEventCallback

include vmm.inc

mov ebx, VMHandle

mov ebp, OFFSET32 crs

call [NmiProc]

Performs programmer-defined processing that is not permitted in a Non-Maskable Interrupt (NMI) handler. NMIEventCallback is a programmer-defined callback function installed by the Hook_NMI_Event service. An NMIEventCallback function can be re-entered; that is, it can be interrupted by another NMI.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

VMHandle

Handle of the current virtual machine.

crs

Address of a Client_Reg_Struc structure containing the contents of the virtual machine's registers.

See also Client_Reg_Struc, Hook_NMI_Event, Unhook_NMI_Event

Set_NMI_Handler_Addr

include vmm.inc

mov esi, OFFSET32 nmi ; points to new NMI handler

VMMcall Set_NMI_Handler_Addr

Sets the Non-Maskable Interrupt (NMI) vector to the address of the specified NMI handler. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

nmi

Address of the new NMI handler.

To install an NMI handler, a virtual device must retrieve and save the current NMI handler address using the Get_NMI_Handler_Addr service, and set the new address using Set_NMI_Handler_Addr.

The NMI handler must not call VMM or virtual device services. This restriction includes calls to asynchronous VMM services. The NMI handler can examine and modify local data in the VxD_LOCKED_DATA_SEG segment, but it must not attempt to access any other memory, including virtual machine and V86 memory. If a virtual device needs to use VMM services in response to an NMI, it should install an NMI event handler using the Hook_NMI_Event service.

The NMI handler must not execute the iret instruction. Instead, it must jump to the address of the previous NMI handler (retrieved using the Get_NMI_Handler_Addr service). The CPU ignores additional NMIs until it executes the iret instruction. Because no NMI handlers in the chain execute this instruction, the handlers are guaranteed not to be re-entered.

Some computers require the latch at port 70h be reset to enable further NMIs. To simplify NMI processing for other NMI handlers, the virtual-parity device (PARITY) automatically resets this latch.

See also Get_NMI_Handler_Addr, Hook_NMI_Event

Unhook_Invalid_Page_Fault

include vmm.inc

mov esi, OFFSET32 HookProc ; points to hook procedure to remove

VMMcall Unhook_Invalid_Page_Fault

Removes the specified hook procedure from the invalid-page-fault chain. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, set otherwise.

HookProc

Address of the hook procedure to remove. This procedure must have been previously installed using the Hook_Invalid_Page_Fault service.

See also Hook_Invalid_Page_Fault

Unhook_NMI_Event

include vmm.inc

mov esi, OFFSET32 NmiProc

VMMcall Unhook_NMI_Event

Cancels a Non-Maskable Interrupt (NMI) event procedure that was installed earlier by the Hook_NMI_Event function. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

NmiProc

Address of the NMI event procedure to cancel. For more information about the procedure, see NMIEventCallback.

See also Hook_NMI_Event, NMIEventCallback

Unhook_PM_Fault

include vmm.inc

mov eax, FaultNo

mov esi, OFFSET32 Hook_Proc

VMMCall Unhook_PM_Fault

jc Error_Handler

Removes the hook procedure for the specified protected mode fault. Uses flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if successful; sets the carry flag on the following conditions:

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Invalid fault number passed in EAX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	ESI does not point to a hook procedure.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Hook procedure could not be found.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	A non-hook procedure was found in the chain of procedures.

FaultNo

Specifies the fault number.

Hook_Proc

Address of the hook procedure to be removed.

The specified hook procedure must have been declared using the BeginProc macro with the HOOK_PROC attribute in order to generate the necessary header.

See also BeginProc

Unhook_V86_Fault

include vmm.inc

mov eax, FaultNo

mov esi, OFFSET32 Hook_Proc

VMMCall Unhook_V86_Fault

jc Error_Handler

Removes the hook procedure for the specified virtual 8086-mode fault. Uses flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if successful; sets the carry flag on the following conditions:

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Invalid fault number passed in EAX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	ESI does not point to a hook procedure.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Hook procedure could not be found.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	A non-hook procedure was found in the chain of procedures.

FaultNo

Specifies the fault number.

Hook_Proc

Address of the hook procedure to be removed.

The specified hook procedure must have been declared using the BeginProc macro with the HOOK_PROC attribute in order to generate the necessary header.

See also BeginProc

Unhook_VMM_Fault

include vmm.inc

mov eax, FaultNo

mov esi, OFFSET32 Hook_Proc

VMMCall Unhook_VMM_Fault

jc Error_Handler

Removes the hook procedure for the specified ring 0 fault. Uses flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if successful; sets the carry flag on the following conditions:

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Invalid fault number passed in EAX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	ESI does not point to a hook procedure.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Hook procedure could not be found.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	A non-hook procedure was found in the chain of procedures.

FaultNo

Specifies the fault number.

Hook_Proc

Address of the hook procedure to be removed.

The specified hook procedure must have been declared using the BeginProc macro with the HOOK_PROC attribute in order to generate the necessary header.

See also BeginProc

�Chapter 19

Registry

About the Registry

There are the following registry services:

_GetRegistryKey _GetRegistryPath _RegCreateDynKey _RegCloseKey _RegCreateKey _RegDeleteKey _RegDeleteValue _RegEnumKey _RegEnumValue _RegFlushKey _RegOpenKey _RegQueryInfoKey _RegQueryMultipleValues _RegQueryValue _RegQueryValueEx _RegRemapPreDefKey _RegSetValue _RegSetValueEx

Note that the registry is read-only when the processor is in real mode.

Reference

This section describes the registry services.

_GetRegistryKey

#include <vmmreg.h>

_GetRegistryKey(DWORD dwType, LPSTR lpszDeviceName,

 DWORD dwFlags, LPHKEY lphDevKey);	

Gets a registry key handle for the given device name under the branch of the registry tree specified by the dwType parameter. Uses C calling convention. Caller should use _RegCloseKey to close the returned HKEY.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns ERROR_SUCCESS if the function was successful. Otherwise, an error code is returned, possibly one of the following:

ERROR_INVALID_PARAMETER ���ERROR_REGISTRY_IO_FAILED ���ERROR_REGISTRY_CORRUPT ���ERROR_BADDB ���ERROR_FILE_NOT_FOUND ���

dwType

Defines the registry branch for the key. Must be REGTYPE_CLASS, REGTYPE_VXD or REGTYPE_ENUM.

lpszDevName

Address of null terminated string specifying device name.

dwFlags

Flags for the registry. Must be either REGKEY_OPEN or REGKEY_CREATE_IFNOTEXIST.

lphKey

Address of the buffer that receives the HKEY.

_GetRegistryPath

include vmm.inc

VMMcall _GetRegistryPath, <OFFSET32 ThisDDB, OFFSET32 UserBuff,

 UserBuffSize>

Retrieves the path to the registry location where information about a VxD is stored. This service is available only during initialization. Uses C calling convention.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns, in EAX, the length of the string copied to UserBuff if the function succeeds. If UserBuff is too small, EAX contains the required size of the buffer. If the service fails, the return value is zero.

ThisDDB

Address of the descriptor block (VxD_Desc_Block) for the virtual device.

UserBuff

Address of the buffer that receives the registry path.

UserBuffSize

Size, in bytes, of the buffer pointed to by UserBuff.

_RegCloseKey

include vmm.h

LONG _RegCloseKey(HKEY hkey)

Closes a previously opened key. See the documentation for the Win32 function of the same name for additional information.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns ERROR_SUCCESS if the function succeeds. Otherwise, an error code is returned, possibly one of the following:

ERROR_BADKEY ���ERROR_REGISTRY_CORRUPT ���

hkey

Handle of the key to close.

The handle for the given key should not be used after it has been closed, because it will no longer be valid. Key handles should not be left open any longer than necessary.

See also _RegOpenKey

_RegCreateDynKey

include vmm.h

RegCreateDynKey(LPSTR lpszName, LPVOID KeyContext, PPROVIDER pInfo,

 PPVALUE pValList, DWORD dwNumVals, HKEY FAR * pKeyHandle);

Creates the specified registry key under HKEY_DYN_DATA. Values under HKEY_DYN_DATA are maintained by the VxDs that create them. The VMM will call the appropriate VxD's enumeration entrypoint when a value is enumerated or queried.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	$Returns ERROR_SUCCESS if the function succeeds. Otherwise, an error code is returned, possibly one of the following:

ERROR_ACCESS_DENIED ���ERROR_INSUFFICIENT_MEMORY ���ERROR_CANNOT_OPEN_REGFILE ���ERROR_REGFILE_READERROR ���ERROR_REGFILE_WRITEERROR ���ERROR_REGKEY_INVALIDKEY ���

lpszName

Name of the key to create:

KeyContext

Four bytes of context that will be passed to the owning VxD when its enumeration entrypoint is called.

pInfo

Address of a PROVIDER structure (see vmmreg.h) that specifies the enumeration entrypoints for a key.

pValList

Address of an array of PVALUE structures (see vmmreg.h) that specify the value names and other attributes for the values under lpszName.

dwNumVals

Number of PVALUE structures in the pValList array.

pKeyHandle

Address of the variable to receive the handle of the newly created key, lpszName.

_RegCreateKey

include vmm.h

LONG _RegCreateKey(HKEY hkey, LPTSTR lpszSubKey, PHKEY phkResult)

Creates the specified key or opens the key if it already exists in the registry.Caller should use RegCloseKey to close the returned key. See the documentation for the Win32 function of the same name for additional information.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns ERROR_SUCCESS if the function succeeds. Otherwise, an error code is returned, possibly one of the following:

ERROR_KEY_DELETED ���ERROR_BADKEY ���ERROR_REGISTRY_IO_FAILED ���ERROR_REGISTRY_CORRUPT ���ERROR_BADDB ���ERROR_OUTOFMEMORY ���

hkey

Handle of the open key or one of the predefined keys::

HKEY_CLASSES_ROOT ���HKEY_CURRENT_USER ���HKEY_LOCAL_MACHINE ���HKEY_USERS ���HKEY_CURRENT_CONFIG ���

lpszSubKey

Address of null-terminated string specifying the name of a key that this service creates or opens.

phkResult

Points to a variable that receives the handle of the opened or created key.

The key addressed by lpszSubKey must be a subkey of the key identified by hkey.

The key referenced by hkey cannot have HKEY_DYN_DATA as an ancestor (see RegCreateDynKey).

The lpszSubKey parameter cannot be NULL unless hkey is one of the predefined keys.

This service can be used to create keys several levels deep by specifying a subkey string with several keys separated by backslashes.

Of the predefined key values, only HKEY_LOCAL_MACHINE is available to VxDs during initialization time. The entire registry space can only be accessed after VxD initialization is complete.

See also _RegDeleteKey

_RegDeleteKey

include vmm.h

LONG _RegDeleteKey(HKEY hkey, LPTSTR lpszSubKey)

Deletes the specified key. Do not use this service to delete a key that has subkeys. See the documentation for the Win32 function of the same name for additional information.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns ERROR_SUCCESS if the function succeeds. Otherwise, an error code is returned, possibly one of the following:

ERROR_FILE_NOT_FOUND ���ERROR_KEY_DELETED ���ERROR_REGISTRY_IO_FAILED ���ERROR_REGISTRY_CORRUPT ���ERROR_BADDB ���

hkey

Handle of an open key or one of the predefined keys:

HKEY_CLASSES_ROOT ���HKEY_CURRENT_USER ���HKEY_LOCAL_MACHINE ���HKEY_USERS ���HKEY_CURRENT_CONFIG ���HKEY_DYN_DATA ���

lpszSubKey

Address of null-terminated string specifying the name of the key to delete.

Of the predefined key values, only HKEY_LOCAL_MACHINE is available to VxDs during VxD initialization time. The entire registry space can only be accessed after VxD initialization is complete.

See also _RegCreateKey

_RegDeleteValue

include vmm.h

LONG _RegDeleteValue(HKEY hkey, LPTSTR lpszValue)

Removes a named value from the given registry key. See the documentation for the Win32 function of the same name for additional information.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns ERROR_SUCCESS if the function succeeds. Otherwise, an error code is returned, possibly one of the following:

ERROR_FILE_NOT_FOUND ���ERROR_KEY_DELETED ���ERROR_BADKEY ���ERROR_REGISTRY_IO_FAILED ���ERROR_REGISTRY_CORRUPT ���ERROR_BADDB ���

hkey

Handle of an open key or one of the predefined keys:

HKEY_CLASSES_ROOT ���HKEY_CURRENT_USER ���HKEY_LOCAL_MACHINE ���HKEY_USERS ���HKEY_CURRENT_CONFIG ���

lpszValue

Address of null-terminated string that contains the name of the value to remove.

Of the predefined key values, only HKEY_LOCAL_MACHINE and HKEY_DYN_DATA are available to VxDs during initialization time. The entire registry space can only be accessed after VxD initialization is complete.

_RegEnumKey

include vmm.h

LONG _RegEnumKey(HKEY hkey, DWORD iSubKey, LPTSTR lpszName, DWORD cchName)

Enumerates subkeys of the given open registry key; retrieves the name of one subkey each time the service is called. See the documentation for the Win32 function of the same name for additional information.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns ERROR_SUCCESS if the function succeeds. Otherwise, an error code is returned, possibly one of the following:

ERROR_NO_MORE_ITEMS ���ERROR_KEY_DELETED ���ERROR_MORE_DATA ���ERROR_BADKEY ���ERROR_REGISTRY_IO_FAILED ���ERROR_REGISTRY_CORRUPT ���ERROR_BADDB ���

hkey

Handle of an open key or one of the predefined keys:

HKEY_CLASSES_ROOT ���HKEY_CURRENT_USER ���HKEY_LOCAL_MACHINE ���HKEY_USERS ���HKEY_CURRENT_CONFIG ���HKEY_DYN_DATA ���

iSubKey

Index of subkey to be retrieved; should be zero for the first call to this service and incremented for each subsequent call

Because subkeys are not ordered, any new subkey will have an arbitrary index.

lpszName

Address of buffer that receives the subkey name, including terminating null character.

cchName

Size in bytes of buffer; should include space for terminating null character.

To retrieve the index of the last subkey, use RegQueryInfoKey or increment iSubKey until ERROR_NO_MORE_ITEMS is returned.

Of the predefined key values, only HKEY_LOCAL_MACHINE and HKEY_DYN_DATA are available to VxDs during initialization time. The entire registry space can only be accessed after VxD initialization is complete.

The caller should reinitialize the variable containing the buffer size on each subsequent call to this service.

_RegEnumValue

include vmm.h

LONG _RegEnumValue(HKEY hkey, DWORD iValue, LPTSTR lpszValue,

 LPDWORD lpcchValue, LPDWORD lpdwReserved, LPDWORD lpdwType,

 LPBYTE lpbData, LPDWORD lpcbData)

Enumerates values for the given open registry key; the service copies one indexed value name and data block for the key each time it is called. See the documentation for the Win32 function of the same name for additional information.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns ERROR_SUCCESS if the function succeeds. Otherwise, an error code is returned, possibly one of the following:

ERROR_NO_MORE_ITEMS ���ERROR_KEY_DELETED ���ERROR_MORE_DATA ���ERROR_BADKEY ���ERROR_REGISTRY_IO_FAILED ���ERROR_REGISTRY_CORRUPT ���ERROR_BADDB ���

hkey

Handle of an open key or one of the predefined keys:

HKEY_CLASSES_ROOT ���HKEY_CURRENT_USER ���HKEY_LOCAL_MACHINE ���HKEY_USERS ���HKEY_CURRENT_CONFIG ���HKEY_DYN_DATA ���

iValue

Index of the value to retrieve; should be zero for first call to this service and then incremented for each subsequent call. Because values are not ordered, any new value will have an arbitrary index.

lpszValue

Address of buffer that receives name of the value, including the terminating null character.

lpcchValue

Address of variable that specifies the length of the buffer in bytes, including the terminating null character.

lpdwReserved

Reserved; must be NULL.

lpdwType

Address of variable that receives the type code for the value entry. It can be one of these standard values or other value (which is treated like REG_BINARY):

REG_BINARY �Binary data in any form. ��REG_SZ �A null-terminated UNICODE or ANSI string. ��

This parameter can be NULL if the type code is not required.

lpbData

Address of variable that receives the data for the value entry. This parameter can be NULL if the data is not required.

lpcbData

Address of variable that specifies the size, in bytes, of the buffer pointed to by lpbData. When the service returns, the variable contains the number of bytes stored in the buffer.

This parameter can be NULL only if lpbData is NULL.

Of the predefined key values, only HKEY_LOCAL_MACHINE and HKEY_DYN_DATA are available to VxDs during initialization time. The entire registry space can only be accessed after VxD initialization is complete.

The caller should reinitialize the variable containing the buffer size on each subsequent call to this service.

_RegFlushKey

include vmm.h

LONG _RegFlushKey(HKEY hkey)

The specified key is written to the registry file on the disk. This service should be avoided for performance reasons. Windows will automatically flush the registry to the disk. See the documentation for the Win32 function of the same name for additional information.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns ERROR_SUCCESS if the function succeeds. Otherwise, an error code is returned, possibly one of the following:

ERROR_KEY_DELETED ���ERROR_OUTOFMEMORY ���ERROR_BADKEY ���ERROR_REGISTRY_IO_FAILED ���ERROR_REGISTRY_CORRUPT ���ERROR_BADDB ���

hkey

Handle of an open key or one of the predefined keys:

HKEY_CLASSES_ROOT ���HKEY_CURRENT_USER ���HKEY_LOCAL_MACHINE ���HKEY_USERS ���HKEY_CURRENT_CONFIG ���

Of the predefined key values, only HKEY_LOCAL_MACHINE is available to VxDs during initialization time. The entire registry space can only be accessed after VxD initialization is complete.

_RegOpenKey

include vmm.h

LONG _RegOpenKey(HKEY hkey, LPTSTR lpszSubKey, PHKEY phkResult)

Opens the specified key. Caller should use RegCloseKey to close the returned key. See the documentation for the Win32 function of the same name for additional information.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns ERROR_SUCCESS if the function succeeds. Otherwise, an error code is returned, possibly one of the following:

ERROR_KEY_DELETED ���ERROR_BADKEY ���ERROR_FILE_NOT_FOUND ���ERROR_OUTOFMEMORY ���ERROR_REGISTRY_IO_FAILED ���ERROR_REGISTRY_CORRUPT ���ERROR_BADDB ���

hkey

Handle of an open key or one of the predefined keys:

HKEY_CLASSES_ROOT ���HKEY_CURRENT_USER ���HKEY_LOCAL_MACHINE ���HKEY_USERS ���HKEY_CURRENT_CONFIG ���HKEY_DYN_DATA ���

lpszSubKey

Address of a null-terminated string containing the name of the key to open.

phkResult

Address of variable that receives handle of opened key.

The key opened by this service is a subkey of the key which hkey identifies.

If lpszSubKey is NULL or a pointer to an empty string, the service returns hkey.

Of the predefined key values, only HKEY_LOCAL_MACHINE and HKEY_DYN_DATA are available to VxDs during initialization time. The entire registry space can only be accessed after VxD initialization is complete.

See also _RegCloseKey

_RegQueryInfoKey

include vmm.h

DWORD _RegQueryInfoKey(HKEY hKey, LPTSTR lpszClass,

 LPDWORD lpcchClass, LPDWORD lpdwReserved, LPDWORD lpcSubKeys,

 LPDWORD lpcchMaxSubKey, LPDWORD lpcchMaxClass, LPDWORD lpcValues,

 LPDWORD lpcchMaxValueName, LPDWORD lpcbMaxValueData,

 LPDWORD lpcbSecurityDescriptor, PFILETIME lpftLastWriteTime)

Retrieves information about a specified registry key. See the documentation for the Win32 function of the same name for additional information.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns ERROR_SUCCESS if the function succeeds. Otherwise, an error code is returned, possibly one of the following:

ERROR_KEY_DELETED ���ERROR_BADKEY ���ERROR_REGISTRY_IO_FAILED ���ERROR_REGISTRY_CORRUPT ���ERROR_BADDB ���

hkey

Handle of an open key or one of the predefined keys:

HKEY_CLASSES_ROOT ���HKEY_CURRENT_USER ���HKEY_LOCAL_MACHINE ���HKEY_USERS ���HKEY_CURRENT_CONFIG ���HKEY_DYN_DATA ���

lpszClass

Address of a buffer that receives the key's class name. Currently, this parameter is not supported.

lpcchClass

Size of the buffer pointed to by the lpszClass parameter on input and length of string returned in lpszClass on output. Currently, this parameter is not supported.

lpdwReserved

Reserved, must be NULL.

lpcSubKeys

Address of the buffer that receives the number of subkeys contained by the specified key.

lpcchMaxSubKey

Address of a variable that receives the length of the key's subkey with the longest name. The count returned does not include the terminating null character.

lpcchMaxClass

Address of a variable that receives the length of the longest string specifying a subkey class. Currently, this parameter is not supported.

lpcValues

Address of a variable that receives the number of values associated with the key.

lpcchMaxValueName

Address of a variable that receives the length of the key's longest value name. The count returned does not include the terminating null character.

lpcbMaxValueData

Address of a variable that receives the length of the longest data component among the key's values.

lpcbSecurityDescriptor

Address of a variable that receives the length of the key's security descriptor. Currently, this parameter is not supported.

lpftLastWriteTime

Address of variable that receives a FILETIME structure, indicating the last time the key or any of its value entries was modified. Currently, this parameter is not supported.

Of the predefined key values, only HKEY_LOCAL_MACHINE and HKEY_DYN_DATA are available to VxDs during initialization time. The entire registry space can only be accessed after VxD initialization is complete.

_RegQueryMultipleValues

include vmm.h

DWORD _RegQueryMultipleValues(HKEY hKey, PVALENT pValent,

 DWORD dwNumVals, LPSTR lpValueBuf, LPDWORD lpTotSize)

Retrieves the values for the names specified in the pValent parameter for the specified key in the registry. See the documentation for the Win32 function of the same name for additional information.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns ERROR_SUCCESS if the function succeeds. Otherwise, an error code is returned, possibly one of the following:

ERROR_KEY_DELETED ���ERROR_MORE_DATA ���ERROR_BADKEY ���ERROR_REGISTRY_IO_FAILED ���ERROR_REGISTRY_CORRUPT ���ERROR_BADDB ���

hkey

Handle of an open key or one of the predefined keys:

HKEY_CLASSES_ROOT ���HKEY_CURRENT_USER ���HKEY_LOCAL_MACHINE ���HKEY_USERS ���HKEY_CURRENT_CONFIG ���HKEY_DYN_DATA ���

pValent

Array of VALENT structures specifying value names to retrieve values for. The VALENT structure has the following format:

typedef struct value_ent {

 PCHAR ve_valuename;

 DWORD ve_valuelen;

 DWORD ve_valueptr;

 DWORD ve_type;

} VALENT;

dwNumVals

Number of VALENT structures in the pValent array.

lpValueBuf

Address of a buffer that receives the value data.

lpTotSize

Number of bytes in the lpValueBuf parameter.

RegQueryMultipleValues is useful for dynamic key providers because it assures consistency of data by retrieving multiple values in an atomic operation. For all keys, this service, is more efficient than calling RegQueryValue multiple times, particularly across a network since it can retrieve the values with one network transaction.

Of the predefined key values, only HKEY_LOCAL_MACHINE and HKEY_DYN_DATA are available to VxDs during initialization time. The entire registry space can only be accessed after VxD initialization is complete.

_RegQueryValue

include vmm.h

LONG _RegQueryValue(HKEY hkey, LPTSTR lpszSubKey, LPTSTR lpszValue,

 PLONG pcbValue)

Retrieves the value associated with the unnamed value for a specified key in the registry. See the documentation for the Win32 function of the same name for additional information.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns ERROR_SUCCESS if the function succeeds. Otherwise, an error code is returned, possibly one of the following:

ERROR_KEY_DELETED ���ERROR_MORE_DATA ���ERROR_BADKEY ���ERROR_REGISTRY_IO_FAILED ���ERROR_REGISTRY_CORRUPT ���ERROR_BADDB ���

hkey

Handle of an open key or one of the predefined keys:

HKEY_CLASSES_ROOT ���HKEY_CURRENT_USER ���HKEY_LOCAL_MACHINE ���HKEY_USERS ���HKEY_CURRENT_CONFIG ���HKEY_DYN_DATA ���

lpszSubKey

Address of string that contains name of the subkey of the hkey parameter for which a value is to be retrieved.

lpszValue

Address of string that contains name of the subkey of the hkey parameter for which a value is to be retrieved. If this parameter is NULL and pcbValue is not NULL this service returns ERROR_SUCCESS and returns the size of the buffer needed the variable pointed to by pcbValue.

pcbValue

Address of variable specifying the size, in bytes, of the lpszValue buffer. The buffer should be big enough to contain the terminating null character. On return, the variable contains the size of the data copied to the buffer. If the passed in size is not big enough, the variable will contain the size needed and ERROR_MORE_DATA will be returned.

Of the predefined key values, only HKEY_LOCAL_MACHINE and HKEY_DYN_DATA are available to VxDs during initialization time. The entire registry space can only be accessed after VxD initialization is complete.

_RegQueryValueEx

include vmm.h

LONG _RegQueryValueEx(HKEY hkey, LPTSTR lpszValueName,

 LPDWORD lpdwReserved, LPDWORD lpdwType, LPBYTE lpbData,

 LPDWORD lpcbData)

Retrieves the type and data for a specified value name associated with an open registry key. See the documentation for the Win32 function of the same name for additional information.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns ERROR_SUCCESS if the function succeeds. Otherwise, an error code is returned, possibly one of the following:

ERROR_KEY_DELETED ���ERROR_MORE_DATA ���ERROR_FILE_NOT_FOUND ���ERROR_REGISTRY_IO_FAILED ���ERROR_REGISTRY_CORRUPT ���ERROR_BADDB ���

hkey

Handle of an open key or one of the predefined keys:

HKEY_CLASSES_ROOT ���HKEY_CURRENT_USER ���HKEY_LOCAL_MACHINE ���HKEY_USERS ���HKEY_CURRENT_CONFIG ���HKEY_DYN_DATA ���

lpszValueName

Points to a null-terminated string containing the name of the value to be queried.

lpdwReserved

Reserved; must be NULL.

lpdwType

Address of variable that receives the type code for the value entry. This parameter can be NULL if the type is not required. The type can be any value or one of the standard values:

REG_BINARY �Binary data in any form. ��REG_SZ �A null-terminated UNICODE or ANSI string. ��

lpbData

Address of buffer that receives the data for the value entry. This parameter can be NULL if the data is not required.

lpcbData

Address of variable that specifies size, in bytes, of the buffer addressed by lpbData.

Of the predefined key values, only HKEY_LOCAL_MACHINE and HKEY_DYN_DATA are available to VxDs during initialization time. The entire registry space can only be accessed after VxD initialization is complete.

_RegRemapPreDefKey

include vmm.h

DWORD _RegRemapPreDefKey(HKEY hKey, HKEY hkRootKey)

Changes the current predefined hkRootKey to point to the given open key, specified by hKey. This operation is only allowed on HKEY_CURRENT_USER, HKEY_CURRENT_CONFIG. This service is intended for use by the system and is not for general use by drivers.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns ERROR_SUCCESS if the function succeeds. Otherwise, an error code is returned, possibly one of the following:

ERROR_KEY_DELETED ���ERROR_BADKEY ���ERROR_REGISTRY_IO_FAILED ���ERROR_REGISTRY_CORRUPT ���ERROR_BADDB ���

hKey

A previously opened key.

hkRootKey

One of HKEY_CURRENT_USER or HKEY_CURRENT_CONFIG.

This function invalidates all open handles opened through the previous HKEY_CURRENT_USER or HKEY_CURRENT_CONFIG.

_RegSetValue

include vmm.h

LONG _RegSetValue(HKEY hkey, LPTSTR lpszSubKey, DWORD fdwType,

 LPTSTR lpszData, DWORD cbData)

Associates a value with the specified key; this value is of type REG_SZ and does not have a value name. See the documentation for the Win32 function of the same name for additional information.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns ERROR_SUCCESS if the function succeeds. Otherwise, an error code is returned, possibly one of the following:

ERROR_FILE_NOT_FOUND ���ERROR_KEY_DELETED ���ERROR_BADKEY ���ERROR_REGISTRY_IO_FAILED ���ERROR_REGISTRY_CORRUPT ���ERROR_BADDB ���

hkey

Handle of an open key or one of the predefined keys:

HKEY_CLASSES_ROOT ���HKEY_CURRENT_USER ���HKEY_LOCAL_MACHINE ���HKEY_USERS ���HKEY_CURRENT_CONFIG ���

lpszSubKey

Address of null-terminated string that contains the name of the subkey of the hkey parameter for which the value is associated. If this is an empty string, the value will be associated with the key identified by the hkey parameter.

fdwType

Type of information to be stored. Must be REG_SZ.

lpszData

Address of null-terminated string containing value to set for the given key.

cbData

Length in bytes of string at which lpszData points, not including the terminating null character.

If the key specified by lpszSubKey does not exist, this service will create it.

Value lengths are limited by available memory. Long values (more than 2048 bytes) should be stored as files with the filenames stored in the registry.

Of the predefined key values, only HKEY_LOCAL_MACHINE is available to VxDs during initialization time. The entire registry space can only be accessed after VxD initialization is complete.

_RegSetValueEx

include vmm.h

LONG _RegSetValueEx(HKEY hkey, LPTSTR lpszValueName,

 DWORD dwReserved, DWORD fdwType, LPBYTE lpbDta, DWORD cbData)

Stores data in the value field of an open registry key; the service can also set additional value and type information for the given key. See the documentation for the Win32 function of the same name for additional information.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns ERROR_SUCCESS if the function succeeds. Otherwise, an error code is returned, possibly one of the following:

ERROR_KEY_DELETED ���ERROR_OUTOFMEMORY ���ERROR_REGISTRY_IO_FAILED ���ERROR_REGISTRY_CORRUPT ���ERROR_BADDB ���

hkey

Handle of the open key or one of these predefined values:

HKEY_CLASSES_ROOT ���HKEY_CURRENT_USER ���HKEY_LOCAL_MACHINE ���HKEY_USERS ���

lpszValueName

Points to a null-terminated string containing the name of the value to set. If a value with this name is not already present in the key, the function adds it to the key. If this parameter is NULL or points to an empty string, the fdwType must be REG_SZ and this service will set the same value as RegSetValue.

lpdwReserved

Reserved; must be NULL.

fdwType

The type code for the value entry. It can be one of these values:

REG_BINARY �Binary data in any form. ��REG_SZ �A null-terminated UNICODE or ANSI string. ��

lpbData

Address of buffer that receives the data for the value entry.

lpcbData

Address of variable that specifies size, in bytes, of the buffer addressed by lpbData. If the type is REG_SZ this must include the terminating null character.

If the key specified by lpszSubKey does not exist, this service will create it.

Value lengths are limited by available memory. Long values (more than 2048 bytes) should be stored as files witht the filenames stored in the registry.

Of the predefined key values, only HKEY_LOCAL_MACHINE is available to VxDs during initialization time. The entire registry space can only be accessed after VxD initialization is complete.

Return Values for Registry Services

The following list of error values is not comprehensive. It is included here to give you an idea of the kinds of errors to expect. Future versions of Windows may return new error codes, or return slightly different error codes under analogous circumstances.

Value �Meaning ��ERROR_SUCCESS �The function was successful. ��ERROR_NO_MORE_ITEMS �There are no more keys or values to enumerate. ��ERROR_MORE_DATA �Passed in buffer is not large enough to hold the entire value. ��ERROR_FILE_NOT_FOUND �The specified key was not found in the registry database. ��ERROR_KEY_DELETED �HKEY passed to service has been deleted since it was opened. ��ERROR_CANTOPEN ERROR_CANTREAD �Aliases of ERROR_FILE_NOT_FOUND for 16 bit code. ��ERROR_ACCESS_DENIED �Attempt to write to a key for which code does not have write access. ��ERROR_OUTOFMEMORY �Insufficient memory to open the registry key or insufficient memory to load the required data from the registry file. ��

The following may be returned when calling the registry services incorrectly:

ERROR_BADKEY �The subkey string contains an invalid character or the handle identifying the key is invalid. ��ERROR_LOCK_FAILED �Registry reentered while blocked by same process. ��ERROR_INVALID_PARAMETER �Parameter is required and not specified, an invalid pointer or otherwise not valid. ��

The following indicate a system problem. The system contains procedures for recovering from these errors, mostly involving rebooting:

ERROR_BADDB ERROR_REGISTRY_CORRUPT �Registry data structures corrupt. ��ERROR_REGISTRY_IO_FAILED �The registry file cannot be found or it was already opened by another application. A full disk or problem reading or writing to the disk may also cause this error. ��

When an HKEY is specified as an input parameter, it must be an HKEY returned from one of the registry services or one of the following predefined keys:

HKEY_CLASSES_ROOT ���HKEY_CURRENT_USER ���HKEY_LOCAL_MACHINE ���HKEY_USERS ���HKEY_CURRENT_CONFIG ���HKEY_DYN_DATA ���

Of the predefined key values, only HKEY_LOCAL_MACHINE and HKEY_DYN_DATA are available to VxDs during initialization time. The entire registry space can only be accessed after VxD initialization is complete.

The key names are in OEM character set with some variations. Prior to completion of VxD initialization, all key names referenced must not contain any characters in the extended character set (character whose value is greater than 127). After VxD initialization, the entire character set is available.

�Chapter

Primary Scheduler

About the Primary Scheduler

Introduction

Windows 95 is a multiple-threaded, preemptive multitasking operating system. Each task running in the system virtual machine can consist of one or more threads of execution. A task running in a non-system virtual machine can have only one thread. The Windows 95 virtual machine manager (VMM) includes a primary scheduler that determines whether a particular thread receives processor time. This chapter describes the primary scheduler and its related VMM services.

Execution Priority

The primary scheduler assigns an execution priority value to a each thread. The VMM grants processor time only to threads that share the highest execution priority. A thread with an execution priority lower than the highest priority does not receive any processor time; that is, it is suspended. (Note that this should not be confused with the concept of a virtual machine being suspended.)

The VMM assigns an execution priority to a thread when the thread is created. The VMM and virtual devices can subsequently raise or lower the execution priority, causing the processor to switch from one thread to another. If the new thread belongs to a different virtual machine, the VMM performs a task switch to the new virtual machine, making it the current virtual machine. The VMM often temporarily raises the execution priority for a thread that needs to service a high-priority device event, such as an interrupt that must be serviced in a timely manner.

A virtual device can raise or lower the priority of a thread by calling the Adjust_Exec_Priority or Adjust_Thread_Exec_Priority service. Use Adjust_Thread_Exec_Priority to adjust the execution priority of a thread in the system virtual machine, and Adjust_Exec_Priority to adjust the execution priority of the thread in a non-system virtual machine. If you specify the handle of the system virtual machine in a call to Adjust_Exec_Priority, the VMM adjusts the priority of the system virtual machine's initial thread.

See also Adjust_Exec_Priority, Adjust_Thread_Exec_Priority

Creating and Terminating Threads

A virtual device can use the VMMCreateThread service to create a new thread in the system virtual machine. The new thread runs in protected mode at ring three. VMMCreateThread returns a handle identifying the new thread. The virtual device can use the handle in subsequent services which control the execution of the thread, such as Adjust_Thread_Exec_Priority.

Before creating the new thread, VMMCreateThread broadcasts the Create_Thread control message to all virtual devices in the system. A virtual device typically responds by allocating any structures it needs to support the thread. By setting the carry flag, a virtual device that cannot support the new thread can prevent the thread from being created.

After the new thread is created, VMMCreateThread broadcasts the Thread_Init control message to all virtual devices. This message passes the handle of the new thread to the virtual devices, and gives the devices an opportunity to perform initialization procedures that must take place in the context of the new thread.

A virtual device can use the VMMTerminateThread service to destroy a thread created by a previous call to VMMCreateThread. The VMMTerminateThread service will not destroy the initial thread of a virtual machine, nor will it destroy the currently executing thread.

Before terminating a thread, VMMTerminateThread broadcasts the Terminate_Thread control message to all virtual devices. When the thread is no longer being scheduled, the Thread_Not_Executeable control message is broadcast to all virtual devices. Finally, the Destroy_Thread control message is broadcast, signaling that it is safe for virtual devices to free resources associated with the thread.

See also Adjust_Thread_Exec_Priority, Create_Thread, Destroy_Thread, Terminate_Thread, Thread_Not_Executeable, VMMCreateThread, VMMTerminateThread

Controlling Virtual Machine Execution

The Close_VM and Nuke_VM services terminate the specified virtual machine. Close_VM gives all virtual devices an opportunity to clean up before the virtual machine terminates by first broadcasting the Close_VM_Notify message to all virtual devices. By comparison, Nuke_VM does not broadcast any notifications before terminating the virtual machine. A virtual device should use Nuke_VM only to terminate a virtual machine that has not terminated normally and does not respond to Close_VM.

The VMM maintains a suspend count for each non-system virtual machine. The execution of a non-system virtual machine is suspended whenever its suspend count is greater than zero. Calling Suspend_VM increments the suspend count; calling Resume_VM decrements it. (As noted previously, this sense of the word "suspend" when applied to virtual machines is different from the sense when applied to threads.)

A virtual device receives the VM_Suspend control message when Suspend_VM changes a virtual machine's suspend count from 0 to 1. It receives the VM_Resume control message when Resume_VM changes the count from 1 to 0. A virtual device can prevent the virtual machine from resuming by setting the carry flag in response to VM_Resume. A virtual device cannot prevent a virtual machine from being suspended. The No_Fail_Resume_VM service is similar to Resume_VM except that it doesn't allow a virtual device to prevent a virtual machine from resuming.

See also Close_VM, No_Fail_Resume_VM, Nuke_VM, Suspend_VM, Resume_VM, VM_Resume, VM_Suspend

Task and Thread Switching

A virtual device can use the Call_When_Task_Switched service to install a callback function that the VMM calls whenever the processor switches from one task to another. The callback remains in effect until it is removed by calling the Cancel_Call_When_Task_Switched service.

Similarly, a virtual device can use the Call_When_Thread_Switched service to install a callback function that the VMM calls whenever the processor switches from one thread to another. It can remove the callback function by calling the Cancel_Call_When_Thread_Switched service.

Thread-switch and task-switch callbacks are called extremely frequently and should be written for maximum speed.

See also Call_When_Task_Switched, Call_When_Thread_Switched, Cancel_Call_When_Task_Switched, Cancel_Call_When_Thread_Switched

Reference

There are the following groups of primary scheduler services:

Group �Elements ��Execution-priority �Adjust_Exec_Priority, Adjust_Thread_Exec_Priority ��Thread creation/termination �Create_Thread, Destroy_Thread, Terminate_Thread, Thread_Init, Thread_Not_Executeable, VMMCreateThread, VMMTerminateThread ��Virtual machine execution-control �_Call_On_My_Stack, Close_VM, Close_VM_Notify, No_Fail_Resume_VM, Nuke_VM, Resume_VM, Suspend_VM, VM_Resume, VM_Suspend ��Task and thread switching �Call_When_Task_Switched, Call_When_Thread_Switched, Cancel_Call_When_Task_Switched, Cancel_Call_When_Thread_Switched, TaskSwitchCallback, ThreadSwitchCallback ��Thread information �_GetThreadExecTime, _GetThreadTerminationStatus, _GetThreadTerminationStatus, Get_Cur_Thread_Handle, Get_Initial_Thread_Handle, Get_Next_Thread_Handle, Get_Sys_Thread_Handle, Get_Thread_Win32_Pri ��Thread debugging and testing �Debug_Test_Cur_Thread, Debug_Test_Valid_Thread_Handle, Test_Cur_Thread_Handle, Test_Initial_Thread_Handle, Test_Sys_Thread_Handle, Validate_Thread_Handle ��Thread data slots �_AllocateThreadDataSlot, _FreeThreadDataSlot ��

Execution Priority

A virtual device uses the following services to raise or lower the execution priority of a virtual machine or a thread.

Adjust_Exec_Priority

include vmm.inc

mov eax, PriorityBoost

mov ebx, VMHandle

VMMcall Adjust_Exec_Priority

Raises or lowers the execution priority of the specified virtual machine. The service adds the specified boost to the virtual machine's current execution priority. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

PriorityBoost

A signed integer value representing the positive or negative priority boost for the virtual machine. This parameter must be a value such that when added to the current execution priority, the result is within the range Reserved_Low_Boost to Reserved_High_Boost. The following lists some common priority boost values, from lowest to highest:

Value �Meaning ��Reserved_Low_Boost �Reserved for use by system. ��Cur_Run_VM_Boost �Use to boost the priority of each virtual machine, in turn, forcing them to run for their allotted time slices. ��Low_Pri_Device_Boost �Use for operations that need timely processing but are not time critical. ��High_Pri_Device_Boost �Use for time-critical operations that should not circumvent the critical section boost. ��Critical_Section_Boost �Use to boost the priority of the virtual machine whenever it enters a critical section (calls Begin_Critical_Section). ��Time_Critical_Boost �Use for operations that require immediate processing, even when another virtual machine is in a critical section. For example, VPICD uses this when simulating hardware interrupts. ��Reserved_High_Boost �Reserved for use by system. ��

VMHandle

Handle of the virtual machine.

Because the nonsuspended virtual machine with the highest execution priority is always the current virtual machine, this service causes a task switch under two circumstances:

	1	The execution priority of the current virtual machine is lowered (EAX is negative), and there is another virtual machine with a higher priority that is not suspended.

	2	The execution of a nonsuspended virtual machine which is not the current virtual machine is raised (EAX is positive) higher than the current virtual machine's execution priority.

Even if the current virtual machine is in a critical section, a task switch will still occur if the priority of another nonsuspended virtual machine is raised higher than the current virtual machine's priority. However, this will only occur when a virtual machine is given a time-critical boost, for example, to simulate a hardware interrupt.

It is often more convenient to call the Call_Priority_VM_Event service than to call this service directly.

See also Adjust_Thread_Exec_Priority, Begin_Critical_Section, Call_Priority_VM_Event

Adjust_Thread_Exec_Priority

include vmm.inc

mov eax, PriorityBoost

mov edi, ThreadHandle

VMMcall Adjust_Thread_Exec_Priority

Raises or lowers the execution priority of the specified thread. The service adds the specified boost to the thread's current execution priority. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

PriorityBoost

A signed integer value representing the positive or negative priority boost for the thread. This parameter must be a value such that when added to the current execution priority, the result is within the range Reserved_Low_Boost to Reserved_High_Boost. The following lists some common priority boost values, from lowest to highest:

Value

�Meaning ��Reserved_Low_Boost �Reserved for use by system. ��Cur_Run_VM_Boost �Use to boost the priority of each thread, in turn, forcing them to run for their allotted timeslices. ��Low_Pri_Device_Boost �Use for operations that need timely processing but are not time critical. ��High_Pri_Device_Boost �Use for time-critical operations that should not circumvent the critical section boost. ��Critical_Section_Boost �Use to boost the priority of the thread whenever it enters a critical section (calls Begin_Critical_Section). ��Time_Critical_Boost �Use for operations that require immediate processing, even when another thread is in a critical section. For example, VPICD uses this when simulating hardware interrupts. ��Reserved_High_Boost �Reserved for use by system. ��

ThreadHandle

Handle of the thread.

Because the nonsuspended thread with the highest execution priority is always the current thread, this service causes a task switch under two circumstances:

	1	The execution priority of the current thread is lowered (EAX is negative), and there is another thread with a higher priority that is not suspended.

	2	The execution priority of a nonsuspended thread which is not the current thread is raised (EAX is positive) higher than the current thread's execution priority.

Even if the current thread is in a critical section, a task switch will still occur if the priority of another nonsuspended thread is raised higher than the current thread's priority. However, this will only occur when a thread is given a time-critical boost, for example, to simulate a hardware interrupt.

It is often more convenient to call the Call_Priority_VM_Event service than to call this service directly.

See also Adjust_Exec_Priority, Begin_Critical_Section, Call_Priority_VM_Event

Thread Creation and Termination

Introduction

A virtual device uses the services described in this section to create and destroy threads in the system virtual machine. Also, a virtual device receives the following messages when creating or destroying threads in the system VM:

Message �Description ��Create_Thread �A new thread is being created. ��Destroy_Thread �A non-initial thread is about to be destroyed ��Terminate_Thread �A non-initial thread is about to terminate. ��Thread_Not_Executeable �A non-initial thread has stopped executing. ��Thread_Init �A new thread was created. ��

For a description of these messages, see VMM Messages.

See also Create_Thread, Destroy_Thread, Terminate_Thread, Thread_Not_Executeable, Thread_Init

VMMCreateThread

VMMcall VMMCreateThread, <initial_ss, intial_esp, initial_cs,

 initial_eip, initial_ds, initial_es, ThreadType, InitCallback,

 RefData>

or eax, eax

jz thread_not_created

Creates a protected mode thread in the system virtual machine and starts it executing in ring 3 at the instruction specified by CS:EIP. Uses all registers and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the handle of the new thread in EAX if successful; otherwise, returns 0 in EAX.

initial_ss, initial_esp, initial_cs, initial_eip, initial_ds, initial_es

Ring 3 protected mode registers used to start the thread.

ThreadType

Programmer-defined DWORD value a VxD can use to uniquely identify the threads that it creates. Typically, this value is a pointer to the VxD's DDB because the pointer is unique among VxDs. This value is stored in the TCB_ThreadType field of the thread's control block.

InitCallback

Ring 0 initialization function that is called after the Thread_Init message is sent.

RefData

Programmer-defined DWORD value that is passed, in EDX, to the InitCallback function.

This service is intended for use only by Windows internal system components. A virtual device should not use this service because it can cause the system to become unstable.

The client registers are initialized to the values specified by the procedure parameters. The values must be valid values for ring 3; do not use ring 0 selectors.

The Create_Thread and Thread_Init messages are sent to all virtual devices, and the timeslice scheduler is notified to start scheduling the thread.

See also Create_Thread, Thread_Init, VMMTerminateThread

VMMTerminateThread

include vmm.inc

mov edi, ThreadHandle

VMMcall VMMTerminateThread

Destroys the specified thread. Uses all registers and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns only if the thread cannot be destroyed.

ThreadHandle

Handle of the thread to destroy.

This service is intended for use only by Windows internal system components. A virtual device should not use this service because it can cause the system to become unstable.

Do not use this service to terminate the initial thread of a virtual machine. Use the Close_VM service instead.

Virtual Machine Execution Control

Introduction

A virtual device uses the functions described in this section to suspend, resume, and destroy virtual machines. Also, a virtual device receives the following messages when suspending, resuming, and destroying virtual machines:

Message �Description ��Close_VM_Notify �A virtual machine is terminating. ��VM_Resume �A virtual machine is resuming after having been suspended. ��VM_Suspend �A virtual machine is being suspended. ��

For a description of these messages, see VMM Messages.

See also Close_VM_Notify, VM_Resume, VM_Suspend

_Call_On_My_Stack

include vmm.inc

VMMCall _Call_On_My_Stack, <<OFFSET32 pfnCallback>, dwLParam,

 <OFFSET32 pStack>, dwStackSize>

Temporarily switches a ring 0 stack to a different locked block of memory. A VxD can use this service to perform an operation that requires more than 4K bytes of stack space (each thread is limited to 4K bytes of ring 0 stack space.) This service switches to the new stack and then calls the given callback function with the LParam parameter pushed on the new stack. When the callback function returns, the service switches back to the original ring 0 stack, and then returns control to the caller. This service can handle nested calls. Uses the C calling convention. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

pfnCallback

Address of callback function. This function must be declared using the C calling convention.

dwLParam

Double-word parameter to push on the new stack before calling the callback function.

pStack

Stack pointer (value of ESP register). The stack can be as many pages as needed as long as they are all locked. Because the stack grows towards smaller addresses, this parameter should be the upper limit of the stack, not the lower limit.

dwStackSize

The size, in bytes, of the temporary stack.

Close_VM

include vmm.inc

mov eax, TimeOut

mov ebx, VMHandle

mov ecx, Flags

VMMcall Close_VM

Attempts to close the virtual machine, allowing all virtual devices an opportunity to clean up before the virtual machine terminates. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

TimeOut

Number of milliseconds the service must wait before calling the Nuke_VM service to force the virtual machine to close.

VMHandle

Handle of the virtual machine to close.

Flags

Action to take:

Value �Meaning ��CVF_Continue_Exec �Return to the virtual machine after scheduling the closing event even if the virtual machine is being closed. ��

Whenever possible, a virtual device should use this service instead of the Nuke_VM or Crash_Cur_VM service.

See also Nuke_VM

No_Fail_Resume_VM

include vmm.inc

mov ebx, VMHandle

VMMcall No_Fail_Resume_VM

Resumes the execution of a virtual machine previously suspended by the Suspend_VM service. Unlike the Resume_VM service, this service never returns an error. Uses Flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

VMHandle

Handle of the virtual machine to resume.

This service decrements the suspend count, and places the virtual machine in the ready-processes queue if the new count is zero. The system carries out a task switch to the resumed virtual machine if the virtual machine has a higher priority than the current virtual machine.

If the virtual machine cannot be resumed for some reason, the system notifies the user of the problem and handles the error automatically, resuming the virtual machine when there is sufficient memory available.

See also Resume_VM, Suspend_VM

Nuke_VM

include vmm.inc

mov ebx, VMHandle

VMMcall Nuke_VM

Closes a virtual machine that has not yet terminated normally. Uses ECX, EDX, and Flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value. If VMHandle specifies the current or system virtual machine, this service never returns.

VMHandle

Handle of the virtual machine to destroy. If this parameter specifies the system virtual machine, a fatal error occurs and Windows terminates.

The virtual shell device typically calls this service to close a virtual machine whenever the user chooses to end the task without going through normal application shutdown procedures.

This service should be used with caution.

See also Close_VM

Resume_VM

include vmm.inc

mov ebx, VMHandle

VMMcall Resume_VM

jc not_resumed

Resumes the execution of a virtual machine previously suspended by the Suspend_VM service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the suspend count is zero and the virtual machine is in the ready-processes queue; otherwise, sets the carry flag.

VMHandle

Handle of the virtual machine to resume.

This service decrements the suspend count, and places the virtual machine in the ready-processes queue if the new count is zero. The system carries out a task switch to the resumed virtual machine if the virtual machine has a higher priority than the current virtual machine.

An error can occur if a virtual device cannot lock the memory handles for the specified virtual machine. The system notifies every virtual device of the request to resume a virtual machine, and any virtual device can deny the request. In such cases, this service returns with the carry flag set and the virtual machine remains suspended with a suspend count of 1.

See also No_Fail_Resume_VM, Suspend_VM

Suspend_VM

include vmm.inc

mov ebx, VMHandle

VMMcall Suspend_VM

jc not_suspended

Suspends the execution of a specified virtual machine. This service fails if the specified virtual machine either owns the critical section, or is the system virtual machine. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the virtual machine is suspended; otherwise, sets the carry flag.

VMHandle

Handle of the virtual machine to suspend.

An error occurs if the virtual machine is in a critical section, or if the VMHandle parameter specifies the system virtual machine.

This service increments the suspend count for the virtual machine. If the virtual machine was not already suspended, the system notifies virtual devices of the suspension by sending a VM_Suspend message to the control procedure for each virtual device. A virtual device must not refuse to suspend a virtual machine. If a virtual machine remains suspended, subsequent calls to Suspend_VM do not cause the VM_Suspend notification.

When a virtual machine is suspended, the system sets the VMStat_Suspended bit in the CB_VM_Status field of the virtual machine's control block. Although virtual devices may examine and modify the contents of the control block of a virtual machine, the virtual devices must not examine or modify any memory owned by a suspended virtual machine unless the virtual device previously locked that memory.

Note that the actual suspension of a virtual machine may be delayed for various reasons. When the suspension is delayed, the service returns success, but the actual suspension does not take effect until later.

See also No_Fail_Resume_VM, Resume_VM, VM_Suspend

Task and Thread Switching

A virtual device uses the following services and callback functions to receive notifications and perform operations when the processor switches to a different thread or task.

Call_When_Task_Switched

include vmm.inc

mov esi, OFFSET32 TaskSwitchCallback

VMMcall Call_When_Task_Switched

Installs a task-switched callback function which the system calls whenever it carries out a task switch. This service should be used sparingly, and the callback function should be optimized for speed.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

TaskSwitchCallback

Address of the callback function to install. For more information about the callback function, see TaskSwitchCallback.

Some virtual devices must save the state of a hardware device every time a task switch occurs and restore the hardware state for the virtual machine that is about to be run. However, virtual machine events can often be used in place of using this service.

Virtual devices can install any number of callback functions. The system calls each one in the order installed, until all functions have been called.

See also Call_When_Idle, Call_When_Not_Critical, Call_When_Thread_Switched, Cancel_Call_When_Task_Switched, TaskSwitchCallback

Call_When_Thread_Switched

include vmm.inc

mov esi, OFFSET32 ThreadSwitchCallback

VMMcall Call_When_Thread_Switched

Installs a callback function which the system calls whenever it switches to a different thread or task. This service should be used sparingly, and the callback function should be optimized for speed. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

ThreadSwitchCallback

Address of the callback function to install. For more information about the callback function, see ThreadSwitchCallback.

Virtual devices can install any number of callback functions. The system calls each one in the order installed, until all functions have been called.

See also Call_When_Idle, Call_When_Not_Critical, Call_When_Task_Switched, Cancel_Call_When_Thread_Switched, ThreadSwitchCallback

Cancel_Call_When_Task_Switched

mov esi, OFFSET32 TaskSwitchCallback

VMMcall Cancel_Call_When_Task_Switched

jc not_removed

Removes a callback function installed by a previous call to Call_When_Task_Switched. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the function is removed; otherwise, sets the carry flag.

TaskSwitchCallback

Address of callback function to remove.

See also Call_When_Task_Switched

Cancel_Call_When_Thread_Switched

mov esi, OFFSET32 ThreadSwitchCallback

VMMcall Cancel_Call_When_Thread_Switched

jc not_removed

Removes a callback function installed by a previous call to Call_When_Thread_Switched. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the function is removed; otherwise, sets the carry flag.

ThreadSwitchCallback

Address of callback function to remove.

See also Call_When_Thread_Switched

TaskSwitchCallback

mov eax, OldVMHandle

mov ebx, CurVMHandle

call [TaskSwitchCallback]

Performs programmer-defined processing whenever a task switch occurs. TaskSwitchCallback is a programmer-defined callback function installed by the Call_When_Task_Switched service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

OldVMHandle

Handle of the previous virtual machine.

CurVMHandle

Handle of the current virtual machine.

The callback function can carry out any operation and can modify the EAX, EBX, ECX, EDX, ESI, EDI, and Flags registers.

See also Call_When_Task_Switched

ThreadSwitchCallback

mov eax, OldThreadHandle

mov edi, CurThreadHandle

call [ThreadSwitchCallback]

Performs programmer-defined processing whenever the system switches to a different thread. ThreadSwitchCallback is a programmer-defined callback function installed by the Call_When_Thread_Switched service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

OldThreadHandle

Handle of the previous thread.

CurThreadHandle

Handle of the current thread.

The callback function can carry out any operation and can modify the EAX, EBX, ECX, EDX, ESI, EDI, and Flags registers.

See also Call_When_Thread_Switched

Thread Information

A virtual device uses the following services to retrieve thread information.

_GetLastUpdatedThreadExecTime

See _GetLastUpdatedThreadExecTime in Timing Services.

See also _GetLastUpdatedThreadExecTime

_GetThreadExecTime

See _GetThreadExecTime in Timing Services.

See also _GetThreadExecTime

_GetThreadTerminationStatus

include vmm.inc

VMMcall _GetThreadTerminationStatus, <ThreadHandle>

mov StatusFlags, eax

Retrieves the termination status of the specified thread. Uses C calling convention. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a combination of these values in EAX:

THREAD_TERM_STATUS_CRASH_PEND �The virtual machine associated with the thread is terminating because a catastrophic error occurred. ��THREAD_TERM_STATUS_NUKE_PEND �The thread is in a must-complete section. The associated virtual machine will be closed when it reaches the end of the section. ��THREAD_TERM_STATUS_SUSPEND �The thread is in a must-complete section. The associated virtual machine will be suspended when it reaches the end of the section. ��

If the return value is 0, the thread is not in a must-complete section and the virtual machine is not about to be suspended or closed.

ThreadHandle

Handle of the thread.

Get_Cur_Thread_Handle

include vmm.inc

VMMCall Get_Cur_Thread_Handle

mov [hThread], edi

Returns a handle identifying the currently executing thread. Uses EDI and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a handle in EDI that identifies the currently executing thread.

This service can be called at interrupt time.

Get_Initial_Thread_Handle

include vmm.inc

mov ebx, [VMHandle]

VMMCall Get_Initial_Thread_Handle

mov [hThread], edi

Returns a handle identifying a thread that was created at the same time that the virtual machine was created. Uses EDI and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a handle in EDI that identifies the VM's initial thread.

VMHandle

Identifies the virtual machine for which the thread was created.

This service can be called at interrupt time.

Get_Next_Thread_Handle

include vmm.inc

VMMCall Get_Next_Thread_Handle

mov [hThread], edi

Retrieves the handle of the next thread in the current virtual machine. If the current thread is the last thread, the service retrieves the handle off the first thread in the next virtual machine. Uses EDI and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a handle in EDI that identifies the next thread.

This service can be called at interrupt time.

Get_Sys_Thread_Handle

include vmm.inc

VMMCall Get_Sys_Thread_Handle

mov [hSysThread], EDI

Returns a handle identifying the system thread. Uses EDI and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a handle identifying the system thread in EDI.

This service can be called at interrupt time.

Get_Thread_Win32_Pri

include vmm.inc

mov edi, ThreadHandle

VMMCall Get_Thread_Win32_Pri

mov [BasePriority], eax

mov [CurrentPriority], ecx

mov [TimeDecayBoost], edx

mov [InversionPriority], esi

Retrieves the Win32 priority of the specified thread. Uses EAX, ECX, EDX, ESI, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	If successful, the EAX, ECX, and EDX registers contain the following:

EAX �absolute Win32 base priority (0-31) ��ECX �absolute Win32 current priority (0-31) ��EDX �time decay boost if any ��ESI �inversion priority if any ��

ThreadHandle

Handle to the thread to retrieve the priority for.

Thread Data Slots

A virtual device uses the following services to allocate and free thread data slots.

_AllocateThreadDataSlot

include vmm.inc

VMMcall _AllocateThreadDataSlot

cmp eax, 0

je error

mov [DataSlotOffset], eax

Allocates a thread data slot. Uses C calling conventions.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns an offset to the data slot, if the service succeeds; otherwise, returns zero.

A thread data slot is a DWORD value associated with each thread. The thread data slot offset gives the location of the thread data slot that you allocated, relative to the thread handle. Essentially, _AllocateThreadDataSlot works for threads just like _Alloc_VM_CB_Area works for virtual machines, except that the size of the memory block is always four bytes for thread data slots, whereas it is user-defined for virtual machine control blocks.

Note that thread data slots are not zero-initialized. If this is important, you should zero-initialize the thread data slot yourself.

Since thread data slots are only four bytes, if you need to record more than four bytes of data on a per-thread basis, the traditional mechanism is to store a pointer to a data block in the thread data slot. Don't forget to free the data block when the thread is destroyed, or you will leak memory.

Thread data slots are scarce resources. They should be freed when no longer needed.

_FreeThreadDataSlot

include vmm.inc

VMMcall _FreeThreadDataSlot, <DataSlotOffset>

Frees a thread data slot. Uses C calling conventions.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

DataSlotOffset

A valid data slot offset that was previously allocated by _AllocateThreadDataSlot.

See also _AllocateThreadDataSlot

Thread Debugging and Testing

A virtual device uses the following services to debug threads and to test the validity of thread handles.

Debug_Test_Cur_Thread

include vmm.inc

mov edi, [hThread]

VMMCall Debug_Test_Cur_Thread

Determines whether hThread identifies the current thread. If it is not, the service sends an error message to the debugger before returning. This service is valid only with the debugging kernel. Preserves all registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

hThread

Handle of the thread to test.

This service is typically not called directly. Virtual devices use the Assert_Cur_Thread_Handle macro instead.

Debug_Test_Valid_Thread_Handle

include vmm.inc

mov edi, [hThread]

VMMCall Debug_Test_Valid_Thread_Handle

Determines whether hThread is a valid thread handle. If it is not, the service sends an error message to the debugger before returning. This service is valid only with the debugging kernel. Uses no registers; the Flags register is preserved.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

hThread

Handle of the thread to validate.

This service is typically not called directly. Virtual devices use the Assert_Cur_Thread_Handle macro instead.

Test_Cur_Thread_Handle

include vmm.inc

mov edi, [hThread]

VMMCall Test_Cur_Thread_Handle

je Is_Current_Thread

Tests hThread to determine whether or not it identifies the currently executing thread. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Sets the zero flag if hThread identifies the currently executing thread.

hThread

Handle of the thread to test.

Test_Initial_Thread_Handle

include vmm.inc

mov edi, [hThread]

VMMCall Test_Initial_Thread_Handle

je Is_Initial_Thread

Determines if the thread identified by hThread was the initial thread for a VM. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Sets the carry flag if hThread identifies the initial thread for the VM.

hThread

Handle of the thread to test.

This service can be called at interrupt time.

Test_Sys_Thread_Handle

include vmm.inc

mov edi, hThread

VMMCall Test_Sys_Thread_Handle

je Is_System_Thread

Determines whether the thread identified by hThread is the system thread. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Sets the zero flag if the thread identified by hThread is the system thread.

hThread

Handle of the thread to test. This must be a valid thread handle.

This service can be called at interrupt time.

Validate_Thread_Handle

include vmm.inc

mov edi, [hThread]

VMMCall Validate_Thread_Handle

jc Invalid_Handle

Tests validity of thread identified by hThread. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The carry flag is not set if the thread is valid; otherwise it is set.

hThread

Handle of thread being tested.

This service can be called at interrupt time.

�Chapter 24

Time-Slice Scheduler

About the Time-Slice Scheduler

The virtual machine manager (VMM) includes a time-slice scheduler that determines how much processor time to grant to virtual machines. This chapter describes the time-slice scheduler.

Terms

The following terms are related to the time-slice scheduler:

Term �Definition ��background priority �The time-slice priority of a virtual machine that does not have the execution focus. ��background virtual machine �A virtual machine that does not have the execution focus. ��base priority �The unboosted time-slice priority of a thread. A thread's base priority depends on its priority class. ��block �The temporary halting of the execution of a thread or virtual machine while it waits for a needed resource to be freed. ��boost �An increase or decrease in the time-slice priority of a thread. ��dynamic boost �An temporary increase or decrease in the time-slice priority of a thread, brought about by either the VMM or a virtual device. ��exclusive execution �The execution of a virtual machine to the exclusion of all other non-system virtual machines. When a virtual machine has the execution focus and is executing exclusively, the VMM suspends all other non-system virtual machines. The VMM never suspends the system virtual machine. ��execution focus �A property of the virtual machine with which the user is currently working. The virtual machine with the execution focus runs in the foreground and its priority is boosted. ��foreground priority �The time-slice priority assigned to a virtual machine that has the execution focus. ��foreground virtual machine �The virtual machine that has the execution focus. ��high priority class �A group of time-slice priority values associated with high priority threads. ��idle �The state of a thread or virtual machine that is runnable but needs input before continuing. ��idle priority class �A group of time-slice priority values associated with idle threads. ��idle thread �A thread that runs only when there are no higher priority threads to run. ��initial thread �The first thread created in a virtual machine. The system virtual machine can have many thread, non-system virtual machines have only one thread. ��inversion boost �An increase in the time-slice priority of a thread that owns a resource so that the priority matches that of the highest-priority thread that blocks on the resource. ��inversion priority �In priority inversion prevention, the time-slice priority to which the owner thread is raised. Also see priority inversion prevention. ��normal priority class �A group of time-slice priority values associated with threads that are not idle, high priority, or real time. ��priority class �A group of priority values associated with threads of a particular type. Also see idle priority class, normal priority class, high priority class, and real-time priority class. ��priority inversion list �A list, maintained internally by the VMM, that contains information used to raise the priority of threads that own resources on which other threads block. Also see priority inversion prevention. ��priority inversion prevention �A technique the VMM uses to prevent a form of deadlock in which a low priority thread that owns a resource is unable to run because of its low priority, and a higher priority thread that also needs the resource remains blocked while waiting for the resource to be freed. ��real-time priority class �A group of priority values associated with threads that perform time-critical tasks. ��round robin �The sequential, cyclical allocation of processor time to all threads of the same priority. ��schedule �Allocating processor time to a virtual machine or thread. ��static boost �Raising or lowering a thread's time-slice priority with no time decay. ��suspend �To halt a process temporarily. ��system idle priority �A priority of 0, which is reserved for system use. ��system thread �The first thread created in the system virtual machine. ��thread �The basic entity to which the VMM allocates processor time. A thread can execute any part of the application's code, including a part currently being executed by another thread. All threads of a process share the virtual address space, global variables, and operating system resources of the process. ��thread group �Two or more threads whose priorities are boosted at the same time. ��thread starvation �A situation in which a thread does not receive adequate processor time because its time-slice priority is too low. ��time-slice �A brief period of time during which a thread receives control of the processor. ��time-slice execution flags �A set of flags, defined in the VMM include files, that can be set in the control block of a virtual machine or thread and control aspects of how the thread is scheduled. ��time-slice granularity �The duration of a time-slice. ��time-slice list �A list of the threads that the VMM is currently scheduling. ��time-slice priority �A number associated with a thread and used by the VMM to determine the amount of processor time to grant to the thread. ��time-slice quantum �The average duration of all time slices. ��time-decayed boost �Raising or lowering of a thread's time-slice priority, followed by a return to the base priority over several subsequent time slices. �����

Priority Model

Introduction

The time-slice scheduler controls the amount of processor time each virtual machine and application thread receives by setting priorities for them. This section describes priorities and how the time slicer assigns them.

Priorities and Priority Classes

Threads, including separate virtual machine and application threads, have 32 possible priorities, which are divided into four priority classes: idle, normal, high, and real time. Furthermore, the normal priority class is divided into foreground and background subclasses. The following table shows how priorities are divided into classes:

Class �Priorities ��Idle �1-6, 15 (15 if the base-relative realtime thread priority is specified) ��Normal ��� Background �1 or 5-9, 15 (1 if the base-relative idle thread priority is specified) �� Foreground �1 or 7-11 or 15 ��High �1 or 11-15 ��Real time �16-31 ��

Priority 0 is reserved for system use as the system idle priority. Classifying priorities helps to define dynamically variable priority ranges and establishes application guidelines to prevent monopolizing the system with simple set-priority system calls.

Preemption

All 32 priorities are preemptive of priorities lower than themselves. This means that a runnable thread of one priority preempts all lower priority threads. Threads that are running at the same priority are scheduled in a round robin fashion.

Time-Slice Quantums

All time slices are for a statistically constant period of time, called the time-slice quantum. This means that, although two time slices may have different periods, the average period of any large time slice sample remains constant.

Dynamic Priority Boosting and Timed Decay

A thread with a priority that is lower than the real-time priority class can have its priority dynamically boosted to respond more quickly to system events or to enhance overall system throughput. For example, a thread that is just becoming unblocked receives a boost in priority so that, among other threads with the same priority, it will be chosen to execute next. A dynamically boosted thread automatically loses a specified amount of boost for every time slice that it executes. This is called timed decayed boosting, and is used whenever dynamic priority boosting is indicated. Also, when the system detects that a boosted thread no longer needs its boost, the system may return the thread to its original base priority.

Thread Starvation

If a thread's priority remains low for too long, it can be starved for processor time. The time slicer includes an algorithm that prevents thread starvation by temporarily boosting threads that have not been scheduled within a reasonable amount of time. Reasonable is defined as a number of milliseconds calculated by multiplying the size of the time-slice quantum by the number of executable threads, then multiplying the result by an internal threshold value.

The system cannot dynamically change the priority of a thread that belongs to the real-time priority class. Real-time threads are excluded from the thread starvation algorithm; moreover, real-time threads can starve threads of other priority classes in spite of the starvation algorithm.

An idle thread is one that runs only when there are no higher priority threads to run. All priorities in the idle priority class except the system reserved 0 priority are included in the thread starvation algorithm.

Idle, normal, and high priority class threads are normally not starved. Within these priority classes, the system dynamically boosts the priorities of starving threads using time decayed boost functions. During every starvation detection interval (which varies depending on the number of runnable threads) the system recalculates the dynamic priorities of all idle, normal, and high priority threads based on the recent processor usage. When the system finds a thread that has not run for an extended period, the system gives it a timed decayed boost to the highest priority possible for threads of the normal priority class. By adjusting both the period of time between checks and the acceptable starvation level of threads, the system prevents starvation while efficiently setting the priorities of threads.

Blocking and Unblocking

Introduction

Usually, when a thread attempts to get access to a resource which is unavailable, such as a semaphore, mutex, critical section, or synchronization object, the thread stops running while waiting for the resource to become available. This is called blocking. Unless a thread happens to block at exactly the time its time-slice quantum has expired, blocking prevents the thread from completing a full time slice. When the resource waited on becomes available, the blocked thread is unblocked and runs the next time it is scheduled.

Unblock Boosting

If, before completing a time slice, a thread blocks and unblocks but is left at the same priority, it will effectively have its time slice reduced to the time it uses between the unblock and block operations. This is because the scheduler does not have any reason to schedule the newly unblocked thread before any other threads running at the same priority. This gives threads that do not need to block on resources a great advantage when competing for processor time.

To allow threads which block and unblock to compete effectively for processor time, the time slicer dynamically boosts the priority of a thread when it blocks.

Monopolization of Processor by Blocking

A system that boosts priorities when threads block can have problems with threads that monopolize the system by blocking and unblocking very quickly. Without checks in place to prevent this, a thread could block and unblock so quickly that it essentially maintains the priority of its boosted state.

To prevent this kind of monopolization, the elapsed time since a thread was scheduled to run is totaled whenever the thread blocks. When the total reaches or exceeds the quantum period, the total is reset and the thread is blocked with an unboosted priority. Effectively, the thread is back in the runnable queue at its base priority.

Priority Inversion Boosting

A synchronization problem that can occur in a system with preemptive priorities is that threads that own system resources may not be able to run when other, higher priority threads are executing. This can cause a situation in which a thread remains blocked on a resource owned by a thread that is unable to run. If threads at a higher priority than the resource owning thread do not block, the resource may never be freed. To prevent this problem, the system uses a technique called priority inversion prevention in which the system boosts the priority of the thread that owns a resource to at least the priority of any thread that blocks on the resource.

The Windows 95 time slicer's algorithm for priority-inversion-prevention is associative. This means that, once a priority inversion boost is in place, the boosted thread maintains the same priority as the boosting thread.

When threads are suspended by events not related to blocking on resources, they will simply lose their current time slice, and will not be block boosted.

Compatibility with the Primary Scheduler

For simplicity, and to remain compatible with the primary scheduler, threads boosted by the primary scheduler are beyond the time slicer's control. When threads or virtual machines are boosted by virtual devices, the time slicer does not track this boosting and will consider them to be boosted to the real time priority. The time slicer continues to request the primary scheduler to schedule the next available thread at the same priority as the currently executing thread whenever a quantum expires. This allows time slicing to continue in a round robin fashion between boosted threads, but prevents the time slicer and primary scheduler from "fighting."

Reference

Execution Focus Services

Get_Execution_Focus

include vmm.inc

VMMcall Get_Execution_Focus

mov [Focus], ebx

Retrieves the handle of the virtual machine that currently has the execution focus. This virtual machine is called the foreground virtual machine. This is an asynchronous service. Uses EBX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the handle in EBX.

See also Set_Execution_Focus

Set_Execution_Focus

include vmm.inc

mov ebx, VMHandle

VMMcall Set_Execution_Focus

jc focus_not_set

Assigns the execution focus to the specified virtual machine. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the execution focus is assigned; otherwise, sets the carry flag.

VMHandle

Handle of the virtual machine to receive the execution focus.

When a virtual machine receives the execution focus, the system suspends all other virtual machines except the system virtual machine and background virtual machines.

Only the system virtual machine can assign the execution focus to other virtual machines; a nonsystem virtual machine can only assign the execution focus to itself.

See also Get_Execution_Focus

Virtual Machine Execution Control Services

Call_When_Idle

include vmm.inc

mov esi, OFFSET32 IdleCallback

VMMcall Call_When_Idle

jc error

Installs a system-idle callback function. The system calls this function whenever the Windows kernel signals that Windows is idle and all other virtual machines are also idle. Virtual devices typically use this service to perform background operations. For example, the memory manager uses this service to asynchronously write dirty pages to the backing store. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag is clear if the callback function is installed. Otherwise, sets the carry flag.

IdleCallback

Address of the callback function to install. For more information about the callback function, see IdleCallback.

Virtual devices can install any number of idle callback functions. The system calls each one, in the order installed, until one of the functions clears the carry flag. A system-idle callback function remains installed until it is explicitly removed by the Cancel_Call_When_Idle service.

See also IdleCallback

Cancel_Call_When_Idle

include vmm.inc

mov esi, OFFSET32 IdleCallback

VMMcall Cancel_Call_When_Idle

jc not_removed

Removes a callback function installed by a previous call to Call_When_Idle. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the function is removed; otherwise, sets the carry flag.

IdleCallback

Address of callback function to remove.

See also Call_When_Idle

IdleCallback

include vmm.inc

mov ebx, SysVMhandle

mov edi, SysThreadHandle

mov ebp, OFFSET32 Client_Reg_Struc

call [IdleCallback]

jc pass_to_next

Performs programmer-defined processing whenever the Windows kernel signals that Windows is idle and all other virtual machines are also idle. IdleCallback is a programmer-defined callback function installed by the Call_When_Idle service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Sets the carry flag to pass the call to the next idle callback function; clears the carry flag to prevent the call from being passed.

SysVMHandle

Handle of the system virtual machine.

SysThreadHandle

Handle of the system thread.

Client_Reg_Struc

Address of a Client_Reg_Struc structure that contains the registers of the system virtual machine.

The callback function can carry out any operation and can modify EAX, EBX, ECX, EDX, ESI, EDI, and Flags. If the operation takes a significant amount of time, the function should clear the carry flag before returning to prevent other callbacks from being called. Otherwise, the function should set the carry flag and return.

See also Call_When_Not_Critical, Call_When_Task_Switched

Release_Time_Slice

include vmm.inc

VMMcall Release_Time_Slice

In the system thread, this service idles the thread until the Wake_Up_VM service is called on behalf of the thread. In other threads in the system virtual machine, this service releases the current time slice if there is another thread of equal or greater priority ready to run. In nonsystem virtual machines, this service idles the virtual machine. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

The semantics of this service differ from Windows 3.1 because the two systems have different time slicing algorithms.

See also Wake_Up_VM

Time_Slice_Sleep

include vmm.inc

mov eax, Timeout

VMMCall Time_Slice_Sleep

Makes the current thread idle for a specified number of milliseconds. The thread can be woken if either Wake_Up_VM is called on the thread's VM or the specified number of milliseconds elapses. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the zero flag if the sleep timed out. Sets the zero flag if the sleep was woken up prematurely.

TimeOut

Signed timeout in milliseconds to use.

This service should not be used as a timeout function. The timeout passed in is treated as the maximum time the thread will sleep, but it may wake up earlier. This function will return when either someone calls Wake_Up_VM on this VM or when this timeout or the previous timeout set for this VM expires. A timeout of 0 will yield.

A VxD should avoid calling this service while owning the critical section; doing so makes the system appear to hang for the TimeOut duration.

Time_Slice_Wake_Sys_VM

include vmm.inc

VMMCall Time_Slice_Wake_Sys_VM

Wakes up the system VM from an idle state. Similar to Wake_Up_VM except that Wake_Up_VM will not cause the system thread to return to ring 3 and try scheduling 16-bit applications again. Returns after completely waking the system thread and VM interrupts are on. This service should be called only by the Vwin32 device. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

See also Wake_Up_VM

Wake_Up_Thread

include vmm.inc

mov ThreadHandle

VMMcall Wake_Up_Thread

Awakens an idle thread. For the system thread, this service sets the base Win32 priority back to what it was before the thread went idle. For all other threads, the service simply removes any negative decay boost. "Use Flags."

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

ThreadHandle

Handle of thread to awaken.

Wake_Up_VM

include vmm.inc

mov ebx, VM

VMMcall Wake_Up_VM

Restores an idle virtual machine, allowing the system to schedule the virtual machine for subsequent time slices. A virtual machine is idle if it has called the Release_Time_Slice service, or has set the VMStat_Idle flag in the CB_VM_Status field of its control block. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

VMHandle

Handle of the virtual machine to restore.

If the specified virtual machine is not idle, this service returns immediately (does nothing). Do not attempt to make a thread idle by merely setting the VMStat_Idle bit in the CB_VM_Status field. Use the Release_Time_Slice or Time_Slice_Sleep service to make a thread idle.

See also Release_Time_Slice

Time-Slice Priority Services

Boost_With_Decay

include vmm.inc

mov edi, ThreadHandle

mov eax, BoostAmount

mov ecx, DecayAmount

VMMcall Boost_With_Decay

Boosts a thread's time-slice priority for one time slice, then adjusts the boost by the specified decay amount for subsequent time slices until the thread's original base priority is reached. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

ThreadHandle

Handle of the thread to boost.

BoostAmount

A signed integer value representing the number of milliseconds to lengthen or shorten the time slice.

DecayAmount

A signed integer value representing the number of milliseconds to lengthen or shorten each subsequent time slice. A positive value shortens subsequent time slices; a negative value lengthens them.

The BoostAmount and DecayAmount values must be either both positive or both negative.

Get_Thread_Win32_Pri

See Get_Thread_Win32_Pri in Primary Scheduler.

See also Get_Thread_Win32_Pri, Set_Thread_Win32_Pri

Get_Time_Slice_Priority

include vmm.inc

mov ebx, VMHandle

VMMcall Get_Time_Slice_Priority

mov [Flags], eax

mov [Foreground], ecx

mov [Background], edx

mov [CPUTime], esi

Retrieves the time-slice execution flags for the specified virtual machine. Also, for backward compatibility, this service also retrieves values for certain obsolete parameters. Uses EAX, ECX, EDX, ESI, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns values in these registers:

EAX �One of the following time-slice execution flags: ��

VMStat_Exclusive �Virtual machine is executing to the exclusion of all other threads ��VMStat_Background �Virtual machine is executing in the background ��VMStat_High_Pri_Back �Virtual machine is executing in the background, but with a boost in time-slice priority ��

ECX �Set to 10,000 if the virtual machine is time-critical and has almost exclusive execution priority; otherwise, ECX is set to 100. In previous versions of Windows, this value indicates the foreground time-slice priority. ��EDX �Obsolete. The low-order word is always 50, and the high-order word is always zero. In previous versions of Windows, this value indicates the background time-slice priority. ��ESI �Obsolete. Always specifies 100. In previous versions of Windows, this value indicates the percentage of processor usage. ��

VMHandle

Handle of the virtual machine for which to retrieve information.

See also Get_Time_Slice_Granularity, Set_Time_Slice_Priority

Set_Thread_Static_Boost

include vmm.inc

mov edi, ThreadHandle

mov eax, BoostAmount

VMMcall Set_Thread_Static_Boost

Boosts a thread's time-slice priority by the specified amount with no time decay. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

ThreadHandle

Handle of the thread to boost.

BoostAmount

A signed integer value representing the number of milliseconds to lengthen or shorten the time slice.

See also Set_VM_Static_Boost

Set_Thread_Win32_Pri

include vmm.inc

mov edi, ThreadHandle

mov eax, Priority

VMMcall Set_Thread_Win32_Pri

jc priority_not_set

Sets the base Win32 priority of the given thread, removing any timed decay boost associated with the thread. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the priority is set; otherwise, sets it.

ThreadHandle

Handle of the thread.

Priority

Absolute Win32 base priority. This must be a value from 0 to 31.

See also Get_Thread_Win32_Pri

Set_Time_Slice_Priority

include vmm.inc

mov eax, Flags

mov ebx, VMHandle

mov ecx, Foreground

mov edx, Background

VMMcall Set_Time_Slice_Priority

Sets the time-slice execution flags and the foreground and background priorities for the specified virtual machine. Uses EAX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the time-slice priority is set; otherwise, sets the carry flag.

Flags

One of the following status flags:

VMStat_Exclusive �Virtual machine is executing to the exclusion of all other threads ��VMStat_Background �Virtual machine is executing in the background ��VMStat_High_Pri_Back �Virtual machine is executing in the background, but with a boost in time-slice priority ��

VMHandle

Handle of the virtual machine to change.

Foreground

Foreground time-slice priority. The high word must be 0.

Background

Background time-slice priority. The high word must be 0.

To change the time-slice priority, a virtual machine should retrieve the current time-slice priority using the Get_Time_Slice_Priority service, modify the returned values, and use the modified values as input parameters to this service. The following example assigns a virtual machine to the background:

mov ebx, [VMHandle]

VMMcall Get_Time_Slice_Priority

or eax, VMStat_Background

VMMcall Set_Time_Slice_Priority

See also Get_Time_Slice_Priority, Set_Time_Slice_Granularity

Set_VM_Static_Boost

include vmm.inc

mov ebx, VMHandle

mov eax, BoostAmount

VMMcall Set_VM_Static_Boost

Boosts a virtual machine's time-slice priority by the specified amount with no time decay. If VMHandle identifies the system virtual machine, the service boosts all threads in the virtual machine by the specified amount. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

VMHandle

Handle of the virtual machine to boost.

BoostAmount

A signed integer value representing the number of milliseconds to lengthen or shorten the time slice.

See also Set_Thread_Static_Boost

Time-Slice Period Services

Adjust_Execution_Time

include vmm.inc

mov eax, Time

mov ebx, VMHandle

VMMcall Adjust_Execution_Time

Adjusts the duration of a virtual machine's time slice. Virtual devices, such as the virtual COM device, use this service to temporarily increase the amount of time a virtual machine is allowed to execute, such as when the virtual machine is receiving an unusually high number of interrupts. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Time

A signed integer value representing the number of milliseconds to lengthen or shorten the time slice.

VMHandle

Handle of the virtual machine to adjust.

This service adjusts the time slice regardless of the virtual machine's time-slice priority.

If the specified virtual machine is not on the time-slice list, this service returns immediately (does nothing). This service can not force a non-runnable virtual machine to execute. That is, a virtual machine that does not have the VMStat_Background flag set cannot be forced to run in the background by increasing the duration of its time slice.

This service can lengthen or shorten the time slice for a virtual machine. However, shortening the time slice is not recommended because it defeats the purpose of multitasking.

Use this service with caution — it can cause other processes to be starved for processor time.

See also Get_Time_Slice_Granularity, Set_Time_Slice_Granularity

Get_Time_Slice_Info

include vmm.inc

VMMcall Get_Time_Slice_Info

mov [Scheduled], eax

mov [Current], ebx

mov [Idle], ecx

Retrieves the number of virtual machines currently scheduled by the time slicer, and the number of virtual machines that are idle. This service can be called at interrupt time. Uses EAX, EBX, ECX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns values in these registers:

EAX �Number of virtual machines scheduled ��EBX �Handle of the currently scheduled virtual machine ��ECX �Number of scheduled virtual machines currently idle ��

See also Get_Time_Slice_Granularity

Time-Slice Granularity Services

Get_Time_Slice_Granularity

include vmm.inc

VMMcall Get_Time_Slice_Granularity

mov [Granularity], eax

Retrieves the current time-slice granularity. This value specifies the minimum number of milliseconds a virtual machine runs before being rescheduled. Uses EAX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the granularity value in EAX.

See also Set_Time_Slice_Granularity

Set_Time_Slice_Granularity

include vmm.inc

mov eax, Time

VMMcall Set_Time_Slice_Granularity

Sets the minimum time-slice granularity, the minimum number of milliseconds a virtual machine can run before being rescheduled. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Time

Minimum time-slice granularity, in milliseconds.

Small time-slice granularity values make multitasking appear smoother, but require high numbers of task switches and increase execution overhead. Large values allow more time for the virtual machines to execute, but may make execution look intermittent to the user.

The limit for the maximum time-slice granularity is 250 milliseconds.

See also Get_Time_Slice_Granularity

Thread Groups

Attach_Thread_To_Group

include vmm.inc

mov eax, ThreadInGroup

mov edi, ThreadToAdd

VMMcall Attach_Thread_To_Group

Adds a thread to a thread group. A virtual device creates thread groups so that it can boost the priority of all the threads in the group with a single call to the Set_Group_Static_Boost service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

ThreadInGroup

Handle of a thread that belongs to a group.

ThreadToAdd

Handle of a thread to add to the group to which ThreadInGroup belongs.

If ThreadToAdd already belongs to a group, it is removed from the current group before being added to the new group.

See also Detach_Thread_From_Group, Set_Group_Static_Boost

Detach_Thread_From_Group

include vmm.inc

mov ThreadHandle

VMMcall Detach_Thread_From_Group

Removes a thread from any thread group to which may belong. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

ThreadHandle

Handle of thread to remove from any thread group.

See also Attach_Thread_To_Group

Set_Group_Static_Boost

include vmm.inc

mov edi, ThreadHandle

mov eax, BoostAmount

VMMcall Set_Group_Static_Boost

Boosts the time-slice priorities of all thread in a thread group by the specified amount with no time decay. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

ThreadHandle

Handle of a thread in a thread group.

BoostAmount

A signed integer value representing the number of milliseconds to lengthen or shorten the time slice.

See also Attach_Thread_To_Group

Priority Inversion Services

Release_Inversion_Pri

include vmm.inc

mov eax, BoostHandle

VMMcall Release_Inversion_Pri

jc not_released

Removes the given thread from the priority inversion list, deallocates the memory associated with the list entry, and invalidates the handle to the list entry. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if successful; otherwise sets it.

BoostHandle

Handle of an entry in the priority inversion list.

After removing the thread from the list, the service sets the new time-slice priority as follows:

 priority = MAX((all inversion priorities), (Win32BasePri + TimeDecayBoost))

See also Release_Inversion_Pri_ID, Reset_Inversion_Pri

Release_Inversion_Pri_ID

include vmm.inc

mov eax, ID

mov edi, ThreadHandle

VMMcall Release_Inversion_Pri_ID

Removes all entries from the priority inversion list that have the specified identifier and that were added by the given thread. The entries were added by a previous call to the Set_Inversion_Pri service. Uses EAX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the number of entries removed in EAX.

ID

Identifier of entries to remove.

ThreadHandle

Handle of thread that added entries to the priority inversion list.

See also Release_Inversion_Pri, Reset_Inversion_Pri

Reset_Inversion_Pri

include vmm.inc

mov edx, BoostHandle

mov eax, Priority

VMMcall Reset_Inversion_Pri

Adjusts a thread's time-slice priority without associating the priority with a timed decay boost. If the new priority is less than the current priority, the service reduces the priority by the difference. Uses EAX, ECX, and EDX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

BoostHandle

Handle of an existing inversion priority boost.

Priority

New time-slice priority for the thread associated with BoostHandle.

See also Release_Inversion_Pri, Release_Inversion_Pri_ID, Set_Inversion_Pri

Set_Inversion_Pri

include vmm.inc

mov edi, TargetThread

mov ebx, BoosterThread

mov eax, Priority

mov edx, BoostID

VMMcall Set_Inversion_Pri

jc error

mov [InvertHandle], eax

Adds the given target thread to the priority inversion list. While a thread remains in the list, it has the same time-slice priority as that of the thread with the highest priority in the list. Uses EAX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns, in EAX, the handle of the inversion list entry for the given thread. Clears the carry flag if successful; sets it if an error occurs.

TargetThread

Handle of the thread to add to the priority inversion list.

BoosterThread

Handle of the thread that is adding the target thread to the inversion list. This parameter need not be the current thread. Also, 0 is valid.

Priority

Absolute Win32 priority required by the target thread.

BoostID

Identifier to associate with the entry in the priority inversion list. If a virtual device does not use this parameter, it should set it to zero.

A virtual device can use the handle returned by this service in a subsequent call to Release_Inversion_Pri to remove the thread from the inversion list.

See also Reset_Inversion_Pri

See also

�Chapter 22

Synchronization

About Synchronization

Terms

A virtual device uses the synchronization services to coordinate the execution of threads and virtual machines. The following terms are related to synchronization:

Term �Definition ��block ID �A programmer-defined 32-bit value associated with one or more blocked threads. ��claim �A request on the part of a virtual device to enter a critical section. ��claim count �A system-defined variable that indicates the number of times the owner of a critical section has claimed the section. ��context switch �The act of turning the CPU's "attention" from one thread to another. ��critical section �A block of program code that accesses a shared system resource. ��critical section owner �The thread or virtual machine that is currently executing in a critical section. ��must-complete count �A system-defined variable that indicates the number of times the owner of a must-complete section has claimed the section. ��must-complete section �A block of code that must be executed in its entirety before any other thread or virtual machine can run. ��mutex �A synchronization object that ensures only one thread at a time can access a shared resource. A thread must have ownership of the mutex before it can access the resource. The thread blocks if the mutex is owned by another thread. ��reentry count �A system-defined variable that indicates the number of times the owner of a mutex has called the _EnterMutex service after gaining ownership. ��semaphore �An synchronization object that maintains a token count between zero and some maximum value. The object's state is signaled when its token count is greater than zero, and not-signaled when its count is zero. ��signal �To increase the token count of a semaphore. ��semaphore token count �The value associated with a semaphore. The initial token count is set when the semaphore is created. A signal operation increments the token count, and a wait operation decrements it. ��

Critical Sections

A critical section is a section of code that accesses a shared resource. When a virtual machine (VM) is executing code in a critical section, no other VM can execute code within their critical sections. By placing code that accesses shared resources within critical sections, shared resources are protected from simultaneous access by two or more VMs.

It is useful to think of the system as having a single, shared resource called the critical section which can represent any resource critical to the operation of all VMs. Only when a VM owns the critical section can it access the critical resource.

When a VM requests the critical section, it is said to have "claimed" the critical section. A VM that is executing code in the critical section is said to "own" the critical section. The VMM maintains an internal variable, called the claim count, that reflects the number of times the owner has claimed the critical section. Calling Begin_Critical_Section or Claim_Critical_Section increments the claim count; calling End_Critical_Section, End_Critical_Section_No_Block, or Release_Critical_Section decrements it. The owner releases the critical section only when the claim count is zero, allowing another VM to claim ownership. The claim count is not incremented when a VM attempts to claim the critical section while another virtual machine already owns it.

When one VM owns the critical section and a second VM attempts to claim ownership, the system blocks the second VM. Flags specified in the call to Begin_Critical_Section determine how the VM responds to interrupts while it is blocked. You should set the appropriate flags so that the VM processes hardware interrupts in a timely manner.

The system boosts the execution priority of a VM the when it first gains ownership of the critical section. This means that the system switches to another task only if the VM blocks on a semaphore or if a time-critical event occurs in another VM.

While the critical section is owned by any VM, you must not take any action that might cause MS-DOS to be reentered. If MS-DOS is used for paging, such actions include calling memory management services and touching pageable memory. Note that VxD_PAGEABLE_CODE_SEG and VxD_PAGEABLE_DATA_SEG segments are automatically locked if MS-DOS is used for paging.

A virtual device can request the VMM to notify it when a virtual machine has released the critical section by using the Call_When_Not_Critical service. This service installs a callback function which the VMM calls when the critical section is released. A virtual device typically uses the callback function to perform tasks that the must done only when no virtual machine owns the critical section. The system removes the callback function after calling it. To remove a callback function before it is called, use the Cancel_Call_When_Not_Critical service.

The Get_Crit_Section_Status and Get_Crit_Status_No_Block services retrieve the claim count and the handle of the current owner of the critical section. When a virtual device released the critical section, the system sometimes delays the release while it processes events. Get_Crit_Section_Status allows the system to blocks the current virtual machine, if necessary, while completing any delayed releases. Get_Crit_Status_No_Block, on the other hand, returns immediately with the claim count and owner handle. Get_Crit_Status_Thread is similar to Get_Crit_Section_Status except that it retrieves the handle of the thread that owns the critical section, rather than the handle of the virtual machine.

Reference

There are the following synchronization services:

Group �Elements ��Critical section services �Begin_Critical_Section, Call_When_Not_Critical, Cancel_Call_When_Not_Critical, Claim_Critical_Section, CritSecCallback, End_Crit_And_Suspend, End_Critical_Section, Get_Crit_Section_Status, Get_Crit_Status_No_Block, Get_Crit_Status_Thread, Release_Critical_Section ��Must-complete section services �_EnterMustComplete, _ExecIntMustComplete, _ExecVxDIntMustComplete, _LeaveMustComplete, _ResumeExecMustComplete ��Semaphore services �Create_Semaphore, Destroy_Semaphore, Signal_Semaphore, Signal_Semaphore_No_Switch, Wait_Semaphore ��Mutex services �_CreateMutex, _DestroyMutex, _EnterMutex, _GetMutexOwner, _LeaveMutex ��Thread blocking services �_BlockOnID, _SignalID ��

Critical Section Services

Begin_Critical_Section

include vmm.inc

mov ecx, Flags

VMMcall Begin_Critical_Section

Claims a critical section for the current virtual machine. Only one virtual machine at a time can enter a critical section. If a virtual device calls this service after another virtual machine has entered a critical section, the system blocks the calling virtual machine until the critical section is released. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Flags

Action to take when interrupts occur while the virtual machine is blocked waiting for the critical section. This parameter can be a combination of the following values:

Block_Enable_Ints �Service interrupts in the virtual machine even if the virtual machine does not currently have interrupts enabled. This forces interrupts to be enabled. This value is only relevant if either Block_Svc_Ints or Block_Svc_If_Ints_Locked is set. ��Block_Svc_If_Ints_Locked �Service events and simulated interrupts in the virtual machine if the thread blocks for the critical section and the VMStat_V86IntsLocked flag is set. ��Block_Svc_Ints �Service events and simulated interrupts in the virtual machine if the thread blocks for the critical section. ��Block_Thread_Idle �Consider the thread to be idle if it blocks for the critical section. ��

The Block_Poll value is reserved and must not be used with this service.

The system maintains a count of claims for critical sections and releases the critical section only when an equal number of Begin_Critical_Section and End_Critical_Section services have been called. Calling Begin_Critical_Section before the critical section is released does not increment the claim count.

When the critical section is first claimed, the system boosts the execution priority of the current virtual machine by the Critical_Section_Boost value (as described for the Adjust_Exec_Priority service). While a virtual machine is in a critical section, the system will switch to another task only if the virtual machine blocks on a semaphore or the other task has a time-critical operation, such as simulating hardware interrupts.

See also Adjust_Exec_Priority, End_Critical_Section

Call_When_Not_Critical

include vmm.inc

mov esi, CritSecCallback

mov edx, RefData

VMMcall Call_When_Not_Critical

Installs a critical-section callback function. The system calls this function when a virtual device releases the critical section. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

CritSecCallback

Address of the callback function to install. For more information, see CritSecCallback.

RefData

Address of reference data to pass to the callback function.

The system does not execute the callback until the current virtual machine's execution priority is less than the Critical_Section_Boost value even if the current virtual machine is not in a critical section. This allows a virtual device to release the critical section and process any simulated interrupts before the system calls the callback function.

Virtual devices can install any number of callback functions, but the system calls only the most recent function on the list when the critical section is released. The system removes the callback function from the list as it calls the function. This is a common point of confusion. Unlike services like Call_When_Task_Switched, which install a hook permanently, the Call_When_Not_Critical service removes the callback once it is dispatched.

It is more convenient to use the Call_Priority_VM_Event service than to call this service directly.

See also Call_When_Idle, Call_When_Task_Switched, CritSecCallback

Cancel_Call_When_Not_Critical

mov esi, OFFSET32 CritSecCallback

VMMcall Cancel_Call_When_Not_Critical

jc not_removed

Remove references to the specified callback function installed by a previous call to Call_When_Not_Critical. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if one or more references are removed; otherwise, sets the carry flag.

CritSecCallback

Address of callback function.

See also Call_When_Not_Critical

Claim_Critical_Section

include vmm.inc

mov eax, Claims

mov ecx, Flags

VMMcall Claim_Critical_Section

Increments the claim count by the specified value. It has the same effect as calling the Begin_Critical_Section service repeatedly. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Claims

Number of times to claim the critical section. Zero is a valid number, but is ignored.

Flags

Action to take when interrupts occur while the virtual machine is blocked waiting for the critical section. This parameter can be a combination of the following values:

Block_Enable_Ints �Service interrupts in the virtual machine even if the virtual machine does not currently have interrupts enabled. This forces interrupts to be enabled. This flag is relevant only if either Block_Svc_Ints or Block_Svc_If_Ints_Locked is set. ��Block_Svc_If_Ints_Locked �Service events and simulated interrupts in the virtual machine if the thread blocks for the critical section and the VMStat_V86IntsLocked flag is set. ��Block_Svc_Ints �Service events and simulated interrupts in the virtual machine if the thread blocks for the critical section. ��Block_Thread_Idle �Consider the thread to be idle if it blocks for the critical section. ��

The Block_Poll value is reserved and must not be used with this service.

See also Adjust_Exec_Priority, Begin_Critical_Section, End_Critical_Section

CritSecCallback

mov ebx, VMHandle

mov edi, ThreadHandle

mov edx, RefData

mov ebp, OFFSET32 Client_Reg_Struc

call [CritSecCallback]

Performs programmer-defined processing when a virtual device releases the critical section. CritSecCallback is a programmer-defined callback function installed by the Call_When_Not_Critical service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

VMHandle

Handle of the current virtual machine.

ThreadHandle

Handle of the current thread.

RefData

Reference data from the virtual device that installed the callback function.

Client_Reg_Struc

Address of a Client_Reg_Struc structure containing the registers of the current virtual machine.

The callback function can carry out any operation and can modify the EAX, EBX, ECX, EDX, ESI, EDI, and Flags registers.

See also Call_When_Not_Critical

End_Crit_And_Suspend

include vmm.inc

VMMcall End_Crit_And_Suspend

jc not_released

Releases the critical section and immediately suspends the current virtual machine. Virtual devices use this service to block a virtual machine until another virtual machine can process an event. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if successful, sets it otherwise.

This service releases the critical section only if the virtual machine has claimed the section once. This service returns an error if the system could not suspend the virtual machine, or could not release the critical section because the claim count was not 1. In such cases, the service does not decrement the claim count and the critical section is not released.

The following example uses this service to display a dialog box in the system virtual machine. The Show_Dialog_Box function enters a critical section to prevent the Call_Priority_VM_Event service from switching to the system virtual machine immediately. It then calls End_Crit_And_Suspend which blocks the current virtual machine. The Show_Dialog_Event function runs in the system virtual machine and actually displays the dialog box. When it is finished it resumes the virtual machine that called Show_Dialog_Box by calling the Resume_VM service.

Show_Dialog_Box:

 VMMcall Get_Crit_Section_Status

 jc Cant_Do_It ; critical section already

 ; claimed

 VMMcall Begin_Critical_Section

 mov eax, Low_Pri_Device_Boost

 VMMcall Get_System_VM_Handle

 mov ecx, 11b

 mov edx, OFFSET32 Dialog_Box_Data_Structure

 mov esi, OFFSET32 Show_Dialog_Event

 VMMcall Call_Priority_VM_Event

 VMMcall End_Crit_And_Suspend

 jc Did_Not_Work

 ; When End_Crit_And_Suspend returns, the dialog box

 ; will have been displayed

Show_Dialog_Event:

 ; Call Windows to display the dialog box

 mov ebx, [Suspended_VM_Id]

 VMMcall Resume_VM

 jc Error

 ret

The End_Crit_And_Suspend service predates most of the synchronization services provided by Windows 95 and exists primarily for backward compatibility. New virtual devices should avoid this service, since there are better mechanisms available.

See also End_Critical_Section, Resume_VM, Suspend_VM

End_Critical_Section

include vmm.inc

VMMcall End_Critical_Section

Releases the critical section if the current virtual machine owns the section and the claim count is zero. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

This service decrements the claim count and releases the critical section if the new count is zero. Since releasing the critical section lowers the execution priority of the current virtual machine, this service causes a task switch if a nonsuspended virtual machine has higher priority.

It is extremely risky for a virtual device to end a critical section it did not enter, or which it entered from a thread other than the current thread.

See also Begin_Critical_Section, End_Crit_And_Suspend

Get_Crit_Section_Status

include vmm.inc

VMMcall Get_Crit_Section_Status

mov [VMHandle], ebx

mov [Claims], ecx

jc high_priority

Retrieves the claim count and owner of the critical section. Uses Flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the critical section claim count in ECX and the handle of the virtual machine owning the critical section in EBX. If ECX is 0, EBX is the handle of the current virtual machine. The carry flag is set if the current virtual machine has an execution priority greater than or equal to Critical_Section_Boost, such as during a hardware interrupt simulation.

Windows 3.1 sometimes delays releasing the critical section until events are processed. This service causes the system to complete any delayed releases before the service returns the status. This may cause a task switch if another virtual machine has a delayed release.

If a virtual device must ensure that it owns the critical section to successfully complete an operation, it should call this service to make sure that the critical section status is up to date.

This is not an asynchronous service; it must not be called at interrupt time.

See also Get_Crit_Status_No_Block

Get_Crit_Status_No_Block

include vmm.inc

VMMcall Get_Crit_Status_No_Block

mov [VMHandle], ebx

mov [Claims], ecx

jc high_priority

Retrieves the claim count and handle of the owner of the critical section. Unlike the Get_Crit_Section_Status service, this service returns immediately (without blocking) even if a delayed request to release the critical section is pending. This service is only available for Windows version 3.1 or later. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the critical section claim count in ECX and the handle of the virtual machine owning the critical section EBX. If ECX is 0, EBX is the handle of the current virtual machine. The carry flag is set if the current virtual machine has an execution priority greater than or equal to Critical_Section_Boost, such as during a hardware interrupt simulation.

In some cases, this service may indicate that the critical section is currently owned even when it will be released before returning to the virtual machine.

This is an asynchronous service; it may be called at interrupt time.

See also End_Critical_Section, Get_Crit_Section_Status

Get_Crit_Status_Thread

include vmm.inc

VMMCall Get_Crit_Status_Thread

Retrieves the critical-section claim count in ECX and a handle identifying the thread that owns the critical section in EDI. Uses flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the critical-section claim count and a handle identifying the thread that owns the critical section. If the claim count is zero, the current thread handle is returned. Sets the carry flag if the thread is in a time-critical operation such as hardware interrupt simulation.

This service may be called at interrupt time.

This service differs from Get_Crit_Section_Status and Get_Crit_Status_No_Block in that it returns a thread handle.

See also Get_Crit_Section_Status, Get_Crit_Status_No_Block

Release_Critical_Section

include vmm.inc

mov ecx, Claims

VMMcall Release_Critical_Section

Decrements the claim count by the specified value. It has the same effect as calling the End_Critical_Section section repeatedly. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Claims

Number of times to release ownership of critical section. Zero is a valid number, but is ignored.

It is extremely risky for a virtual device to end a critical section it did not enter, or which it entered from a thread other than the current thread.

See also Claim_Critical_Section, End_Critical_Section

Must-Complete Section Services

_EnterMustComplete

VMMcall _EnterMustComplete

Increments the must-complete count for the current thread, causing it to enter a must-complete section. Uses the C calling convention. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

A virtual device can call this service recursively.

For each call to _EnterMustComplete, there must be a corresponding call to _LeaveMustComplete.

This service ensures that the thread is not suspended or killed (via Suspend_VM or Nuke_VM) by another thread while executing a section of critical code. This service is usually used to protect a thread while it owns an important shared resource or state information. If the thread were killed or suspended while it owned such a resource, all other threads would be blocked.

While in a must complete, any suspends or nukes will be postponed until the last _LeaveMustComplete. A must-complete does not change priorities or thread switching in any way.

A VxD can also enter a must complete section automatically by using the MUTEX_MUST_COMPLETE flag with the _CreateMutex service.

See also _EnterMutex, _LeaveMustComplete

_ExecIntMustComplete

include vmm.inc

mov eax, Interrupt

VMMcall _ExecIntMustComplete

Simulates the specified interrupt, and resumes execution of the virtual machine, causing it to enter a must-complete section. This service may only be called in a nested execution block created using the Begin_Nest_Exec or Begin_Nest_V86_Exec service. Uses Flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Interrupt

Number of the interrupt to simulate.

When in a nested execution block, this service can be called any number of times.

This service is comparable to combining the Simulate_Int and _ResumeExecMustComplete services.

See also Begin_Nest_Exec, Begin_Nest_V86_Exec, Resume_Exec, _ResumeExecMustComplete

_ExecVxDIntMustComplete

include vmm.inc

push dword ptr Interrupt

VMMCall _ExecVxDIntMustComplete

Executes the specified software interrupt. Uses registers and flags modified by the interrupt.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	One or more registers may contain return values depending on the function of the specified interrupt.

Interrupt

Specifies the number of the interrupt to execute.

This service should be used with the _EnterMustComplete service.

The _ExecVxDIntMustComplete service is similar to the Exec_VxD_Int service with the following exceptions: it may be called within a must-complete section; and if a fatal error occurs while executing the interrupt, this service sets the carry flag leaving the general purpose registers in an unknown state. (The carry flag may also be set by the interrupt that is called. A VxD can use the _GetThreadTerminationStatus service to differentiate between these two cases.)

See also _EnterMustComplete, Exec_VxD_Int, _GetThreadTerminationStatus

_LeaveMustComplete

include vmm.inc

cCall _LeaveMustComplete

Decrements the must-complete count for the calling thread. Uses the C calling convention. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

See also _EnterMustComplete, _LeaveMutex

_ResumeExecMustComplete

include vmm.inc

VMMcall _ResumeExecMustComplete

Executes the current virtual machine immediately, causing it to enter a critical section. This service may only be called in a nested execution block created using the Begin_Nest_Exec or Begin_Nest_V86_Exec service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

This service can be used any number of times in a nested execution block.

This service returns when the virtual machine returns to the same point it was at when Begin_Nest_Exec was called.

See also Begin_Nest_Exec, Begin_Nest_V86_Exec, _ExecIntMustComplete, Resume_Exec

Semaphore Services

Create_Semaphore

include vmm.inc

mov ecx, TokenCount

VMMcall Create_Semaphore

jc error

mov [Semaphore], eax

Allocates memory for and initializes a new semaphore. Uses EAX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the semaphore handle in EAX and clears the carry flag, if successful; otherwise, sets the carry flag.

TokenCount

Initial count of tokens.

See also Destroy_Semaphore, Signal_Semaphore, Wait_Semaphore

Destroy_Semaphore

include vmm.inc

mov eax, Semaphore

VMMcall Destroy_Semaphore

Destroys the specified semaphore. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Semaphore

Handle of the semaphore to delete.

Destroying a semaphore while threads are still blocked on it will crash the system.

See also Create_Semaphore

Signal_Semaphore

include vmm.inc

mov eax, SemaphoreHandle

VMMcall Signal_Semaphore

Signals a semaphore, releasing (unblocking) a single thread if there are any threads blocked waiting for the semaphore. The threads are released in order of priority; that is, the highest priority thread is released first even if it has been blocked for the shortest time. When signaling the semaphore causes a higher priority thread to be released and the VMM has not been reentered, an immediate context switch to the higher priority thread occurs. This service returns with interrupts enabled. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

SemaphoreHandle

Handle of the semaphore to signal.

See also Create_Semaphore, Signal_Semaphore_No_Switch, Wait_Semaphore

Signal_Semaphore_No_Switch

include vmm.inc

mov eax, SemaphoreHandle

VMMcall Signal_Semaphore_No_Switch

Signals a semaphore, releasing (unblocking) a single thread if there are any threads blocked waiting for the semaphore. The threads are released in order of priority; that is, the highest priority thread is released first even if it has been blocked for the shortest time. Unlike the Signal_Semaphore service, this service never causes an immediate context switch. Instead any threads that need to be released are released the next time events are serviced. This service also differs in that it preserves the state of processor interrupt mask; that is, if interrupts are disabled on entry they are still disabled when this service returns. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

SemaphoreHandle

Handle of the semaphore.

See also Create_Semaphore, Signal_Semaphore, Wait_Semaphore

Wait_Semaphore

include vmm.inc

mov eax, SemaphoreHandle

mov ecx, Flags

VMMcall Wait_Semaphore

Blocks the current virtual machine until the semaphore is signaled using the Signal_Semaphore service. Uses Flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

SemaphoreHandle

Handle of the semaphore on which to wait.

Flags

Action to take when interrupts occur while the virtual machine is blocked waiting for the semaphore. This parameter can be a combination of the following values:

Block_Enable_Ints �Service interrupts in the virtual machine even if the virtual machine does not currently have interrupts enabled. This forces interrupts to be enabled. This value is only relevant if either Block_Svc_Ints or Block_Svc_If_Ints_Locked is set. ��Block_Force_Svc_Ints �Service events and simulated interrupts in the thread even when the critical section is not available. Be careful when using this flag. If it is used when any VMM or real mode MS-DOS resources are held, it will cause deadlocks to occur. If in doubt, do not use this flag. ��Block_Poll �Do not switch away from the blocked virtual machine unless another virtual machine has higher priority. ��Block_Svc_If_Ints_Locked �Service events and simulated interrupts in the virtual machine even if the thread blocks for the semaphore and the VMStat_V86IntsLocked flag is set. ��Block_Svc_Ints �Service events and simulated interrupts in the virtual machine even if the virtual machine is blocked. Events are only serviced when the critical section is available or owned by the blocked thread unless the Block_Force_Svc_Ints flag is also set. Then when events are serviced, the critical section is taken and held while they are serviced. This is necessary to prevent a deadlock from occurring when an event tries to enter the critical section and blocks while holding system-wide resources. ��Block_Thread_Idle �Consider the thread idle when it blocks on the semaphore. ��

This service blocks if the semaphore's token count is zero or less. Otherwise, it decrements the token count and returns immediately. If the token count is not zero (meaning the Signal_Semaphore service has been called), Wait_Semaphore decrements the token count and returns immediately.

See also Create_Semaphore, Signal_Semaphore

Mutex Services

_CreateMutex

include vmm.h

DWORD SERVICE _CreateMutex(LONG Boost, ULONG Flags)

Allocates memory for and initializes a mutex. The priority boost is stored in the mutex, and is used to boost a thread's priority when it acquires the mutex. When a thread blocks waiting for the mutex it is given one half of the priority boost. Uses EAX, ECX, EDX, and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a handle identifying the new mutex if the function succeeds; otherwise returns NULL.

Boost

The amount by which the thread that owns the mutex should be boosted.

Flags

Execution options. It can be the following value:

Value �Meaning ��MUTEX_MUST_COMPLETE �A "must-complete" section is entered each time the mutex is entered. ��

_DestroyMutex

include vmm.h

DWORD SERVICE _DestroyMutex(DWORD hmtx)

Frees memory allocated for a mutex. The mutex cannot be in use when this function is called. Uses EAX, ECX, EDX, and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a non-zero value if successful; otherwise, returns zero.

hmtx

Handle of mutex that will be destroyed.

_EnterMutex

include vmm.inc

VMMcall _EnterMutex, <MutexHandle, Flags>

Enters a mutex. If the mutex is unowned, the calling thread becomes the owner and execution continues. If the mutex is owned by another thread, the calling thread blocks until the mutex is available. If the mutex is already owned by this thread, the reentry count is incremented and execution continues. Uses C Calling Convention: Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

MutexHandle

Handle of the mutex.

Flags

Action to take when interrupts occur while the virtual machine is blocked for the mutex. This parameter can be a combination of the following values:

Block_Enable_Ints �Service interrupts in the virtual machine even if the virtual machine does not currently have interrupts enabled. This forces interrupts to be enabled. This value is only relevant if either Block_Svc_Ints or Block_Svc_If_Ints_Locked is set. ��Block_Svc_If_Ints_Locked �Service events and simulated interrupts in the virtual machine if the thread blocks for the mutex and the VMStat_V86IntsLocked flag is set. ��Block_Svc_Ints �Service events and simulated interrupts in the virtual machine if the thread blocks for the mutex. ��Block_Thread_Idle �Consider the thread to be idle if it blocks for the mutex. ��

The Block_Poll value is reserved and must not be used with this service.

If the mutex has a priority boost and the mutex is entered for the first time, the execution priority of the current thread is boosted by the same amount.

See also _EnterMustComplete, _LeaveMutex

_GetMutexOwner

include vmm.inc

VMMcall _GetMutexOwner, <MutexHandle>

mov Owner, eax

Retrieves the handle of the thread that owns the specified mutex. Uses C calling convention: Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the handle in EAX or zero if the mutex is unowned.

MutexHandle

Handle of the mutex.

_LeaveMutex

include vmm.inc

cCall _LeaveMutex, <MutexHandle>

Leaves a mutex. If the reentry count of the mutex is greater than one, this function decrements the reentry count. If the reentry count is one, it becomes unowned and the highest priority thread waiting for the mutex is released.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

MutexHandle

Handle of the mutex.

This service causes a context switch if the execution priority of the released thread is higher priority than the current thread.

Only the thread owning a mutex can leave it.

When the critical section is freed, any threads waiting for the critical section are released.

See also _EnterMutex, _LeaveMustComplete

Thread-Blocking Services

_BlockOnID

include vmm.inc

VMMcall _BlockOnID, <ThreadID, Flags>

Records the identifier (ID) to be used to block the current thread. The actual blockage of a thread is signaled with _SignalID. Uses the C calling convention. Uses flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

ThreadID

The programmer-defined ID used to block the thread.

Flags

Actions to take when interrupts occur while the virtual machine is blocked. This parameter can be a combination of the following values:

Value �Meaning ��Block_Enable_Ints �Service interrupts in the virtual machine even if it does not currently have interrupts enabled. This forces interrupts to be enabled. This value is only relevant if either Block_Svc_Ints or Block_Svc_If_Ints is set. ��Block_Svc_If_Ints_Locked �Service interrupts in the virtual machine even if the virtual machine is blocked, and the VMStat_V86IntsLocked flag is set. ��Block_Svc_Ints �Service interrupts in the virtual machine even if the virtual machine is blocked. ��

Typically, the ThreadID consists of 32-bit linear address of something related to the object being blocked on, because that helps ensure uniqueness. When the same ID is passed to SignalID, the blocked thread reawakens. When a thread reawakens, it must check whether the wakeup was valid or spurious.

This service always blocks the current thread on the ID passed. Multiple threads may block on the same ID. When the ID is signaled with _SignalID all of the threads currently blocked on the ID will unblock.

Block IDs are not guaranteed to be unique to the caller; an unrelated piece of code may signal the ID in order to awaken a thread that it has blocked and cause this one to be spuriously awakened. Therefore when this service returns the caller must check for a spurious wake up and call _BlockOnID again if this has occurred. Typically a user maintained flag is used for this. The flag is set before calling _BlockOnID the first time and cleared when _SignalID is called.

The Block ID is traditionally the address of an object somehow related to the reason why the virtual device needs to block. Be aware of race conditions that may occur if _BlockOnID is called after the ID is signalled. For example, if a virtual device initiates an operation, it may be that the operation completes and the Block ID is signalled before the virtual device gets to call _BlockOnID to wait for the signal. The virtual device ends up blocking waiting for a signal that has already arrived.

See also _SignalID

_SignalID

include vmm.inc

VMMCall _SignalID, <ID>

Signals an ID. Threads currently blocked on this ID will be unblocked.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

ID

Value used to identify blocked threads.

This service does not cause an immediate context switch; instead any threads that need to be released are released the next time events are serviced.

This service preserves the state of the interrupt mask.

See also _BlockOnID

See also

�Chapter 26

Virtual Machine Interrupts and Callbacks

About Virtual Machine Interrupts and Callbacks

There are the following virtual machine interrupt and callback services:

Service �Description ��Build_Int_Stack_Frame �Builds a stack frame for an interrupt. ��Call_When_VM_Ints_Enabled �Installs an interrupts-enabled callback. ��Disable_VM_Ints �Disables interrupts for the virtual machine. ��Enable_VM_Ints �Enables interrupts for the virtual machine. ��Get_Instanced_V86_Int_Vector �Returns a real-mode interrupt address instanced per VM. ��Get_Inst_V86_Int_Vec_Base �Retrieves the address of a 400h-byte memory block that contains the current interrupt vectors for the given VM. ��Get_PM_Int_Type �Returns the type of interrupt vector. ��Get_PM_Int_Vector �Returns a protected-mode interrupt address. ��Get_V86_Int_Vector �Returns a real-mode interrupt address. ��Hook_V86_Int_Chain �Installs a hook procedure for a V86 interrupt. ��Set_PM_Int_Type �Sets the protected-mode interrupt type. ��Set_PM_Int_Vector �Sets a protected-mode interrupt vector. ��Set_V86_Int_Vector �Sets a real-mode interrupt vector. ��Simulate_Far_Call �Simulates a far call. ��Simulate_Far_Jmp �Simulates a jump. ��Simulate_Far_Ret �Simulates a far return. ��Simulate_Far_Ret_N �Simulates a far return with parameters. ��Simulate_Int �Simulates an interrupt. ��Simulate_Iret �Simulates a return from an interrupt. ��Simulate_Pop �Simulates a pop instruction. ��Simulate_Push �Simulates a push instruction. ��Test_VM_Ints_Enabled �Determines whether the current VM interrupts are enabled or disabled. ��Unhook_V86_Int_Chain �Removes the hook procedure for the specified interrupt. ��

Reference

Build_Int_Stack_Frame

include vmm.inc

mov cx, Segment ; code segment of routine to call

mov edx, Offset ; offset of routine to call

VMMcall Build_Int_Stack_Frame

Prepares the current virtual machine to execute an interrupt routine. This service saves the current Client_CS, Client_IP, and Client_Flags registers on the virtual machine's stack and sets the Client_CS and Client_IP registers to the address of the interrupt routine specified by the Segment and Offset parameters. When execution resumes in the virtual machine (such as when the Resume_Exec service is called), the virtual machine executes the interrupt routine. The interrupt routine continues to run until it executes an iret instruction. Uses Client_CS, Client_EIP, Client_ESP, Client_Flags, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Segment

Segment address or segment selector for the code segment containing the interrupt routine.

Offset

Offset of interrupt routine. If the specified code segment is a 16-bit segment, the high word of this parameter must be 0.

The following example executes the interrupt routine in the code segment specified by My_Segment at the offset My_Offset:

VMMcall Begin_Nest_Exec

mov cx, [My_Segment]

mov edx, [My_Offset]

VMMcall Build_Int_Stack_Frame

VMMcall Resume_Exec

VMMcall End_Nest_Exec

See also Simulate_Far_Call

Call_When_VM_Ints_Enabled

include vmm.inc

mov edx, RefData ; reference data

mov esi, OFFSET32 Callback ; points to callback procedure

VMMcall Call_When_VM_Ints_Enabled

Installs a callback procedure that the system calls when the virtual machine enables interrupts. This service calls the callback procedure immediately if interrupts are already enabled. Virtual devices use this service to ensure that virtual machine interrupts are enabled before carrying out some action, such as calling a callback procedure in the virtual machine. Uses Client_Flags, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

RefData

Reference data to be passed to the callback procedure.

Callback

Address of the callback procedure to install. For more information about the callback procedure, see below.

It is usually more convenient to use the Call_Priority_VM_Event service instead of calling this service directly. However, this service is faster. The callback procedure is automatically uninstalled when it is called.

The system calls the callback procedure as follows:

mov ebx, VM ; current VM handle

mov edx, OFFSET32 RefData ; points to reference data

mov ebp, OFFSET32 crs ; points to a Client_Reg_Struc

call [Callback]

The VM parameter is a handle identifying the current virtual machine, the RefData parameter points to the reference data specified when the callback procedure was installed, and the crs parameter points to a Client_Reg_Struc structure containing the register values for the virtual machine.

The callback procedure may use the EAX, EBX, ECX, EDX, ESI, EDI, and Flags registers.

See also Call_When_Idle, Call_When_Not_Critical, Call_When_Task_Switched

Disable_VM_Ints

include vmm.inc

VMMcall Disable_VM_Ints

Disables interrupts during virtual machine execution for the current virtual machine. This has the same effect as the virtual machine executing a cli instruction. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Virtual devices should use this service instead of changing the Client_Flags directly, so that the virtual machine manager can do necessary associated bookkeeping.

See also Enable_VM_Ints

Enable_VM_Ints

include vmm.inc

VMMcall Enable_VM_Ints

Enables interrupts during virtual machine execution for the current virtual machine. This has the same effect as the virtual machine executing an sti instruction. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Virtual devices use this service to permit callback procedures installed by the Call_When_Ints_Enabled or Call_Priority_VM_Event service to be called. The system does not call these callback procedures immediately. Instead, it waits until the next event occurs. This means the virtual machine's state does not change while this service executes.

Virtual devices should use this service instead of changing the Client_Flags directly, so that the virtual machine manager can do necessary associated bookkeeping.

See also Call_Priority_VM_Event, Call_When_VM_Ints_Enabled, Disable_VM_Ints

Get_Instanced_V86_Int_Vector

include vmm.inc

mov eax, InterruptNumber

mov ebx, VMHandle

VMMCall Get_Instanced_V86_Int_Vector

mov dword ptr [Handler], eax

Retrieves the address of the routine that handles the specified interrupt from a V86 interrupt table.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the address of the routine that handles the specified interrupt in the EAX register if successful; otherwise returns 0 in EAX. The high word of the EAX register contains the segment address of the interrupt-handling routine, and the low word of the EAX register contains the offset.

InterruptNumber

The interrupt number that causes the interrupt routine to be called.

VMHandle

VM handle.

The interrupt table is instanced per VM. For performance reasons, this service retrieves the address of the interrupt-handling routine without causing an instance fault. This service is preferred over accessing the interrupt vector table directly.

Get_Inst_V86_Int_Vec_Base

include vmm.inc

mov VMHandle

VMMcall Get_Inst_V86_Int_Vec_Base

mov [Address], ecx

Retrieves the address of a 400h-byte memory block that contains the current interrupt vectors for the given VM. This function can be used in place of the Get_Instanced_V86_Int_Vector service to examine multiple interrupt vectors. Uses ECX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns, in ECX, the address of a memory block that contains the current interrupt vectors.

VMHANDLE

Handle of the virtual machine.

Be careful when using this service. Your code must reside in page locked memory and must not touch pageable memory, including instance pages, and must not yield while using the pointer returned by this service.

A VxD must not use this pointer to modify interrupt vectors because doing so can cause the system to become unstable. To be safe, use the Get_Instanced_V86_Int_Vector service instead of Get_Inst_V86_Int_Vec_Base.

See also Get_Instanced_V86_Int_Vector

Get_PM_Int_Type

include vmm.inc

mov eax, Interrupt ; number of interrupt to check

VMMcall Get_PM_Int_Type

mov [Type], edx ; 0 if trap gate, else interrupt gate

Determines whether a protected-mode interrupt vector is an interrupt gate or trap-gate type interrupt. Uses EDX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns zero in the EDX register if the interrupt corresponds to a trap gate, a nonzero value if the it corresponds to an interrupt gate.

Interrupt

Number of the interrupt to check.

An interrupt that passes through an interrupt gate automatically clears the interrupt flag bit to disable interrupts. Interrupts that pass through a trap gate do not modify the interrupt bit. All protected-mode interrupts default to the trap-gate type, but virtual devices such as the virtual PIC device, may change some trap gates to interrupt gates so that hardware interrupts disable interrupts. The virtual PIC device leaves software interrupts, such as Interrupt 21h, unchanged. This avoids an unnecessary ring transition by eliminating the need for the software interrupt handlers to execute an sti instruction.

See also Get_PM_Int_Vector, Set_PM_Int_Type

Get_PM_Int_Vector

include vmm.inc

mov eax, Interrupt ; number of interrupt to check

VMMcall Get_PM_Int_Vector

mov [Segment], cx ; selector for interrupt routine

mov [Offset], edx ; offset to interrupt routine

Returns the address of the interrupt routine for the specified protected-mode interrupt in the current virtual machine. Uses ECX, EDX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the selector in the CX register and the offset in the EDX register. The high word of the EDX register is zero if the code segment is a 16-bit segment. The zero flag is set if the interrupt address points to the default interrupt handler, or clear if a virtual device has hooked the interrupt.

Interrupt

Number of the interrupt to check.

The system maintains a protected-mode interrupt vector table for each virtual machine. By default, each table entry points to a protected-mode breakpoint procedure that reflects the interrupt to V86 mode.

See also Get_PM_Int_Type, Set_PM_Int_Vector

Get_V86_Int_Vector

include vmm.inc

mov eax, Interrupt ; number of interrupt to check

VMMcall Get_V86_Int_Vector

mov [Segment], cx ; segment addr. for interrupt routine

mov [Offset], edx ; offset of interrupt routine

Returns the address of the interrupt routine for the specified real-mode interrupt in the current virtual machine. Uses ECX, EDX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the segment address in the CX register and the offset in the EDX register. The high word of the EDX register is always zero.

Interrupt

Number of the interrupt to check.

See also Get_PM_Int_Vector, Set_V86_Int_Vector

Hook_V86_Int_Chain

include vmm.inc

mov eax, Interrupt ; number of interrupt to hook

mov esi, OFFSET32 HookProc ; points to hook procedure

VMMcall Hook_V86_Int_Chain

jc not_installed ; carry flag set if procedure not installed

Installs a hook procedure that the system calls whenever the specified interrupt occurs. Virtual devices use this service to monitor software interrupts, and simulated hardware interrupts in V86 mode. Unlike Windows 3.1 in which this service was available only during initialization, Windows 95 allows V86 interrupt hooks to be installed after initialization is complete. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, set otherwise.

Interrupt

Number of the interrupt for which to install the hook procedure.

HookProc

Address of the hook procedure. For more information about the hook procedure, see below.

The system calls the hook procedure whenever the corresponding interrupt occurs, a virtual device calls the Simulate_Int service, or the system simulates a hardware interrupt. This means a hook procedure must make no assumptions about the origin of the interrupt.

The system calls the procedure as follows:

mov eax, Interrupt ; number of interrupt hooked

mov ebx, VM ; current VM handle

mov ebp, OFFSET32 crs ; points to a Client_Reg_Struc

call [HookProc]

jc pass_to_next ; carry set if interrupt not serviced

The Interrupt parameter is the number of the current interrupt, the VM parameter is a handle identifying the current virtual machine, and the crs parameter points to a Client_Reg_Struc structure containing the register values of the current virtual machine. If the hook procedure services the interrupt, it must clear the carry flag to prevent the system from passing the interrupt to the next hook procedure.

Any number of virtual devices can install a hook procedure for a given interrupt. The system always calls the last hook procedure first. A hook procedure either services the interrupt or directs the system to pass the interrupt to the next hook procedure. If no hook procedure services the interrupt, the system reflects the interrupt to the virtual machine.

This service is recommended instead of hooking the V86 interrupt vector directly.

See also Set_V86_Int_Vector, Simulate_Int

Simulate_Far_Call

include vmm.inc

mov cx, Segment ; segment containing procedure

mov edx, Offset ; offset of procedure

VMMcall Simulate_Far_Call

Simulates a far call to a procedure in the the current virtual machine. This service sets the Client_CS and Client_IP registers to the specified procedure address after saving the original Client_CS and Client_IP registers on the stack of the current virtual machine. When the virtual machine resumes execution (such as when the Resume_Exec service is called), the system executes the specified procedure and returns only when the procedure executes a far ret instruction. Uses Client_CS, Client_EIP, Client_SP, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Segment

Selector or segment address of the code segment containing the procedure.

Offset

Offset of the procedure to call. If the code segment is a 16-bit segment, the high word must be zero.

See also Build_Int_Stack_Frame, Simulate_Far_Jmp

Simulate_Far_Jmp

include vmm.inc

mov cx, Segment ; segment containing procedure

mov edx, Offset ; offset of procedure

VMMcall Simulate_Far_Jmp

Simulates a far jump to a procedure in the current virtual machine. This service sets the Client_CS and Client_IP registers to the specified address. When the virtual machine resumes execution (such as when the Resume_Exec service is called), the system executes the specified procedure. Uses Client_CS, Client_EIP, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Segment

Selector or segment address of the code segment containing the procedure.

Offset

Offset of the procedure to jump to. If the code segment is a 16-bit segment, the high word must be zero.

See also Simulate_Far_Call

Simulate_Far_Ret

include vmm.inc

VMMcall Simulate_Far_Ret

Simulates a far return in the current virtual machine. This service pops the top two words (or doublewords) from the stack of the current virtual machine, and copies these values to the Client_CS and Client_EIP or Client_IP registers. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

This services pops two word values from the stack if the segment containing the address is a 16-bit segment. Otherwise, this service pops two doubleword values.

See also Simulate_Far_Call, Simulate_Far_Ret_N

Simulate_Far_Ret_N

include vmm.inc

mov eax, Bytes ; number of bytes to pop from stack

VMMcall Simulate_Far_Ret_N

Simulates a far return in the current virtual machine. This service pops the top two words (or doublewords) from the stack of the current virtual machine, and places the values in the Client_CS and Client_EIP or Client_IP registers. It then adds the specified value to the Client_ESP or Client_SP register, effectively popping any pushed parameters from the stack. Uses Client_CS, Client_EIP, Client_ESP, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Bytes

Number of bytes to pop from the stack.

See also Simulate_Far_Call, Simulate_Far_Ret

Simulate_Int

include vmm.inc

mov eax, Interrupt ; interrupt number

VMMcall Simulate_Int

Simulates an interrupt in the current virtual machine. The service first calls any hook procedures set by the Hook_V86_Int_Chain service. If no hook procedure services the interrupt, this service pushes the Client_Flags, Client_CS, and Client_IP registers on the stack of the current virtual machine. When the virtual machine resumes execution (such as when an Resume_Exec service is called), the system carries out the simulated interrupt and executes the corresponding V86 mode interrupt routine. Uses Client_CS, Client_EIP, Client_Flags, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Interrupt

Number of the interrupt to simulate.

The virtual PIC device uses this service to simulate hardware interrupts. Other virtual devices use the Exec_Int service to simulate interrupts.

If the virtual machine is currently in V86 mode, this service simulates a V86 interrupt. Otherwise, the service simulates a protected-mode interrupt. Simulating an interrupt in a virtual machine running a protected-mode application can have undesirable effects if the corresponding interrupt attempts to reflect the interrupt to V86 mode.

Virtual devices that need immediate execution of an interrupt should use the Exec_Int service in a nested execution block.

See also Exec_Int

Simulate_Iret

include vmm.inc

VMMcall Simulate_Iret

Simulates a return from an interrupt. This service pops the top three word or doubleword values from the stack of the current virtual machine, and places the values in the Client_Flags, Client_CS, and Client_EIP or Client_IP registers. Uses Client_CS, Client_EIP, Client_ESP, Client_Flags, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

This service pops three word values from the stack if the segment corresponding to the return address is a 16-bit segment. Otherwise, the service pops three doubleword values.

See also Simulate_Int

Simulate_Pop

include vmm.inc

VMMcall Simulate_Pop

mov [Value], eax ; value popped from stack

Returns the word or doubleword value at the top of the stack of the current virtual machine, and adds two or four to the Client_ESP register. Uses Client_ESP, EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the value popped from virtual machine stack in the EAX register. The high word is zero if in V86 mode, or the virtual machine is running a 16-bit program.

See also Simulate_Push

Simulate_Push

include vmm.inc

mov eax, Value ; value to push

VMMcall Simulate_Push

Pushes a word or doubleword value on the stack of the current virtual machine and subtracts two or four from the Client_ESP register. Uses Client_ESP, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Value

Value to push on the stack. In V86 mode or when the virtual machine is running a 16-bit program, only the low word is pushed.

See also Simulate_Pop

Set_PM_Int_Type

include vmm.inc

mov eax, Interrupt ; interrupt number

mov edx, Type ; 0 if trap gate, else interrupt gate

VMMcall Set_PM_Int_Type

Sets the gate type for a protected-mode interrupt vector. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Interrupt

Number of the interrupt to set.

Type

Type of gate to set. If this parameter is zero, the service sets a trap gate; if nonzero, it sets an interrupt gate.

An interrupt passing through an interrupt gate automatically clears the interrupt flag bit to disable interrupts. Interrupts passing through a trap gate do not modify the interrupt bit. All protected-mode interrupts default to the trap gate type, but virtual devices such as the virtual PIC device, may change some trap gates to interrupt gates so that hardware interrupts disable interrupts. The virtual PIC device leaves software interrupts, such as Interrupt 21h, unchanged. This avoids an unnecessary ring transition by eliminating the need for the software interrupt handlers to execute an sti instruction.

See also Get_PM_Int_Type, Set_PM_Int_Vector

Set_PM_Int_Vector

include vmm.inc

mov eax, Interrupt ; interrupt number

mov cx, Segment ; selector for interrupt routine

mov edx, Offset ; offset of interrupt routine

VMMcall Set_PM_Int_Vector

Sets the specified protected-mode interrupt vector to the address of the given interrupt routine. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Interrupt

Number of the interrupt to set.

Segment

Selector of the code segment containing the interrupt routine.

Offset

Offset to the interrupt routine. If the code segment containing the routine is a 16-bit segment, the high word of this parameter must be zero.

If the Set_PM_Int_Vector service is called before the Sys_VM_Init message, the installed interrupt routine becomes part of the default interrupt vector table for every virtual machine. Otherwise, this service affects the interrupt vector table for the current virtual machine only. By default, each table entry points to a protected-mode breakpoint procedure that reflects the interrupt to V86 mode.

See also Get_PM_Int_Vector, Set_PM_Int_Type, Set_V86_Int_Vector

Set_V86_Int_Vector

include vmm.inc

mov eax, Interrupt ; interrupt number

mov cx, Segment ; segment address of interrupt routine

mov edx, Offset ; offset of interrupt routine

VMMcall Set_V86_Int_Vector

Sets the specified real-mode interrupt vector to the address of the given interrupt routine. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Interrupt

Number of the interrupt to set.

Segment

Segment address of the code segment containing the interrupt routine.

Offset

Offset of the interrupt routine. The high word must be zero.

If the Set_V86_Int_Vector service is called before the Sys_VM_Init message, the installed interrupt routine becomes part of the default interrupt vector table for every virtual machine. Otherwise, this service affects the interrupt vector table for the current virtual machine only.

See also Get_V86_Int_Vector, Set_PM_Int_Vector

Test_VM_Ints_Enabled

include vmm.inc

mov ebx, VMHandle

mov ebp, OFFSET32 Client_Reg_Struc

VMMcall Test_VM_Ints_Enabled

jz VM_Interrupts_Disabled

Determines whether the current VM interrupts are enabled or disabled. Uses flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The zero flag is clear if the VM's interrupts are enabled; the zero flag is set if they are disabled.

VMHandle

Handle of the virtual machine to be tested.

Client_Reg_Struc

Address of Client_Reg_Struc structure containing the contents of the virtual machine's registers.

Simply checking the interrupt flag in the client registers is not a sufficient means of testing the condition of a VM's interrupts since another thread in the VM may have disabled the interrupts.

Unhook_V86_Int_Chain

include vmm.inc

mov eax, Interrupt

mov esi, OFFSET32 Hook_Proc

VMMCall Unhook_V86_Int_Chain

jc Error_Handler

Removes the hook procedure for the specified interrupt. Uses flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Sets the carry flag if the interrupt number is invalid or the procedure was not found.

Interrupt

The interrupt for which the hook procedure should be removed.

Hook_Proc

The hook procedure which should be removed.

The hook procedure being removed must have been installed using the Hook_V86_Int_Chain.

�Chapter 27

VMM Macros

About VMM Macros

This chapter is an alphabetic listing of the virtual machine manager (VMM) macros. There are these macros:

ArgVar �Mono_Out ��Assert_Client_Ptr �Mono_Out_At ��Assert_Cur_Thread_Handle �pCall ��Assert_Cur_VM_Handle �Pop_Client_State ��Assert_Ints_Disabled �Push_Client_State ��Assert_Ints_Enabled �Queue_Out ��Assert_Thread_Handle �RestoreReg ��Assert_VM_Handle �Return ��Assumes_Fall_Through �SaveReg ��Begin_Control_Dispatch �sCall ��Begin_Service_Table �ShiftState ��Begin_Touch_1st_Meg �Trace_Out ��Begin_VxD_IO_Table �VMMCall ��BeginProc �VMMJmp ��CallRet �VxD_CODE_ENDS ��cCall �VxD_CODE_SEG ��Client_Ptr_Flat �VxD_DATA_ENDS ��Control_Dispatch �VxD_DATA_SEG ��Debug_Out �VxD_ICODE_ENDS ��Debug_Printf �VxD_ICODE_SEG ��Declare_Virtual_Device �VxD_IDATA_ENDS ��Dispatch_Byte_IO �VxD_IDATA_SEG ��Dword_Align �VxD_IO ��Emulate_Non_Byte_IO �VxD_LOCKED_CODE_ENDS ��End_Control_Dispatch �VxD_LOCKED_CODE_SEG ��End_Service_Table �VxD_LOCKED_DATA_ENDS ��End_Touch_1st_Meg �VxD_LOCKED_DATA_SEG ��End_VxD_IO_Table �VxD_PAGEABLE_CODE_ENDS ��EndProc �VxD_PAGEABLE_CODE_SEG ��Fatal_Error �VxD_REAL_INIT_ENDS ��GetVxDServiceOrdinal �VxD_REAL_INIT_SEG ��IO_Delay �VxDCall ��IsDebugOnlyLoaded �VxDint ��LeaveProc �VxDJmp ��LocalVar ���

Reference

ArgVar

include vmm.inc

ArgVar varname, size, used

Declares a stack argument for a procedure.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

varname

Specifies the name of the variable.

size

A numeric expression specifying the size of the variable in bytes. The words BYTE, WORD, and DWORD, are acceptable as synonyms for 1, 2, and 4, respectively. If the value is not a multiple of four, the variable is padded to the nearest multiple of four.

used

An optional parameter, normally omitted. If present and identical to the word NOTUSED, indicates that this parameter is not used. In such case, the ArgVar macro will point the name at an intentionally undefined symbol.

This macro is used in writing assembly-language procedures which use the C, Pascal, or StdCall calling convention.

If the variable is a WORD, then two additional symbols are defined: varnameL refers to the low byte and varnameH refers to the high byte. If the variable is a DWORD, then six additional symbols are defined: varnameL refers to the low word, varnameLL to the low byte of the low word, varnameLH to the high byte of the low word, varnameH to the high word, varnameHL to the low byte of hte high word, and varnameHH to the high byte of the high word.

When the EndProc is reached, the names of all ArgVar variables are set to an intentionally undefined symbol so that they cannot be used by accident later. (This behavior can be overridden by using the KEEPFRAMEVARS attribute on EndProc.) Here is an example procedure that uses these macros. The example procedure doesn't do anything interesting, but it illustrates the proper use of the macros.

BeginProc MyProc, CCALL

ArgVar Param1, DWORD

ArgVar Param2, WORD

ArgVar Param3, 12 ; third parameter is a 12-byte structure,

 ; passed by value

LocalVar Local1, DWORD

LocalVar Local2, <size FOO>

EnterProc

SaveReg <ebx, esi>

lea eax, Local2 ; eax now points to a FOO structure on the stack

mov cx, Param2 ; cx contains the value of Param2

mov Local1LL, ch ; Store ch into the the low byte of the low

 ; word of Local1

lea edx, Param3 ; edx points to the 128-byte structure on the stack

RestoreReg <esi, ebx>

LeaveProc

Return

EndProc MyProc

The above example illustrates several important points.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The first thing after the BeginProc is an optional list of ArgVars, naming the procedure arguments.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Immediately following the ArgVars is an optional list of LocalVars, naming the procedure local variables.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Immediately following the LocalVars is the EnterProc macro, which sets up the procedure local stack frame.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The body of the procedure may use the SaveReg and RestoreReg macros to push and pop values from the stack. Using SaveReg and RestoreReg is mandatory if you use the ESP attribute on the BeginProc macro, otherwise the macros will access the wrong stack variables because you moved the stack pointer behind their back. Furthermore, the macros do not track jump instructions, so jumping around inside an ESP procedure is fraught with peril. Unless you know what you're doing, you might be better off just not using the ESP attribute.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	To return from a procedure, use the LeaveProc, then Return macros. Each procedure must contain exactly one LeaveProc and one Return.

See also Debug_Test_Valid_Handle

Assert_Cur_Thread_Handle

include debug.inc

Assert_Cur_Thread_Handle ThreadHandle, level

Asserts that the specified register is equal to the handle of the current thread.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

ThreadHandle

Specifies the register containing the thread handle to check. The macro is more efficient if the thread handle is in the EDI register, but any 32-bit register is allowed.

level

Optional parameter which specifies the debugging level for which the macro should generate code. The default is DeblevelNormal.

This macro does not generate code unless the DEBUG symbol is defined. If the macro generates code, the code calls the Debug_Test_Cur_Thread_Handle service.

See also Debug_Test_Valid_Handle

Assert_Client_Ptr

include debug.inc

Assert_Client_Ptr reg, level

Asserts that the specified register is a pointer to the current set of client registers.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

reg

Specifies the register containing the pointer to check. The macro is more efficient if the client pointer is in the EBP register, but any 32-bit register is allowed.

level

Optional parameter which specifies the debugging level for which the macro should generate code. The default is DeblevelNormal.

This macro does not generate code unless the DEBUG symbol is defined. If the macro generates code, the code calls the Validate_Client_Ptr service.

See also Debug_Test_Valid_Handle

Assert_Cur_VM_Handle

include debug.inc

Assert_Cur_VM_Handle VM, level

Asserts that the specified register is equal to the handle of the current virtual machine.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

VM

Specifies the register containing the virtual machine handle to check. The macro is more efficient if the thread handle is in the EBX register, but any 32-bit register is allowed.

level

Optional parameter which specifies the debugging level for which the macro should generate code. The default is DeblevelNormal.

This macro does not generate code unless the DEBUG symbol is defined. If the macro generates code, the code calls the Debug_Test_Cur_VM_Handle service.

See also Debug_Test_Valid_Handle

Assert_Ints_Disabled

include debug.inc

Assert_Ints_Disabled

Asserts that interrupts are currently disabled.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

If the DEBUG symbol is defined, the macro generates code which checks that interrupts are disabled. If interrupts are enabled, the generated code will print an error message and stop in the debugger if a debugger is installed.

See also Debug_Test_Valid_Handle

Assert_Ints_Enabled

include debug.inc

Assert_Ints_Enabled

Asserts that interrupts are currently disabled.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

If the DEBUG symbol is defined, the macro generates code which checks that interrupts are enabled. If interrupts are disabled, the generated code will print an error message and stop in the debugger if a debugger is installed.

See also Debug_Test_Valid_Handle

Assert_Thread_Handle

include debug.inc

Assert_Thread_Handle ThreadHandle, level, USES_FLAGS

Asserts that the specified thread handle is valid.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value. The macro does not return if the handle is not valid.

ThreadHandle

Specifies the register containing the thread handle to check. The macro is more efficient if the thread handle is in the EDI register, but any 32-bit register is allowed.

level

Optional parameter which specifies the debugging level for which the macro should generate code. The default is DeblevelNormal.

USES_FLAGS

Optional parameter which, if equal to the literal USES_FLAGS, indicates that the macro is allowed to modify the flags register. The default is to preserve flags.

This macro does not generate code unless the DEBUG symbol is defined. If the macro generates code, the code calls the Debug_Test_Valid_Thread_Handle service.

See also Debug_Test_Valid_Handle

Assert_VM_Handle

include debug.inc

Assert_VM_Handle VM, level, USES_FLAGS

Determines whether the specified virtual machine handle is valid.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value. The macro does not return if the handle is not valid.

VM

Specifies the register containing the virtual machine handle to check. The macro is more efficient if the virtual machine handle is in the EBX register, but any 32-bit register is allowed.

level

Optional parameter that specifies the debugging level for which the macro should generate code. The default value is DevlevelNormal.

USES_FLAGS

Optional parameter which, if equal to the literal USES_FLAGS, indicates that the macro is allowed to modify the flags register. The default value preserves flags.

This macro is only available in the debugging version of Windows.

This macro does not generate code unless the DEBUG symbol is defined. If the macro generates code, the code calls the Debug_Test_Valid_Handle service.

See also Debug_Test_Valid_Handle

Assumes_Fall_Through

include debug.inc

Assumes_Fall_Through labelname

Asserts at compile time that the indicated label comes next.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

labelname

Name of the label to check.

This macro may be used when one procedure falls through to another, so that an error will be raised at compile time if the condition is not met. Example:

BeginProc FirstProc

	mov		eax, 1

	Assumes_Fall_Through SecondProc		; fall through to SecondProc

EndProc FirstProc

BeginProc SecondProc

	... do something with EAX ...

	retd

EndProc SecondProc

If anybody ever inserts code between FirstProc and SecondProc, the Assumes_Fall_Through macro will raise an error, thus catching the bug automatically. This may look stupid here, but imagine if there was a 200-line comment block between the two procedures.

See also Debug_Test_Valid_Handle

Begin_Control_Dispatch

include vmm.inc

Begin_Control_Dispatch DeviceName

Builds a table for dispatching messages passed to the control procedure for the specified virtual device. This macro is used in conjunction with the Control_Dispatch and End_Control_Dispatch macros.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

DeviceName

Name of the virtual device. The macro uses this parameter to construct the label for the control procedure (appends _Control to the end of this name). This control procedure label must also be specified in the Declare_Virtual_Device macro.

The Control_Dispatch macro can be used without Begin_Control_Dispatch, but then it the programmer's responsibility to declare a procedure in locked code (VxD_LOCKED_CODE_SEG), and clear the carry flag for any unprocessed messages. The advantage in using Begin_Control_Dispatch macro is when a large number of messages are processed by a device. The macro builds a jump table which usually requires less code than the sequence of compare and jump instructions that are generated when Control_Dispatch is used alone.

The following example builds a complete dispatch table for the virtual device named MyDevice:

Begin_Control_Dispatch MyDevice

Control_Dispatch Device_Init, MyDeviceInitProcedure

Control_Dispatch Sys_VM_Init, MyDeviceSysInitProcedure

Control_Dispatch Create_VM, MyDeviceCreateVMProcedure

End_Control_Dispatch MyDevice

An alternative method for writing the control procedure is as follows:

BeginProc MyDevice_Control

Control_Dispatch Device_Init, MyDeviceInitProcedure

Control_Dispatch Sys_VM_Init, MyDeviceSysInitProcedure

Control_Dispatch Create_VM, MyDeviceCreateVMProcedure

clc ; Don't forget

ret ; these two lines!

EndProc MyDevice_Control

If you use the CallType variant of the Control_Dispatch macro, you may not use the Begin_Control_Dispatch macro; you must use this alternative method.

See also Control_Dispatch, Declare_Virtual_Device, End_Control_Dispatch

BeginProc

include vmm.inc

BeginProc ProcName, Attributes

Marks the start of a procedure having the specified attributes.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

ProcName

Name of the procedure to create.

Attributes

One or more procedure attributes. Can be any number of these attributes, with multiple attributes separated by commas:

Attribute �Description ��HIGH_FREQ �Specifies a frequently called procedure. The macro aligns the start of the procedure on a doubleword boundary to optimize calls to the procedure. ��PUBLIC �Creates a global procedure that other procedures in the virtual device can call. ��PCALL �Use the Pascal calling convention. ��CCALL �Use the C calling convention. ��SCALL �Use the StdCall calling convention. ��ESP �Use ESP instead of EBP to access arguments. See caveats below. ��HOOK_PROC, hook_var �This procedure is being used to hook a service or fault. See remarks below. ��segment_type �Place the procedure in the segment_type code segment. Valid segment types are LOCKED, INIT, PAGEABLE, STATIC, DEBUG_ONLY, SYSEXIT, INT21, RARE, W16, W32, VMCREATE, VMDESTROY, THCREATE, THDESTROY, VMSUSPEND, VMRESUME, PNP, DOSVM, and LOCKABLE. ��

If the DEBUG symbol is defined, then the following keywords are also recognized. (If the DEBUG symbol is not defined, then the following keywords have no effect.)

Attribute �Description ��NO_LOG �Prevents entry to this procedure from being logged via Log_Call_Proc. ��SERVICE �Indicates that this procedure is an exported service. Additional code is generated to ensure that the service is not called asynchronously, as well some code for system performance profiling, and checking that basic ring 0 assumptions are not violated. ��ASYNC_SERVICE �The same as SERVICE, except that the check that the service is not called asynchronously is not performed. ��NO_PROFILE �If the procedure is a service, disables the generation of code which does performance profiling. ��NO_TEST_CLD �Disables the normal check that the processor direction flag is clear (up). ��TEST_BLOCK �Generate code to check on entry to the procedure that there are no outstanding ENTER_NOBLOCK calls. This is the default if the procedure resides in pageable code. See _Debug_Flags_Service for more information. ��TEST_REENTER �Generate code to check on entry to the procedure that VMM has not been re-entered. See _Debug_Flags_Service for more information. ��NEVER_REENTER �Generate code to check on entry to the procedure that VMM has not been re-entered, not even when Begin_Reentrant_Execution has been called. See _Debug_Flags_Service for more information. ��NOT_SWAPPING �Generate code to check on entry to the procedure that the current thread is not swapping. See _Debug_Flags_Service for more information. ��

If a procedure is marked ASYNC_SERVICE, then it must be re-entrant, must not call synchronous services, and must restrict itself to locked code and data. Asynchronous services may be called by interrupt handling routines when processing interrupts. Therefore, virtual devices which export asynchronous services must be prepared for the service to be called any time interrupts are disabled.

Marking a procedure as PCALL, SCALL, or CCALL indicates to the ArgVar, LocalVar, EnterProc, LeaveProc and Return macros how code should be generated to access procedure parameters and local variables, and how code should be generated to return to the calling procedure.

If a procedure is marked ESP, then extra care must be taken to maintain the assumptions made by the ArgVar and LocalVar macros. All stack pushes must be performed with the SaveReg macro, and all stack pops must be performed with the RestoreReg macro. You may not adjust the stack manually, and you may not jump over code that adjusts the stack. These are relatively severe restrictions, but that's the way it is. If you can't live within them, then don't use the ESP attribute. Nobody's forcing you.

If a procedure will be passed to Hook_Device_Service, Hook_V86_Fault, Hook_PM_Fault, or Hook_VMM_Fault, then it must be marked with the HOOK_PROC attribute so that the service can be unhooked. This is important, even if you do not plan to unhook the service or fault yourself. Failure to comply may prevent other virtual devices from unhooking the service. The hook_var parameter is the name of the variable into which the address of the previous hook will be stored. See the discussion of hook procedure in the Overview for additional information about hook procedures.

If a segment type is provided, then the procedure will be placed in the segment named VxD_segment_type_CODE_SEG. This is provided for convenience in procedure-level page tuning.

See also EndProc

Begin_Service_Table

include vmm.inc

Begin_Service_Table DeviceName

Begin_Service_Table DeviceName, DefSegment

Marks the start of the service table for a virtual device. A virtual device uses the service table to export the names and addresses of its services. Other virtual devices can use the VxDCall macro to call these services.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

DeviceName

Name of the virtual device. This name is used to create a macro, named DeviceName_Service, that is used in the table to define each exported service. For more information about the macro, see below.

DefSegment

Not used with Windows95 VxDs. This parameter exists solely for compatibility with Windows 3.1 VxDs.

A virtual device exports its services by defining the symbol Create_DeviceName_Service_Table before using the Begin_Service_Table macro. Virtual devices that call these service also use the Begin_Service_Table macro but must not define the Create_DeviceName_Service_Table symbol.

The complete service table has the following form:

Begin_Service_Table DeviceName

DeviceName_Service Procedure, LocalSeg

 .

 .

 .

End_Service_Table DeviceName

The DeviceName_Service macro, created by Begin_Service_Table, adds the specified service to the table. A table may have any number of these macros.

The Procedure parameter specifies the name of the service to add to the table. If RESERVED is given, the macro reserves an entry in the table instead of adding a procedure.

The LocalSeg parameter specifies which segment contains the procedure. This parameter is optional and exists for compatibility with Windows 3.1. You shouldn't need to provide a local segment.

See also End_Service_Table, VxD_LOCKED_DATA_SEG

Begin_Touch_1st_Meg

include debug.inc

Begin_Touch_1st_Meg

Enables the first 1 megabyte of memory for the current virtual machine. Virtual devices use this macro to examine and modify addresses in the first megabyte. This macro is intended to be used for debugging purposes.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

This macro does not generate code unless the DEBUG symbol is defined. If the macro generates code, the code calls the Enable_Touch_1st_Meg service.

See also Enable_Touch_1st_Meg, End_Touch_1st_Meg

Begin_VxD_IO_Table

include vmm.inc

Begin_VxD_IO_Table TableName

Marks the beginning of an I/O table. Virtual devices use the macro in conjunction with the End_VxD_IO_Table and VxD_IO macros to create a table of I/O callback procedures for the Install_Mult_IO_Handlers service.

TableName

Name of the table. This parameter can be used in subsequent calls to the Install_Mult_IO_Handlers to specify the address of the table.

See also Install_Mult_IO_Handlers, End_VxD_IO_Table, VxD_IO

CallRet

include vmm.inc

CallRet Procedure

Calls or jumps to the specified procedure, depending on whether the DEBUG symbol is defined. If DEBUG is defined, the macro generates a call to the procedure followed by a return instruction. Otherwise, the macro generates a jump to the procedure.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Procedure

Name of the procedure or service to call.

See also Log_Proc_Call

cCall

include vmm.inc

cCall Procedure

cCall Procedure, Param1, Flags

cCall Procedure, <Param1, Param2, Param3, ..., ParamN>, Flags

Pushes the specified parameters on the stack and calls the specified procedure. When the procedure returns, the macro pops the parameters from the stack.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The return value depends on the specified procedure.

Procedure

Name of the procedure to call. This parameter can be either a local or public procedure, but must be defined within the virtual device making the call.

Param1, Param2, Param3, ..., ParamN

Optional parameters to pass to the procedure. If more than one parameter is given, they must be separated with commas and enclosed in angle brackets (<>).

Flags

Optional parameter, that if set to the value PRESERVE_FLAGS, causes the cCall macro to preserve the flags register on return from the called procedure. The cCall macro normally changes the contents of the flags register as part of its cleanup operations.

This macro pushes the parameters using the C-language calling convention, in order from right to left, then removes the parameters from the stack after the procedure returns. It also assumes that the called procedure follows the C-language register conventions, viz., that the EAX, ECX, EDX, and flags registers may be modified by the call, and that the return value is placed in the EAX register (and sometimes also the EDX register). If your procedure does not follow these rules, you should not use the cCall macro.

See also VMMCall, VxDCall

Client_Ptr_Flat

include vmm.inc

Client_Ptr_Flat LinAddr, Segment, Offset

Client_Ptr_Flat LinAddr, Segment, Offset, USES_EAX

Converts the specified segment:offset or selector:offset or segment:offset pair from the client register into a linear address.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the linear address in the register specified by the LinAddr parameter, if successful. If the specified selector is invalid, the service returns – 1 in the specified register.

LinAddr

32-bit register to receive the linear address.

Segment

Client segment register containing the segment address or selector to convert.

Offset

Client register containing the address offset to convert. If this optional parameter is not given, the macro converts the address using address offset 0. You can specify either a 16-bit or 32-bit general-purpose register. The macro will use the low word or the full 32-bit register, depending on whether the client is in 16-bit or 32-bit mode.

USES_EAX

If the word USES_EAX is appended to the macro call, the macro will use the EAX register as a scratch register. Normally the macro preserves all registers except LinAddr. The macro is slightly more efficient if it is allowed to damage the EAX register.

The Client_Ptr_Flat macro uses the Map_Flat service.

This example converts the address Client_DS:Client_(E)DX, and places the corresponding linear address in the EAX register:

Client_Ptr_Flat eax, DS, DX

See also Map_Flat

Control_Dispatch

include vmm.inc

Control_Dispatch Message, Procedure

Control_Dispatch Message, Procedure, CallType, <Param1, Param2, ...>

Dispatches the given control message to the specified procedure.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Message

Identifies the control message. Can be one of the following values:

Value �Description ��Begin_PM_App �A protected-mode application is starting. ��Close_VM_Notify �A virtual machine is closing. ��Create_Thread �New thread being created. ��Create_VM �A virtual machine is being created. ��Critical_Reboot_Notify �System is restarting (interrupt disabled). ��Debug_Query �Requests for virtual device's debugging interface. ��Destroy_Thread �Thread being destroyed. ��Destroy_VM �A virtual machine is being destroyed. ��Device_Init �Virtual devices initializing (interrupts enabled). ��Device_Reboot_Notify �System is restarting (interrupts enabled). ��End_PM_App �A protected-mode application is ending. ��Init_Complete �All virtual devices have initialized. ��PNP_New_Device �New devnode (directed). ��Power_Event �Power is being suspended or resumed. ��Reboot_Processor �Virtual device must restart system if it can. ��Set_Device_Focus �A virtual device is taking the focus. ��Sys_Critical_Exit �System is terminating (interrupt disabled). ��Sys_Critical_Init �Virtual devices initializing (interrupts disabled). ��Sys_VM_Init �System VM is being created. ��Sys_Dynamic_Device_Exit �Dynamic VxD being unloaded (directed). ��Sys_Dynamic_Device_Init �Dynamic VxD being loaded (directed). ��Sys_VM_Terminate �System VM is being destroyed. ��System_Exit �System is terminating (interrupts enabled). ��Terminate_Thread �Thread being terminated. ��Thread_Init �Thread being initialized. ��Thread_Not_Executeable �Thread has stopped executing. ��VM_Critical_Init �Virtual machine being created (interrupts disabled). ��VM_Init �Virtual machine being created (interrupts enabled). ��VM_Not_Executable �Virtual machine has stopped executing. ��VM_Resume �Virtual machine execution resumed. ��VM_Suspend �Virtual machine execution suspended. ��VM_Terminate �Virtual machine begin destroyed. ��W32_DeviceIoControl �Win32 DeviceIoControl entry (directed). ��

Another value defined in vmm.h is also acceptable.

Procedure

Name of the procedure to which to dispatch the message.

CallType

Optional parameter that describes the calling convention employed by the procedure. The default value indictates that the procedure is called directly without any special pre- or post-processing. Otherwise, the value may be cCall, pCall, or sCall, indicating that the procedure should be called with the C, Pascal, or StdCall calling convention, respectively. See below for additional remarks.

Param1, Param2, ...

Optional parameters to be passed to the procedure. Typically, registers are pushed as parameters. See below for additional remarks.

This macro is typically used in conjunction with the Begin_Control_Dispatch and End_Control_Dispatch macros to build a dispatch table. The Control_Dispatch macro can be used without the Begin_Control_Dispatch macro, but becomes the programmer's responsibility to declare a procedure in locked code (VxD_LOCKED_CODE_SEG), and clear the carry flag for any messages not processed.

If you use the CallType variant of this macro, then this macro may not be combined with the Begin_Control_Dispatch and End_Control_Dispatch macros.

See also Begin_Control_Dispatch, End_Control_Dispatch

Debug_Out

include debug.inc

Debug_Out String

Debug_Out String, level

Writes the specified string to the debugging device, and halts in the debugger if a debugger is attached.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

String

String to display. The string must be enclosed in double quotation marks. The string can contain register placeholders in the same forms as described for the Out_Debug_String service.

level

Optional symbol indicating the debugging level for which code should be generated. If the value of the Deblevel symbol is greater than or equal to level, then code is generated. Otherwise, code is not generated. The symbol can be DeblevelNormal or DeblevelMax. The default is DeblevelNormal.

Additional macros exist, such as Debug_OutX, where X is a conditional jump type, i.e., something that can follow the letter j to form a conditional jump instruction. In such case, the debug-out is performed only if the condition is satisfied.

Examples:

; The following message is printed only if Deblevel Deblevelmax

Debug_Out "Error! Mumble mumble", Deblevelmax

cmp nFrobs, 5

Debug_OutA "Error! More than 5 frobs!"

cmp [esi].dwSignature, 31415927h

Debug_OutNZ "Error! Invalid signature!"

The assembler generates code for the macro only if the constant DEBUG is defined before including the DEBUG.INC file.

See also Out_Debug_String, Test_Debug_Installed

Debug_Printf

include debug.inc

Debug_Printf FormatString, <Param1, Param2, ...>, level

Writes the specified string to the debugging device, using C-style formatting.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

FormatString

Format string for output. This string may contain C-style formatting sequences.

Param1, Param2, ...

Substitution arguments for the format string. This parameter is optional; if omitted, the FormatString must not contain any % substitutions. Moreover, there must be enough parameters to correspond to the number of substitutions required by the format string.

level

Optional symbol indicating the debugging level for which code should be generated. If the value of the Deblevel symbol is greater than or equal to level, then code is generated. Otherwise, code is not generated. The symbol can be DeblevelNormal or DeblevelMax. The default is DeblevelNormal.

The assembler generates code for the macro only if the constant DEBUG is defined before including the DEBUG.INC file, in which case it uses _Debug_Printf_Service to do the work. See the description of _Debug_Printf_Service for additional remarks and restrictions.

See also Out_Debug_String, Test_Debug_Installed

Declare_Virtual_Device

include vmm.inc

Declare_Virtual_Device Name, MajorVer, MinorVer, CtrlProc, DeviceNum,

 InitOrder, V86Proc, PMProc

Defines the name, device number, control procedure, and other attributes of a virtual device. Every virtual device must use the Declare_Virtual_Device macro.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Name

Name of the virtual device.

MajorVer

Value specifying the major version number for the virtual device.

MinorVer

Value specifying the minor version number for the virtual device.

CtrlProc

Name of the control procedure for the virtual device. The control procedure handles all system control messages sent to the virtual device. For most virtual devices, this parameter is the name of the procedure created by the Begin_Control_Dispatch macro.

DeviceNum

Device identifier for the virtual device. If the virtual device replaces an existing virtual device, the device identifier must be be identical to the device identifier of the virtual device being replaced. Otherwise, the value must be Undefined_Device_ID or a value previously obtained from Microsoft.

Since Windows 95 supports name-based VxD services, it is no longer necessary to obtain a virtual device identifier from Microsoft. Instead, set the DeviceNum to Undefined_Device_ID and use name-based services to access your VxD. (Do not make up device numbers.)

InitOrder

Value speifying the initialization order of the virtual device relative to other virtual devices. If you are replacing an existing virtual device, this value must be the same as that of the device you are replacing. If your device is not sensitive to initialization order, use Undefined_Init_Order. If your device needs to initialize at a particular time relative to another device, make the initialization order relative to the init order of that other device. When doing so, use a generous offset such as XX_Init_Order + 00040000h or XX_Init_Order – 0004000h, so as to allow room for additional devices to be inserted later. Do not use values like XX_Init_Order + 1 or XX_Init_Order – 1. Do not use VMM_Init_Order or Debug_Init_Order.

V86Proc

Name of the V86-mode API procedure. This procedure processes any calls to the virtual device made by V86-mode applications running in a virtual machine. This parameter is optional.

PMProc

Name of the protected-mode API procedure. This procedure processes any calls to the virtual device made by protected-mode applications running in a virtual machine. This parameter is optional.

See also Begin_Control_Dispatch

Dispatch_Byte_IO

include vmm.inc

Dispatch_Byte_IO In_Proc, Out_Proc

Checks the size of the I/O request and dispatches the request to either the Simulate_IO service, or to the specified single-byte input or output procedure. I/O callback procedures use this macro to simplify processing of I/O requests.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

In_Proc

Name of the procedure to carry out a single-byte input operation. If this parameter is the Fall_Through keyword, the macro ignores input operations.

Out_Proc

Name of the procedure to carry out a single-byte output operation. If this parameter is the Fall_Through keyword, the macro ignores output operations.

The EAX, EBX, ECX, EDX, and EBP registers must contain values specified as valid input parameters for the Simulate_IO service. Dispatch_Byte_IO checks the ECX register for the I/O type. If this type specifies an I/O request that is larger than a byte, the macro jumps to the Simulate_IO service.

See also Emulate_Non_Byte_IO, Simulate_IO

Dword_Align

include vmm.inc

Dword_Align SegName

Aligns the specified segment on a doubleword boundary by inserting nop instructions.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

SegName

Name of the segment to align. This parameter can be _TEXT, _ITEXT, or _LTEXT.

Emulate_Non_Byte_IO

include vmm.inc

Emulate_Non_Byte_IO

Checks the size of the I/O request and jumps to the Simulate_IO service if the request is larger than a byte. I/O callback procedures use this macro to simplify processing of I/O requests.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

The EAX, EBX, ECX, EDX, and EBP registers must contain values specified as valid input parameters for the Simulate_IO service. Emulate_Non_Byte_IO checks the ECX register for the I/O type. If this type specifies an I/O request that is larger than a byte, the macro jumps to the Simulate_IO service.

See also Dispatch_Byte_IO, Simulate_IO

End_Control_Dispatch

include vmm.inc

End_Control_Dispatch DeviceName

Marks the end of a dispatch table for a virtual device. This macro is used in conjunction with the Control_Dispatch and Begin_Control_Dispatch macros to build the table.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

DeviceName

Name of the virtual device. This name must have been used with the Begin_Control_Dispatch macro that started the table.

See also Begin_Control_Dispatch, Control_Dispatch

EndProc

include vmm.inc

EndProc ProcName

EndProc ProcName, NoCheck

Marks the end of a procedure definition. This macro is used in conjunction with the BeginProc macro to define a procedure in a virtual device.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

ProcName

Name of the procedure. This name must have been used in the BeginProc macro that started the procedure definition.

NoCheck

If the optional NoCheck keyword is provided, then the normal compile-time checks for stack balance and proper use of the ArgVar, LocalVar, EnterProc, LeaveProc, and Return macros is suppressed. The default value performs the checks.

See also BeginProc

End_Service_Table

include vmm.inc

End_Service_Table DeviceName, DefSegment

Marks the end of the service table for a virtual machine. This macro is used in conjunction with the Begin_Service_Table macro to create a service table.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

DeviceName

Name of the virtual device. This name must be the same as specified by the corresponding Begin_Service_Table macro.

DefSegment

Not used by Windows95 VxDs and should be omitted. This parameter exists for compatibility with Windows 3.1 VxDs.

See also Begin_Service_Table

End_Touch_1st_Meg

include debug.inc

End_Touch_1st_Meg

Disables the first 1 megabyte of memory for the current virtual machine. Virtual devices use this macro in conjunction with the Begin_Touch_1st_Meg macro to examine and modify addresses in the first megabyte. This macro is intended to be used for debugging purposes.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

This macro does not generate code unless the DEBUG symbol is defined. If the macro generates code, the code calls the Disable_Touch_1st_Meg service.

See also Begin_Touch_1st_Meg, Disable_Touch_1st_Meg

End_VxD_IO_Table

include vmm.inc

End_VxD_IO_Table TableName

Marks the end of an I/O table. Virtual devices use the macro in conjunction with the Begin_VxD_IO_Table and VxD_IO macros to create a table of I/O callback procedures for the Install_Mult_IO_Handlers service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

TableName

Name of the I/O table. This parameter must have been previously defined in a matching Begin_VxD_IO_Table macro.

See also Begin_VxD_IO_Table

Fatal_Error

include vmm.inc

Fatal_Error Msg_Ptr, Exit_Flags

Calls the Fatal_Error_Handler service which terminates Windows. A virtual device typically calls this macro in response to an unrecoverable error. The macro passes the Msg_Ptr and Exit_Flags parameters (if given) to Fatal_Error_Handler.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This macro never returns.

Msg_Ptr

Address of a null-terminated string. This parameter is optional.

Exit_Flags

Exit flags. This optional parameter can be the following value:

Value �Meaning ��EF_Hang_On_Exit �Hangs the system on a fatal exit. ��

The following example quits Windows without displaying an error message:

Fatal_Error

The following example quits Windows, and prints the error message pointed to by My_Err_Msg:

Fatal_Error <OFFSET32 My_Err_Msg>

See also Fatal_Error_Handler

GetVxDServiceOrdinal

include vmm.inc

GetVxDServiceOrdinal reg, ServiceName

#include <vmm.h>

DWORD dwServiceOrdinal = GetVxDServiceOrdinal(ServiceName);

Obtains the virtual device service ordinal, for use by Hook_Device_Service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The assembly language macro returns the ordinal for the named service in the specified register. The C language macro returns the ordinal as its return value.

reg

Register to receive the virtual device service ordinal.

ServiceName

Name of service for which to obtain the ordinal.

This macro must be used whenever you need to obtain a virtual device service ordinal. The method employed by Windows 3.1 no longer works.

Example:

 GetVxDServiceOrdinal eax, DOSMGR_Begin_V86_App

 mov esi, offset32 BeginPmAppHook

 VMMCall Hook_Device_Service

See also VxD_REAL_INIT_SEG

IO_Delay

include vmm.inc

IO_Delay

Delays the execution of the next instruction so that an I/O device has time to carry out an I/O operation.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

This macro generates a jmp instruction to the next instruction.

IsDebugOnlyLoaded

include debug.inc

IsDebugOnlyLoaded

IsDebugOnlyLoaded labelname

Skips to the named label if debug-only segments are not loaded. Yes, this macro's name is backwards.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	If labelname is omitted, sets the zero flag if debug-only segments are not present.

labelname

Optional label to jump to if debug-only segments are not loaded. If omitted, this macro sets flags as described above.

This macro must be used whenever code that is unconditionally loaded calls into code or accesses memory in debug-only segments, lest you accidentally access objects that don't exist. Example:

	IsDebugOnlyLoaded notracing

	call	Tracing			; the Tracing procedure resides in a debug-only segment

notracing:

See also Debug_Test_Valid_Handle

LeaveProc

include vmm.inc

LeaveProc

LeaveProc PRESERVE_FLAGS

Prepares to exit a procedure by removing local stack variables.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

PRESERVE_FLAGS

An optional parameter, normally omitted. If present and identical to the word PRESERVE_FLAGS, indicates that the act of removing local stack variables should not modify the flags register. This is in violation of the C, Pascal, and StdCall calling conventions (that flags are unimportant) and generates slower code, so it should be avoided if at all possible.

This macro is used in writing assembly-language procedures which use the C, Pascal, or StdCall calling convention. See the description of the ArgVar macro for additional information.

See also Debug_Test_Valid_Handle

LocalVar

include vmm.inc

LocalVar varname, size

LocalVar varname, size, PACK

Declares a stack local variable for a procedure.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

varname

Specifies the name of the variable.

size

A numeric expression specifying the size of the variable in bytes. The words BYTE, WORD, and DWORD, are acceptable as synonyms for 1, 2, and 4, respectively. If the value is not a multiple of four, the variable is padded to the next multiple of four.

PACK

An optional parameter, normally omitted. If present and identical to the word PACK, indicates that the traditional padding to the next multiple of four is suppressed. Packing local variables should be done with care, lest you end up with a total size of local variables not a multiple of four.

This macro is used in writing assembly-language procedures which use the C, Pascal, or StdCall calling convention. See the description of the ArgVar macro for additional information.

If the variable is a WORD, then two additional symbols are defined: varnameL refers to the low byte and varnameH refers to the high byte. If the variable is a DWORD, then six additional symbols are defined: varnameL refers to the low word, varnameLL to the low byte of the low word, varnameLH to the high byte of the low word, varnameH to the high word, varnameHL to the low byte of the high word, and varnameHH to the high byte of the high word.

When the EndProc is reached, the names of all LocalVar variables are set to an intentionally undefined symbol so that they cannot be used by accident later. (This behavior can be overridden by using the KEEPFRAMEVARS attribute on EndProc.) Here is an example of the PACK attribute:

LocalVar MyLocal, DWORD

LocalVar First, BYTE, PACK

LocalVar Second, BYTE, PACK

LocalVar Third, BYTE, PACK

LocalVar Fourth, BYTE, PACK

This example declares eight bytes of local variables. The first four bytes are a DWORD, named MyLocal. The fifth byte is a BYTE variable named First, the sixth a BYTE variable named Second, the seventh a BYTE variable named Third, and the eighth a BYTE variable named Fourth. If the PACK attributes were omitted, this sequence of declarations would have created twenty bytes of local variables, with three bytes of padding inserted after each BYTE variable. Note carefully that the BYTE variables come in groups of four so as to maintain stack dword alignment.

See also Debug_Test_Valid_Handle

Mono_Out

include debug.inc

Mono_Out String, nocrlf

Calls the Out_Mono_String service to display the given string.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

String

String to display, enclosed in double quotation marks. The string can contain register placeholders in the same forms as described for the Out_Mono_String service.

nocrlf

Optional parameter specifying that the macro should not append a carriage return and newline character combination to the string. If this parameter is not given, the macro appends the character combination by default.

The assembler generates code for the macro only if the DEBUG constant is defined before including the DEBUG.INC file.

The following example writes a string to the secondary display device:

Mono_Out "Element not found"

The following example writes a string containing the value of the AX register to the debugging device:

Mono_Out "AX value is #AX"

See also Out_Mono_String

Mono_Out_At

include debug.inc

Mono_Out_At Row, Column, String, nocrlf

Calls the Set_Mono_Cur_Pos service to position the cursor, then calls the Out_Mono_String service to display the given string.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Row and Column

Row and column number at which to position the cursor before displaying the string.

String

String to display, enclosed in double quotation marks. The string can contain register placeholders in the same forms as described for the Out_Mono_String service.

nocrlf

Optional parameter specifying that the macro should not append a carriage return and newline character combination to the string. If this parameter is not given, the macro appends the character combination by default.

The assembler generates code for the macro only if the DEBUG constant is defined before including the DEBUG.INC file.

The following example writes a string starting at the position (10,10) on the secondary display device:

Mono_Out_At 10,10,"Element not found"

See also Out_Mono_String, Set_Mono_Cur_Pos

pCall

include vmm.inc

pCall Procedure

pCall Procedure, Param1

pCall Procedure, <Param1, Param2, Param3, ..., ParamN>

Pushes the specified parameters on the stack and calls the specified procedure. The called procedure is expected to remove the parameters from the stack.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The return value depends on the specified procedure.

Procedure

Name of the procedure to call. This parameter can be either a local or public procedure, but must be defined within the virtual device making the call.

Param1, Param2, Param3, ..., ParamN

Parameters to pass to the procedure. If more than one parameter is given, they must be separated with commas and enclosed in angle brackets (<>). Parameters are optional.

This macro pushes the parameters using the Pascal-language calling convention, in order from left to right. It also assumes that the called procedure follows the Pascal-language register conventions, viz., that the EAX, ECX, EDX, and flags registers may be modified by the call, and that the return value is placed in the EAX register (and sometimes also the EDX register). If your procedure does not follow these rules, you should not use the pCall macro.

See also VMMCall, VxDCall

Pop_Client_State

include vmm.inc

Pop_Client_State

Pop_Client_State USES_ESI

Restores the client registers for the virtual machine.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

USES_ESI

Optional parameter specifying that the macro may use the ESI register as a scratch register. Normally, Pop_Client_State preserves all registers. Slightly more efficient code is generated if ESI may be used.

This macro must not be used unless the Push_Client_State macro was previously used to save the client registers.

See also Push_Client_State

Push_Client_State

include vmm.inc

Push_Client_State

Push_Client_State USES_ESI

Copies the client state to the protected-mode stack.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

USES_ESI

Optional parameter specifying that the macro may use the ESI register as a scratch register. Normally, Push_Client_State preserves all registers. Slightly more efficient code is generated if ESI may be used.

This macro reserves space on the stack for the client registers.

A virtual device must use the Pop_Client_State macro to restore the client registers, and free the reserve stack space.

See also Pop_Client_State

Queue_Out

include debug.inc

Queue_Out String, Value1, Value2

Calls the Queue_Debug_String service to queue the given string for display at a later time.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

String

String to display, enclosed in double quotation marks. The string can contain register placeholders in the same forms as described for the Queue_Debug_String service.

Value1

Value to queue with the string. If the string contains the #EAX or ?EAX placeholder, this value is used when the string is displayed.

Value2

Value to queue with the string. If the string contains the #EBX or ?EBX placeholder, this value is used when the string is displayed.

The assembler generates code for the macro only if the DEBUG constant is defined before including the DEBUG.INC file.

The following example queues a string:

Queue_Out "Element not found"

The following example queues a string containing the value of the EAX register to the debugging device:

Queue_Out "EAX value is #EAX", EAX

See also Queue_Debug_String

RestoreReg

include vmm.inc

RestoreReg <reg1, reg2, reg3, ...>

Pops values off the stack.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

RestoreReg pops the values off the stack in the order specified. Note that if this is to match a corresponding SaveReg, the values need to be specified in reverse order in the RestoreReg, compared to the SaveReg. The arguments are typically the names of registers, but can be anything that can validly follow the 'pop' opcode. The special name 'fd' pops flags via the 'popfd' instruction and the special name 'ad' pops all registers via the 'popad' instruction.

Using the RestoreReg macro instead of coding the corresponding instructions manually is required if the procedure is using an ESP-based stack frame.

See the description of the ArgVar macro for additional information.

See also Debug_Test_Valid_Handle

Return

include vmm.inc

Return

Return from a procedure, possibly removing stack arguments as well.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

This macro is used in writing assembly-language procedures which use the C, Pascal, or StdCall calling convention. If the Pascal or StdCall calling convention is used, the procedure will remove parameters from the stack on return. f the C calling convention is used, then it is the caller's responsibility to remove the parameters from the stack.

See the description of the ArgVar macro for additional information.

See also Debug_Test_Valid_Handle

SaveReg

include vmm.inc

SaveReg <reg1, reg2, reg3, ...>

Push registers or other things onto the stack.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

This macro pushes each of its arguments onto the stack in the order specified. The arguments are typically the names of registers, but can be anything that can validly follow the 'push' opcode. The special name 'fd' pushes flags via the 'pushfd' instruction and the special name 'ad' pushes all registers via the 'pushad' instruction.

Using the SaveReg macro instead of coding the corresponding instructions manually is required if the procedure is using an ESP-based stack frame.

See the description of the ArgVar macro for additional information.

See also Debug_Test_Valid_Handle

sCall

include vmm.inc

sCall Procedure

sCall Procedure, Param1

sCall Procedure, <Param1, Param2, Param3, ..., ParamN>

Pushes the specified parameters on the stack and calls the specified procedure. The called procedure is expected to remove the parameters from the stack.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The return value depends on the specified procedure.

Procedure

Name of the procedure to call. This parameter can be either a local or public procedure, but must be defined within the virtual device making the call.

Param1, Param2, Param3, ..., ParamN

Parameters to pass to the procedure. If more than one parameter is given, they must be separated with commas and enclosed in angle brackets (<>). Parameters are optional.

This macro pushes the parameters using the StdCall calling convention, in order from left to right. It also assumes that the called procedure follows the StdCall-language register conventions, viz., that the EAX, ECX, EDX, and flags registers may be modified by the call, and that the return value is placed in the EAX register (and sometimes also the EDX register). If your procedure does not follow these rules, do not use the sCall macro.

See also VMMCall, VxDCall

ShiftState

include vkd.inc

ShiftState Mask, Compare

Sets the EBX register with the shift state mask and shift state compare value required for a call to the VKD_Define_Hot_Key service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Mask

Shift state bits that should be excluded before the comparison is done.

Compare

Value to compare.

Trace_Out

include debug.inc

Trace_Out String, nocrlf

Trace_Out String, level

Writes the specified string to the debugging device, but continues execution. Compare the Debug_Out macro, which stops execution if a debugger is attached.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

String

String to display, enclosed in double quotation marks. The string can contain register placeholders in the same forms as described for the Out_Debug_String service.

level

Optional symbol indicating the debugging level for which code should be generated. If the value of the Deblevel symbol is greater than or equal to level, then code is generated. Otherwise, code is not generated. The symbol can be DeblevelNormal or DeblevelMax. The default is DeblevelNormal.

nocrlf

Optional parameter specifying that the macro should not append a carriage return and newline character combination to the string. If this parameter is not given, the macro appends the character combination by default.

The assembler generates code for the macro only if the DEBUG constant is defined before including the DEBUG.INC file.

There are additional macros Trace_OutX, where X is a conditional jump type, i.e., something that can follow the letter j to form a conditional jump instruction. In such case, the trace-out is performed only if the condition is satisfied.

The following example writes a string to the debugging device:

Trace_Out "Element not found"

The following example writes a string containing the value of the AX register to the debugging device if the zero flag is set:

Trace_OutZ "AX value is #AX"

See also Out_Debug_String

VMMCall

include vmm.inc

VMMCall Service, Parameters

Pushes the specified parameters on the stack, and calls the specified VMM service. When the service returns, the macro pops the parameters from the stack.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The return value is as specified for the given service.

Service

Name of the service to call. This parameter can be any service that is explicitly defined in the service table for the VMM.

Parameters

Parameters to pass to the service. If more than one parameter is given, they must be separated with commas enclosed in angle brackets (<>). This parameter is optional.

This macro is identical to the VxDCall macro, except that it also validates that the service being called is a VMM service.

See also VxDCall, VMMJmp

VMMJmp

include vmm.inc

VMMJmp Service

Jumps to the specified VMM service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Service

Name of the service to jump to. This parameter can be any service that is explicitly defined in the service table for the VMM.

This macro is identical to the VxDJmp macro, except that it also validates that the service being called is a VMM service.

See also VMMCall, VxDJmp

VxDCall

include vmm.inc

VxDCall Service

Pushes the specified parameters on the stack, and then calls the specified virtual device service. When the service returns, the macro pops the parameters from the stack.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The return value is as specified for the given service.

Service

Name of the service to call. This parameter can be any service that is explicitly defined in the service table for a virtual device.

Parameters

Parameters to pass to the service. If more than one parameter is given, they must be separated with commas enclosed in angle brackets (<>). This parameter is optional.

If parameters are passed, it is assumed that the called service conforms to the C-language parameter-passing and register-usage convention: Parameters are passed from right to left, and the service returns a value in the EAX register (possibly also the EDX register), modifying the ECX and flags register along the way. The C-language calling convention dictates that the caller is responsible for cleaning the stack parameters, but the called procedure is allowed to modify them. Do not assume that the called procedure will leave stack parameters unchanged.

The macro creates a dynamic link in the form of an int 20h instruction followed by a value identifying the service. When the interrupt is executed, the VMM replaces the dynamic link with a call instruction.

See also VMMCall, VxDJmp

VxD_CODE_ENDS

include vmm.inc

VxD_CODE_ENDS

Defines the end of a code segment. Virtual devices use this macro with in conjunction with the VxD_CODE_SEG macro to create segments for noninitialization code.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

This macro is equal to the VxD_LOCKED_CODE_ENDS macro.

See also VxD_CODE_SEG, VxD_LOCKED_CODE_ENDS

VxD_CODE_SEG

include vmm.inc

VxD_CODE_SEG

Defines the start of a code segment. Virtual devices use this segment for all code that is not explicitly for initialization of the device.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

This macro creates a 32-bit segment named _LTEXT. The segment is assembled for flat model memory so segment registers CS, DS, ES, and SS are assumed to be flat.

This macro is equal to the VxD_LOCKED_CODE_SEG macro.

See also VxD_CODE_ENDS, VxD_DATA_SEG, VxD_ICODE_SEG, VxD_LOCKED_CODE_SEG

VxD_DATA_ENDS

include vmm.inc

VxD_DATA_ENDS

Defines the end of a data segment. Virtual devices use this macro with in conjunction with the VxD_DATA_SEG macro to create segments for noninitialization data.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

This macro is equal to the VxD_LOCKED_DATA_ENDS macro.

See also VxD_DATA_SEG, VxD_LOCKED_DATA_ENDS

VxD_DATA_SEG

include vmm.inc

VxD_DATA_SEG NoAlign

Defines the start of a data segment. Virtual devices use this segment for all data that is not explicitly for the initialization of the device.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

NoAlign

Specifies that data be aligned at the next byte. If this optional parameter is not given, the macro aligns data at the next available doubleword.

This macro creates a 32-bit segment named _LDATA.

This macro is equal to the VxD_LOCKED_DATA_SEG macro.

See also VxD_CODE_SEG, VxD_DATA_ENDS, VxD_IDATA_SEG, VxD_LOCKED_DATA_SEG

VxD_ICODE_ENDS

include vmm.inc

VxD_ICODE_ENDS

Defines the end of an initialization code segment. Virtual devices use this macro in conjunction with the VxD_ICODE_SEG macro to create initialization code.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

See also VxD_ICODE_SEG

VxD_ICODE_SEG

include vmm.inc

VxD_ICODE_SEG

Defines the start of an initialization code segment. Virtual devices typically use this segment for code that initializes the corresponding device. The system discards the segment after the initialization is complete (after the Init_Complete message has been processed by all virtual devices).

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

This macro creates a 32-bit segment named _ITEXT. The segment is assembled for flat model memory so segment registers CS, DS, ES, and SS are assumed to be flat.

See also VxD_CODE_SEG, VxD_ICODE_ENDS, VxD_IDATA_SEG

VxD_IDATA_ENDS

include vmm.inc

VxD_IDATA_ENDS

Defines the end of an initialization data segment. Virtual devices use this macro with in conjunction with the VxD_IDATA_SEG macro to create initialization data.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

See also VxD_IDATA_SEG

VxD_IDATA_SEG

include vmm.inc

VxD_IDATA_SEG

Defines the start of an initialization data segment. Virtual devices typically use this segment for data used to initialize the corresponding device. The system discards the segment after the initialization is complete (after the Init_Complete message has been processed by all virtual devices).

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

This macro creates a 32-bit segment named _IDATA.

See also VxD_DATA_SEG, VxD_ICODE_SEG, VxD_IDATA_ENDS

VxDint

include vmm.inc

VxDint Int_Number

Executes the specified software interrupt. This macro pushes the interrupt number on the stack, and calls the Exec_VxD_Int service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns values in one or more registers, depending on the function of the specified interrupt.

Int_Number

Number of the software interrupt to execute.

See also Exec_VxD_Int

VxD_IO

include vmm.inc

VxD_IO Port, IOCallback

Adds an I/O callback procedure and I/O port number to an I/O table. Virtual devices use the macro in conjunction with the Begin_VxD_IO_Table and End_VxD_IO_Table macros to create a table of I/O callback procedures for the Install_Mult_IO_Handlers service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Port

Number of the I/O port to be trapped.

IOCallback

Name of the I/O callback procedure. For information about the callback procedure, see below.

The I/O table can contain any number of VxD_IO macros. Each macro must specify an unique I/O port number, but the same I/O callback procedure can be assigned to more than one port. In such case, the I/O callback procedure can use the EDX register to determine which port was accessed by the vritual machine.

After a virtual device installs the callback procedures, the system calls a procedure whenever a program in the virtual machine attempts to access the corresponding port. The system calls the procedure as follows:

mov ebx, VM ; current VM handle

mov ecx, IOType ; type of I/O

mov edx, Port ; port number

mov ebp, OFFSET32 crs ; points to a Client_Reg_Struc

mov eax, Data ; output data (if I/O type is output)

call [IOCallback]

mov [Data], eax ; input data (if I/O type is input)

The VM parameter specifies the current virtual machine, Port specifies the I/O port, and crs points to a Client_Reg_Struc structure containing the register contents for the current virtual machine.

The IOType parameter specifies the type of input or output operation requested, and determines whether the callback procedure receives data in the EAX register or must return data in the EAX register. The IOType parameter can be a combination of the following values:

Value �Meaning ��Addr_32_IO �Use 32-bit address offsets for input or output string operations. If this value is not given, the 16-bit offsets are used. ��Byte_Input �Input a single byte; place in AL if String_IO not given. ��Byte_Output �Output a single byte from AL if String_IO not given. ��Dword_Input �Input a double word; place in EAX if String_IO not given. ��Dword_Output �Output a double word from EAX if String_IO not given. ��Rep_IO �Repeat the input or output string operation the number of times specified by the Client_CX field in the Client_Reg_Struc structure. (Client_ECX if Addr_32_IO is set.) ��Reverse_IO �Decrement string address on each input or output operation. If this value is not given, the string address is incremented on each operation. ��String_IO �Input or output a string. The high 16-bits specifies segment address of buffer containing the string to output or to receive the string input. ��Word_Input �Input a word; place in AX if String_IO not given. ��Word_Output �Output a word from AX if String_IO not given. ��

In memory, an I/O table consists of a VxD_IOT_Hdr structure followed by one or more VxD_IO_Struc structures. The first word in the table specified the number of entries. Each entry consists of a word specifying the port number and a double word specifying the 32-bit offset of the callback procedure.

The Data parameter is used only when I/O type is for output.

See also Begin_VxD_IO_Table, End_VxD_IO_Table, Install_Mult_IO_Handlers

VxDJmp

include vmm.inc

VxDJmp Service

Jumps to the specified virtual device service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Service

Name of the service to jump to. This parameter can be any service that is explicitly defined in the service table for a virtual device.

The macro creates a dynamic link in the form of an int 20h instruction followed by a value identifying the service. When the interrupt is execucuted, the VMM replaces the dynamic link with a jmp instruction.

See also VMMJmp, VxDCall

VxD_LOCKED_CODE_ENDS

include vmm.inc

VxD_LOCKED_CODE_ENDS

Defines the end of a code segment. Virtual devices use this macro in conjunction with the VxD_LOCKED_CODE_SEG macro to create segments for noninitialization code.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

This macro is equal to the VxD_CODE_ENDS macro.

See also VxD_CODE_ENDS, VxD_LOCKED_CODE_SEG

VxD_LOCKED_CODE_SEG

include vmm.inc

VxD_LOCKED_CODE_SEG

Defines the start of a code segment. Virtual devices use this segment for all code that is not explicitly for initialization of the device.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

This macro creates a 32-bit segment named _LTEXT. The segment is assembled for flat model memory so segment registers CS, DS, ES, and SS are assumed to be equal.

This macro is equal to the VxD_CODE_SEG macro.

See also VxD_CODE_SEG, VxD_LOCKED_CODE_ENDS

VxD_LOCKED_DATA_ENDS

include vmm.inc

VxD_LOCKED_DATA_ENDS

Defines the end of a data segment. Virtual devices use this macro in conjunction with the VxD_LOCKED_DATA_SEG macro to create segments for noninitialization data.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

This macro is equal to the VxD_DATA_ENDS macro.

See also VxD_DATA_ENDS, VxD_LOCKED_DATA_SEG

VxD_LOCKED_DATA_SEG

include vmm.inc

VxD_LOCKED_DATA_SEG NoAlign

Defines the start of a data segment. Virtual devices use this segment for all data that is not explicitly for initialization of the device.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

NoAlign

Optional parameter specifying that data be aligned at the next byte. If this optional parameter is not given, the macro aligns data at the next available doubleword.

This macro creates a 32-bit segment named _LDATA.

This macro is equal to the VxD_DATA_SEG macro.

See also VxD_DATA_SEG, VxD_LOCKED_DATA_ENDS

VxD_PAGEABLE_CODE_ENDS

include vmm.inc

VxD_PAGEABLE_CODE_ENDS

Defines the end of a pageable code segment. Virtual devices use this macro in conjunction with the VxD_PAGEABLE_CODE_SEG macro.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

At any given time, pageable code may be paged out to the system swap file. For this reason, any code that may be executed during hardware interrupt processing must not be in a VxD_PAGEABLE_CODE_SEG segment.

Code in a VxD_PAGEABLE_CODE_SEG segment is actually locked if MS-DOS or BIOS functions are used for paging.

See also VxD_CODE_ENDS, VxD_LOCKED_CODE_ENDS, VxD_PAGEABLE_CODE_SEG

VxD_PAGEABLE_CODE_SEG

include vmm.inc

VxD_PAGEABLE_CODE_SEG

Defines the start of a pageable code segment. Virtual devices use this macro in conjunction with the VxD_PAGEABLE_CODE_ENDS macro.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

At any given time, pageable code may be paged out to the system swap file. For this reason, any code that may be executed during hardware interrupt processing must not be in a VxD_PAGEABLE_CODE_SEG segment.

Code in a VxD_PAGEABLE_CODE_SEG segment is actually locked if MS-DOS or BIOS functions are used for paging.

See also VxD_CODE_SEG, VxD_LOCKED_CODE_SEG, VxD_PAGEABLE_CODE_ENDS

VxD_REAL_INIT_ENDS

include vmm.inc

VxD_REAL_INIT_ENDS

Defines the end of a real-mode initialization segment. Virtual devices use this macro with in conjunction with the VxD_REAL_INIT_SEG macro to create initialization code for real-mode execution.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

See also VxD_REAL_INIT_SEG

VxD_REAL_INIT_SEG

include vmm.inc

VxD_REAL_INIT_SEG

Defines the start of a real-mode initialization segment. Virtual devices typically use this segment for code that initializes the corresponding device before Windows changes to protected-mode execution. The system discards the segment after the initialization is complete.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

This macro creates a 16-bit segment named _RCODE. The segment is assembled for the real-mode tiny model memory so segment registers CS, DS, ES, and SS are assumed to be equal.

See also VxD_ICODE_SEG, VxD_REAL_INIT_ENDS

�Chapter 28

VMM Messages

About VMM Messages

This chapter is an alphabetic listing of the system control messages sent to virtual devices by the virtual machine manager (VMM). Other components (for example, Vcomm, Vwin32, and the Configuration Manager) also direct system control messages to particular VxDs. Consult documentation for those other components for additional information.

In this chapter, the term "general registers" refers to the registers consisting of EAX, EBX, ECX, EDX, ESI, EDI, and EBP.

The purpose of the xx2 messages (such as SYS_VM_TERMINATE2 and VM_TERMINATE2) is to address a problem in Windows 3.1 where exit-like messages were sent in increasing initialization order, which created complicated dependencies in a layered device architecture. For example, suppose virtual device B always requires virtual device A. This is traditionally solved by giving virtual device A a lower initialization order. This solves the problem at initialization, but since Windows 3.1 sent shutdown messages in increasing initialization order, virtual device A would get the shutdown message first and uninstall itself. Then virtual device B got into trouble when it received the shutdown message because it requires services from virtual device A, which is already gone. There are various ways of working around this problem, none of them entirely satisfactory.

By introducing xx2 messages which are sent in reverse initialization order, virtual devices A and B can perform their shutdown on the xx2 message, in which case virtual device B will shut down first, while virtual device A is still ready to service requests, and only after B has finished processing the shutdown message will it then be given to virtual device A.

Note that these messages are sent by the virtual machine manager or other system components. Virtual devices should not send these messages on their own, unless otherwise indicated.

Reference

Begin_Message_Mode

include vmm.inc

mov ebx, VMHandle

mov eax, Begin_Message_Mode

VMMcall System_Control

Notifies the virtual display, keyboard, and mouse devices to prepare to display messages and read input from the keyboard. The system sends this message to all virtual devices in order to prepare the system for a full-screen error message (informally known as a 'blue-screen message' because of the color traditionally used for such messages). The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This message cannot be failed. The virtual device must return carry clear from this message.

VMHandle

Handle of the virtual machine entering message mode.

This message is usually processed only by the virtual keyboard, mouse, and display devices.

See also End_Message_Mode

Begin_PM_App

include vmm.inc

mov ebx, VMHandle

mov edx, Flags

mov edi, OFFSET32 acb

mov eax, Begin_PM_App

VMMcall System_Control

Notifies the virtual device that the system is starting a protected-mode application. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The virtual device returns with carry clear if the virtual device can support the protected-mode application. Otherwise, it returns carry set to indicate an error, in which case the program is not allowed to enter protected mode.

VMHandle

Handle of the current virtual machine.

Flags

Bitmask of flags. Only one flag is currently supported:

Value �Meaning ��BPA_32_Bit �Application has 32-bit segments. If this value is not given, the application has 16-bit segments. ��

All other values are reserved.

abc

Address of an application control block, which is a pmcb_s structure. A virtual device can allocate memory in the application control block with the Allocate_PM_App_CB_Area service.

Protected-mode applications may nest. Virtual devices are notified for each application, and each application has its own application control block.

See also End_PM_App, pmcb_s

Close_VM_Notify

include vmm.inc

mov ebx, VMHandle

mov edx, Flags

mov eax, Close_VM_Notify

VMMcall System_Control

Notifies a virtual device that the Close_VM service has been called and the specified virtual machine is terminating. The virtual device may use all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This message cannot be failed. The virtual device must return carry clear.

VMHandle

Handle of the virtual machine to close.

Flags

Operation flag. Can be this value:

Value �Meaning ��CVNF_Crit_Close �The virtual machine has not released the critical section. ��

All other values are reserved.

See also Close_VM, Close_VM_Notify2

Close_VM_Notify2

include vmm.inc

mov ebx, VMHandle

mov edx, Flags

mov eax, Close_VM_Notify2

VMMcall System_Control

Similar to Close_VM_Notify, except that Close_VM_Notify2 is sent only to virtual devices marked version 4.0 and it is sent in reverse device initialization order. Close_VM_Notify2 is sent immediately after Close_VM_Notify.

See also Close_VM, Close_VM_Notify

Create_Thread

include vmm.inc

mov edi, ThreadHandle

mov eax, Create_Thread

VMMcall System_Control

Notifies a virtual device that the system is creating a new thread. Virtual devices typically create and initialize any structures needed to support the new thread. The virtual device may use all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The virtual device returns with carry clear to allow the thread to be created, or with carry set to prevent it from being created.

ThreadHandle

Handle of the thread being created. The thread being created is not the current thread.

If the virtual device sets the carry flag to prevent creation the thread, it should free any system resource it may have allocated to support the thread.

Interrupt simulation is not permitted in the new thread during this message.

Note that this mesage is not sent when a new virtual machine is created, even though each virtual machine also comes with a thread. Therefore, if you need to do something whenever a new thread is created, even if it is the thread of a virtual machine, you need to perform the operation on the VM_Create message as well.

See also VMMCreateThread, Thread_Init

Create_VM

include vmm.inc

mov ebx, VMHandle

mov eax, Create_VM

VMMcall System_Control

Notifies a virtual device that the system is creating a new virtual machine. Virtual devices typically initialize data associated with the virtual machine, such as data in the control block for the virtual machine. The virtual device may use all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The virtual device returns carry clear if the virtual device can support the new virtual machine. Otherwise, it returns with carry set to indicate an error and prevent the system from creating the virtual machine.

VMHandle

Handle of the new virtual machine.

Note that this mesage is delivered out of context; the new virtual machine has not yet started executing. Virtual devices typically ignore this message and act on the VM_Init message instead.

See also Destroy_VM

Crit_Reboot_Notify

include vmm.inc

mov eax, Crit_Reboot_Notify

VMMcall System_Control

Notifies a virtual device that the system is about to restart. Virtual devices typically prepare for restarting by cleaning up data or resetting devices. The system disables interrupts before it sends this message. The virtual device may use all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This message cannot be failed. The virtual device must return carry clear.

The virtual device must not enable interrupts, nor is simulated interrupt activity allowed. See the description of the Device_Reboot_Notify message for additional information.

See also Crit_Reboot_Notify2, Device_Reboot_Notify

Crit_Reboot_Notify2

include vmm.inc

mov eax, Crit_Reboot_Notify2

VMMcall System_Control

Similar to Crit_Reboot_Notify, except that Crit_Reboot_Notify2 is sent only to virtual devices marked version 4.0 and it is sent in reverse device initialization order. Crit_Reboot_Notify2 is sent immediately after Crit_Reboot_Notify.

See also Crit_Reboot_Notify, Device_Reboot_Notify

Debug_Query

include vmm.inc

mov eax, Debug_Query

VMMcall System_Control

Notifies a virtual device that the user has typed ".VxDNAME" in the debugger. (that is, a period followed by the name of the VxD.) This is a directed system control message. The virtual device typically responds to the message by displaying a menu of debugging services and reading command input from the user via In_Debug_Chr. The virtual device may use all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This message cannot be failed. The virtual device must return carry clear.

The handler for this message must not be in pageable memory. A Windows 95 VxD should placed the handler in the Debug_Only code segment.

Destroy_Thread

include vmm.inc

mov edi, ThreadHandle

mov eax, Destroy_Thread

VMMcall System_Control

Notifies a virtual device that the specified non-initial thread is about to be destroyed. This is a virtual device's last chance to free resources associated with the thread before the thread goes away. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This message cannot be failed. The virtual device must return carry clear.

ThreadHandle

Handle of the thread.

Interrupt simulation is not permitted in the thread during this message.

This message is sent only to virtual devices marked 4.0, and it is sent in reverse initialization order. When a virtual machine is destroyed, no Destroy_Thread message is sent. Use the Destroy_VM message instead.

See also VMMCreateThread, Create_Thread, Destroy_VM

Destroy_VM

include vmm.inc

mov ebx, VMHandle

mov eax, Destroy_VM

VMMcall System_Control

Notifies the virtual device that the system is about to destroy the virtual machine. Virtual devices typically remove any data associated with the specified virtual machine. The virtual device may use all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This message cannot be failed. The virtual device must return carry clear.

VMHandle

Handle of the virtual machine about to be destroyed.

The Destroy_VM message is sent to all virtual devices in initialization order.

The virtual device must not call the Simulate_Int or Exec_Int service in the specified virtual machine.

Considerable time can elapse between receipt of the VM_Not_Executeable message and this message. Once all virtual devices return from the Destroy_VM and Destroy_VM2 messages, the virtual machine is destroyed and the handle becomes invalid.

See also Create_VM, Destroy_VM2, VM_Not_Executeable

Destroy_VM2

include vmm.inc

mov ebx, VMHandle

mov eax, Destroy_VM2

VMMcall System_Control

Similar to Destroy_VM, except that Destroy_VM2 is sent only to all Windows 95 virtual devices in reverse initialization order. Destroy_VM2 is sent immediately after Destroy_VM. The Destroy_VM2 message is not sent to Windows 3.1 virtual devices.

See also Create_VM, Destroy_VM, VM_Not_Executeable

Device_Init

include vmm.inc

mov ebx, SysVMHandle

mov esi, OFFSET32 CommandTail

mov eax, Device_Init

VMMcall System_Control

Directs the virtual device to initialize itself. The virtual device typically allocates memory for a device-specific section in the control block, allocates other memory areas, hooks interrupts and I/O ports, and specifies instance data. The virtual device may use all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The virtual device returns carry clear if it initialized successfully. If the virtual device returns carry set, the system considers the device as having failed to initialize and removes it from the list of VxDs loaded in the system. Before returning carry set, a virtual device must release all resources it had claimed during previous initialization phases.

SysVMHandle

Handle of the system virtual machine.

CommandTail

Address of the command tail retrieved from the program segment prefix (PSP) of VMM32.VXD. The first byte in the command tail specifies the length in bytes of the tail.

The virtual device should allocate a device-specific section in the control block of the system virtual machine and then initialize the section.

The virtual device can call the Simulate_Int and Exec_Int services in the system virtual machine.

For dynamically loaded VxDs, the EBX register does not contain a VM handle.

See also Init_Complete, Sys_Critical_Init

Device_Reboot_Notify

include vmm.inc

mov eax, Device_Reboot_Notify

VMMcall System_Control

Notifies the virtual device that the system is about to restart. Interrupts remain enabled while virtual devices process this message. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This message cannot be failed. The virtual device must return carry clear.

When the system is about to be rebooted abnormally, virtual devices will first receive the Device_Reboot_Notify message (and possibly also the Device_Reboot_Notify2 message), at which time interrupts are enabled and simulated interrupt activity is allowed (although not encouraged). Next, virtual devices receiveS the Crit_Reboot_Notify message (and possibly also the Crit_Reboot_Notify2 message) with interrupts disabled, during which time interrupts must not be enabled by the virtual device, and at which time simulated interrupt activity is not allowed. Finally, virtual devices receive the Reboot_Processor message, which all devices except the virtual keyboard device should ignore.

See also Crit_Reboot_Notify, Device_Reboot_Notify2, Reboot_Processor

Device_Reboot_Notify2

include vmm.inc

mov eax, Device_Reboot_Notify2

VMMcall System_Control

Similar to Device_Reboot_Notify, except that Device_Reboot_Notify2 is sent only to virtual devices marked version 4.0 and it is sent in reverse device initialization order. Device_Reboot_Notify2 is sent immediately after Device_Reboot_Notify.

See also Crit_Reboot_Notify, Device_Reboot_Notify

End_Message_Mode

include vmm.inc

mov ebx, VMHandle

mov eax, End_Message_Mode

VMMcall System_Control

Directs the virtual device to end message-mode processing. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This message cannot be failed. The virtual device must return carry clear.

VMHandle

Handle of the virtual machine leaving message mode.

See also Begin_Message_Mode, End_Message_Mode2

End_Message_Mode2

include vmm.inc

mov ebx, VMHandle

mov eax, End_Message_Mode2

VMMcall System_Control

Similar to End_Message_Mode, except that End_Message_Mode2 is sent only to virtual devices marked version 4.0 and it is sent in reverse device initialization order. End_Message_Mode2 is sent immediately after End_Message_Mode.

See also Begin_Message_Mode, End_Message_Mode

End_PM_App

include vmm.inc

mov ebx, VMHandle

mov edi, OFFSET32 acb

mov eax, End_PM_App

VMMcall System_Control

Notifies the virtual device that a protected-mode application is ending. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This message cannot be failed. The virtual device must return carry clear.

VMHandle

Handle of the current virtual machine.

abc

Address of the application control block for the application that is terminating.

See also Begin_PM_App, End_PM_App2

End_PM_App2

include vmm.inc

mov ebx, VMHandle

mov edi, OFFSET32 acb

mov eax, End_PM_App2

VMMcall System_Control

Similar to End_PM_App, except that End_PM_App2 is sent only to virtual devices marked version 4.0 and it is sent in reverse device initialization order. End_PM_App2 is sent immediately after End_PM_App.

See also Begin_PM_App, End_PM_App

Init_Complete

include vmm.inc

mov ebx, SysVMHandle

mov esi, OFFSET32 CommandTail

mov eax, Init_Complete

VMMcall System_Control

Notifies the virtual device that the system and virtual devices have initialized successfully. Virtual devices that use V86 memory typically search for available pages, in the range 0xA0h through 100h, when processing this message. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the virtual device successfully completes its initialization. Otherwise, sets the carry flag to prevent the system from loading the virtual device.

SysVMHandle

Handle of the system virtual machine.

CommandTail

Address of the command tail retrieved from the program segment prefix (PSP) of VMM32.VXD. The first byte in the command tail specifies the length in bytes of the tail.

The system sends this message just before it releases its INIT pages and takes the instance snapshot.

Virtual devices can use the Simulate_Int and Exec_Int services to execute code in the system virtual machine.

See also Device_Init

PNP_NEW_DEVNODE

include vmm.inc

include configmg.inc

mov ebx, hDevnode

mov edx, LoadType

mov eax, PNP_NEW_DEVNODE

VMMcall System_Control

Notifies a dynamically loadable VxD that a new device node has been loaded. Uses the C calling convention. This is a directed system control message. The virtual device may modify the EAX, ECX, EDX, and Flags registers, but it must preserve the EBX, EDI, ESI, and EBP registers.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The virtual device returns a configuration manager return value (CR_) in EAX. The carry flag must be set if a value other than CR_SUCCESS is returned. It doesn't hurt to return carry set even if you are returning CR_SUCCESS, so it's safest to always return carry set.

hDevnode

Handle of the new device node.

LoadType

Type of functionality that the VxD should handle. Can be one of these values:

Value �Meaning ��DLVXD_LOAD_DEVLOADER �Device loader ��DLVXD_LOAD_DRIVER �Device driver ��DLVXD_LOAD_ENUMERATOR �Device enumerator ��

Power_Event

include vmm.inc

include power.inc

mov esi, Event

mov edi, OFFSET32 Return

mov eax, Power_Event

VMMcall System_Control

Notifies the virtual device that a power event has just occurred. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The virtual device must return with carry clear, even to fail the call. See the description of Return for information on how to fail the call.

Event

Type of power event. Can be one of these values:

Value �Meaning ��PWR_CRITICALRESUME �Resume critical operations after suspension. ��PWR_SUSPENDREQUEST �Suspend operation. ��PWR_SUSPENDRESUME �Resume operation after suspension. ��

Return

Address of the doubleword that receives the return value, which can be one of these values:

Value �Meaning ��PWR_FAIL �Virtual device failed to process the event. ��PWR_OK �Virtual device processed the event successfully. ��

All other values are reserved.

To fail the call, a virtual device should store the value PWR_FAIL in the doubleword pointed to by Return. For the call to succeed, the virtual device must leave the doubleword pointed to by Return unchanged. If a VxD stores PWR_OK through Return, it might overwrite a PWR_FAIL value that was written there by the previous device.

Only the virtual power device (VPOWERD) is permitted to send this message to devices. The EBX register must be zero on entry. The EDX register is reserved.

Note that this message is sent for compatibility with Windows 3.1 virtual devices. New virtual devices should use the VPOWERD_Register_Power_Handler service to be notified of changes in power state.

Query_Destroy

include vmm.inc

mov ebx, VMHandle

mov eax, Query_Destroy

VMMcall System_Control

Directs the virtual device to display a warning message if the destruction of the specified virtual machine will disrupt the operation of the virtual device. The virtual shell device sends this message before attempting to destroy a virtual machine that has not terminated normally. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Sets the carry flag if the destruction of the virtual machine will disrupt the virtual device. Otherwise, clears the carry flag.

VMHandle

Handle of the virtual machine to destroy.

Virtual devices that set the carry flag must also display a message box, using the SHELL_Message service to inform the user of the potential problem. The user can then decide whether to continue destroying the virtual machine.

See also Destroy_VM

Reboot_Processor

include vmm.inc

mov eax, Reboot_Processor

VMMcall System_Control

Directs the virtual device to restart the computer. The system continues to call the virtual devices until one that can restart the computer (usually the virtual keyboard device) does so. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This message cannot be failed. The virtual device must return carry clear.

See also Crit_Reboot_Notify

Set_Device_Focus

include vmm.inc

mov ebx, VMHandle

mov edx, VID

mov esi, Flags

mov edi, AssocVMHandle

mov eax, Set_Device_Focus

VMMcall System_Control

Sets the focus of the specified virtual device to the specified virtual machine. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This message cannot be failed. The virtual device must return carry clear.

VMHandle

Handle of the virtual machine.

VID

Identifier of the virtual device that should change its focus. If this parameter is zero, all virtual devices should change their focus to the indicated virtual machine. Otherwise, all devices whose device IDs are different from VID should ignore the message.

Flags

Flags specifying how to set the focus if the VID parameter is zero. Can be this value:

Value �Meaning ��1 �Used by the virtual shell device to determine which virtual machine to set focus for. If this value is given, the AssocVMHandle parameter may specify a virtual machine. ��

All other values are reserved.

AssocVMHandle

Handle of a virtual machine associated with a problem. This parameter is zero if there is no such virtual machine. This parameter is used only if the Flags parameter is set to 1.

A virtual device that is instructed to change its focus should take steps, such as disabling I/O trapping, to allow the specified virtual machine to run as fast as possible.

This is one of the few messages that arbitrary virtual devices are permitted to send. Typically, a virtual device sends this message with EDX = ESI = 0, to indicate that all devices should set the focus to the indicated virtual machine.

Sys_Critical_Exit

include vmm.inc

mov eax, Sys_Critical_Exit

VMMcall System_Control

Notifies the virtual device that the system is exiting either normally or as a result of a crash. Virtual devices should reset their associated hardware to allow for a return to the state before Windows was started. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This message cannot be failed. The virtual device must return carry clear.

This message is sent with interrupts disabled and the virtual device must not enable interrupts while this message is being processed.

The handler for this message must not be in pageable memory, and must not call the Simulate_Int or Exec_Int service.

See also Sys_Critical_Exit2, Sys_Critical_Init, Sys_VM_Terminate

Sys_Critical_Exit2

include vmm.inc

mov eax, Sys_Critical_Exit2

VMMcall System_Control

Similar to Sys_Critical_Exit, except that Sys_Critical_Exit2 is sent only to virtual devices marked version 4.0 and it is sent in reverse device initialization order. Sys_Critical_Exit2 is sent immediately after Sys_Critical_Exit.

See also Sys_Critical_Exit, Sys_Critical_Init, Sys_VM_Terminate

Sys_Critical_Init

include vmm.inc

mov ebx, SysVMHandle

mov esi, OFFSET32 CommandTail

mov eax, Sys_Critical_Init

VMMcall System_Control

Notifies the virtual device that Windows is starting. The system sends this message to direct virtual devices to carry out, as quickly as possible, the minimum number of tasks needed to prepare the device for enabled interrupts. This message is sent with interrupts disabled, and the virtual device must not enable interrupts while handling this message. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the virtual device initialized successfully. Otherwise, sets the carry flag to prevent the system from loading the virtual device.

SysVMHandle

Handle of the system virtual machine.

CommandTail

Address of the command tail retrieved from the program segment prefix (PSP) of VMM32.VXD. The first byte in the command tail specifies the length in bytes of the tail.

While processing this message, virtual devices typically initialize any critical functions needed to support interrupts, and claim any V86 pages required to support the device. For example, the virtual display device claims the video memory. If a virtual device provides services, it should initialize any data associated with those services.

The virtual device must not use the Simulate_Int or Exec_Int services. Also it must not access conventional memory unless it is certain that the memory will be there. This means, for example, that scanning memory for the signature of a TSR is not allowed. Upper memory blocks are also off-limits because the V86MMGR device has yet to set them up.

See also Device_Init, Sys_Critical_Exit

Sys_VM_Init

include vmm.inc

mov ebx, SysVMHandle

mov eax, Sys_VM_Init

VMMcall System_Control

Directs the virtual device to initialize the state of the software in the system virtual machine. For example, the virtual display device issues an Interrupt 10h function to set the initial display mode. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This message cannot be failed. The virtual device must return carry clear.

SysVMHandle

Handle of the system virtual machine.

This message is the System VM version of the VM_Init message. It is sent after the instance snapshop has been completed and initialization code and data have been discarded.

See also VM_Init

Sys_VM_Terminate

include vmm.inc

mov ebx, SysVMHandle

mov eax, Sys_VM_Terminate

VMMcall System_Control

Notifies the virtual device that the system virtual machine is terminating. The system sends this message only after all other virtual machines have terminated, and only when the system is terminating normally. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This message cannot be failed. The virtual device must return carry clear.

SysVMHandle

Handle of the system virtual machine.

The virtual device can use the Simulate_Int and Exec_Int services in the system virtual machine.

See also Sys_VM_Terminate2, VM_Terminate

Sys_VM_Terminate2

include vmm.inc

mov ebx, SysVMHandle

mov eax, Sys_VM_Terminate2

VMMcall System_Control

Similar to Sys_VM_Terminate, except that Sys_VM_Terminate2 is sent only to virtual devices marked version 4.0 and it is sent in reverse device initialization order. Sys_VM_Terminate2 is sent immediately after Sys_VM_Terminate.

See also Sys_VM_Terminate, VM_Terminate

System_Exit

include vmm.inc

mov ebx, SysVMHandle

mov eax, System_Exit

VMMcall System_Control

Notifies the virtual device that the system is terminating, either normally or as a result of a crash. Interrupts remain enabled while virtual devices process this message. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This message cannot be failed. The virtual device must return carry clear.

SysVMHandle

Handle of the system virtual machine.

The virtual device must not call the Simulate_Int or Exec_Int service, but the virtual device may modify the system virtual machine memory to restore the system state to allow Windows to exit without complication.

The system restores the instance snapshot before sending this message.

The virtual device may not access pageable data during the processing of the System_Exit message because the swap file may be in a bad state (which is why the system is crashing in the first place), or the swap file may already have been closed. Virtual devices which wish to access pageable data during System_Exit must lock the data during Sys_VM_Terminate. During a system crash, the Sys_VM_Terminate message is not sent, so the virtual device should have some way of determining during System_Exit whether or not it was able to lock its data; if not, it should skip any procedures which use the pageable data.

See also Sys_Critical_Exit, Sys_VM_Terminate, System_Exit2

System_Exit2

include vmm.inc

mov ebx, SysVMHandle

mov eax, System_Exit2

VMMcall System_Control

Similar to System_Exit, except that System_Exit2 is sent only to virtual devices marked version 4.0 and it is sent in reverse device initialization order. System_Exit2 is sent immediately after System_Exit.

See also Sys_Critical_Exit, System_Exit

Terminate_Thread

include vmm.inc

mov edi, ThreadHandle

mov eax, Terminate_Thread

VMMcall System_Control

Notifies a virtual device that the specified non-initial thread is about to terminate. Virtual devices typically free resources associated with the thread. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This message cannot be failed. The virtual device must return carry clear.

ThreadHandle

Handle of the thread being terminated.

This message is sent only to virtual devices marked 4.0, and it is sent in reverse initialization order. When a virtual machine terminates, no Terminate_Thread message is sent. Use the VM_Terminate message instead.

See also VMMTerminateThread, VM_Terminate

Thread_Init

include vmm.inc

mov edi, ThreadHandle

mov eax, Thread_Init

VMMcall System_Control

Notifies a virtual device that a new thread was created. Virtual devices typically perform initialization procedures that must take place in the context of the new thread. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This message cannot be failed. The virtual device must return carry clear.

ThreadHandle

Handle of the new thread. This is also the current thread.

Interrupt simulation is not permitted in the new thread during this message.

See also VMMCreateThread, Create_Thread

Thread_Not_Executeable

include vmm.inc

mov edi, ThreadHandle

mov eax, Thread_Not_Executeable

VMMcall System_Control

Notifies a virtual device that the specified non-initial thread has stopped executing. Virtual devices typically free resources associated with the thread. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This message cannot be failed. The virtual device must return carry clear.

ThreadHandle

Handle of the thread.

Interrupt simulation is not permitted in the thread during this message.

This message is sent only to virtual devices marked 4.0, and it is sent in reverse initialization order. When a virtual machine stops executing, no Thread_Not_Executeable message is sent. Use the VM_Not_Executeable message instead.

See also VM_Not_Executeable

VM_Critical_Init

include vmm.inc

mov ebx, VMHandle

mov eax, VM_Critical_Init

VMMcall System_Control

Directs the virtual device to initialize itself for the new virtual machine. This message is sent with interrupts disabled, and the virtual device must not enable interrupts while processing the message. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the virtual device initialized successfully. Otherwise, sets the carry flag to prevent the virtual machine from being created.

VMHandle

Handle of the virtual machine to create.

The virtual device must not use the Simulate_Int or Exec_Int services in the specified virtual machine.

See also Create_VM, VM_Init

VM_Init

include vmm.inc

mov ebx, VMHandle

mov eax, VM_Init

VMMcall System_Control

Directs the virtual device to initialize the state of the software in the new virtual machine. For example, the virtual display device issues Interrupt 10h to set the initial display mode. The system enables interrupts before sending this message. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the virtual device initialized the virtual machine successfully. Otherwise, sets the carry flag to prevent the system from creating the virtual machine.

VMHandle

Handle of the virtual machine to create.

The virtual device can use the Simulate_Int and Exec_Int services in the specified virtual machine.

See also Create_VM, VM_Critical_Init

VM_Not_Executeable

include vmm.inc

mov ebx, VMHandle

mov edx, Flags

mov eax, VM_Not_Executeable

VMMcall System_Control

Notifies the virtual device that the virtual machine is no longer capable of executing. The system sends this message as the first phase of terminating the virtual machine. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This message cannot be failed. The virtual device must return carry clear.

VMHandle

Handle of the virtual machine.

Flags

Reason the virtual machine is no longer executable. Can be one of these values:

Value �Meaning ��VNE_Crashed �Virtual machine has crashed. ��VNE_Nuked �Virtual machine was destroyed while active. ��VNE_CreateFail �Some device failed Create_VM. ��VNE_CrInitFail �Some device failed VM_Critical_Init. ��VNE_InitFail �Some device failed VM_Init. ��

When destroying a running virtual machine, the system sends this message first and never sends the VM_Terminate message.

The virtual device must not call the Simulate_Int or Exec_Int service in the specified virtual machine.

See also VM_Not_Executeable2, VM_Terminate

VM_Not_Executeable2

include vmm.inc

mov ebx, VMHandle

mov edx, Flags

mov eax, VM_Not_Executeable2

VMMcall System_Control

Similar to VM_Not_Executeable, except that VM_Not_Executeable2 is sent only to virtual devices marked version 4.0 and it is sent in reverse device initialization order. VM_Not_Executeable2 is sent immediately after VM_Not_Executeable.

See also VM_Not_Executeable, VM_Terminate

VM_Resume

include vmm.inc

mov ebx, VMHandle

mov eax, VM_Resume

VMMcall System_Control

Notifies the virtual device that the virtual machine is resuming after having been suspended. The virtual device should lock any resources, and prepare internal data structures for the virtual machine to start running again. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag is clear if the virtual device can support resumption of the virtual machine. Otherwise, sets the carry flag to prevent the system from resuming the virtual machine.

VMHandle

Handle of the virtual machine to resume.

The system never sends the VM_Resume message without having first sent a VM_Suspend message.

See also VM_Suspend

VM_Suspend

include vmm.inc

mov ebx, VMHandle

mov eax, VM_Suspend

VMMcall System_Control

Notifies the virtual device that the system is suspending execution of the virtual machine. The virtual device should unlock any resources associated with the virtual machine. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This message cannot be failed. The virtual device must return carry clear.

VMHandle

Handle of the virtual machine to suspend.

The virtual machine remains suspended until explicitly resumed. The system sends the VM_Suspend message when the virtual machine's suspend count changes from zero to one, and not every time the Suspend_VM service is called. Similarly, it sends a VM_Resume message when the virtual machine's suspend count changes from one to zero, and not every time the Resume_VM service is called.

The CB_VM_Status field in the control block for the virtual machine specifies whether the virtual machine is suspended.

See also Resume_VM, Suspend_VM, VM_Resume, VM_Suspend2

VM_Suspend2

include vmm.inc

mov ebx, VMHandle

mov eax, VM_Suspend2

VMMcall System_Control

Similar to VM_Suspend, except that VM_Suspend2 is sent only to virtual devices marked version 4.0 and it is sent in reverse device initialization order. VM_Suspend2 is sent immediately after VM_Suspend.

See also VM_Resume, VM_Suspend

VM_Terminate

include vmm.inc

mov ebx, VMHandle

mov eax, VM_Terminate

VMMcall System_Control

Notifies the virtual device that the system is terminating the specified virtual machine. The system sends this message when a virtual machine terminates normally. The virtual device may modify all general registers and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This message cannot be failed. The virtual device must return carry clear.

VMHandle

Handle of the virtual machine being terminated.

The virtual machine can call the Simulate_Int and Exec_Int services in the specified virtual machine.

See also System_Exit, VM_Not_Executeable, VM_Terminate2

VM_Terminate2

include vmm.inc

mov ebx, VMHandle

mov eax, VM_Terminate2

VMMcall System_Control

Similar to VM_Terminate, except that VM_Terminate2 is sent only to virtual devices marked version 4.0 and it is sent in reverse device initialization order. VM_Terminate2 is sent immediately after VM_Terminate.

See also System_Exit, VM_Not_Executeable, VM_Terminate

�Chapter 29

VMM Structures

About VMM Structures

This chapter contains an alphabetic listing of the structures used with virtual machine manager (VMM) services. There are these structures:

cb_s ���Client_Reg_Struc ���Exception_Handler_Struc ���IPF_Data ���pmcb_s ���Pushad_Struc ���tcb_s ���VMFaultInfo ���

Reference

pmcb_s

include vmm.inc

pmcb_s struc

PMCB_Flags dd ? ; control-block flags

PMCB_Parent dd ? ; parent of the protected-mode application

pmcb_s ends

Application control block. Contains information about a protected-mode application.

See also Get_Cur_PM_App_CB

Client_Reg_Struc

include vmm.inc

Client_Reg_Struc struc

Client_EDI dd ? ; client's EDI

Client_ESI dd ? ; client's ESI

Client_EBP dd ? ; client's EBP

 dd ? ; ESP when pusha instruction is executed

Client_EBX dd ? ; client's EBX

Client_EDX dd ? ; client's EDX

Client_ECX dd ? ; client's ECX

Client_EAX dd ? ; client's EAX

Client_Error dd ? ; doubleword error code

Client_EIP dd ? ; EIP

Client_CS dw ? ; CS

 dw ? ; (padding)

Client_EFlags dd ? ; EFLAGS

Client_ESP dd ? ; ESP

Client_SS dw ? ; SS

 dw ? ; (padding)

Client_ES dw ? ; ES

 dw ? ; (padding)

Client_DS dw ? ; DS

 dw ? ; (padding)

Client_FS dw ? ; FS

 dw ? ; (padding)

Client_GS dw ? ; GS

 dw ? ; (padding)

Client_Alt_EIP dd ?

Client_Alt_CS dw ?

 dw ?

Client_Alt_EFlags dd ?

Client_Alt_ESP dd ?

Client_Alt_SS dw ?

 dw ?

Client_Alt_ES dw ?

 dw ?

Client_Alt_DS dw ?

 dw ?

Client_Alt_FS dw ?

 dw ?

Client_Alt_GS dw ?

 dw ?

Client_Reg_Struc ends

The Client_Reg_Struc structure contains the CPU register values of the virtual device or other program calling a service.

cb_s

include vmm.inc

cb_s struc

CB_VM_Status dd ? ; VM status; see below

CB_High_Linear dd ? ; base linear address; see below

CB_Client_Pointer dd ? ; see below

CB_VMID dd ? ; virtual machine ID

CB_Signature dd ? ; see below

cb_s ends

Virtual machine control block. Contains information about and the status of a virtual machine. The handle of a virtual machine is also the address of its corresponding cb_s structure. All fields in this structure are read-only.

CB_VM_Status

Value specifying the status of the virtual machine. Can be zero or more of these values:

Value �Meaning ��VMStat_Awakening �Virtual machine is waking up after being blocked on a semaphore. ��VMStat_Background �Virtual machine runs in the background. ��VMStat_Blocked �Virtual machine is blocked on a semaphore. ��VMStat_Closing �Virtual machine has received a Close_VM message. ��VMStat_Creating �Virtual machine is being created. ��VMStat_Exclusive �Virtual machine is in exclusive mode. ��VMStat_High_Pri_Back �Virtual machine has high priority background execution. ��VMStat_Idle �Virtual machine has released its time slice. ��VMStat_Not_Executable �Virtual machine is partially destroyed. ��VMStat_PageableV86 �Virtual machine has pageable V86 memory (protected-mode application). The default behavior for one or more pages in V86 memory has been modified and the _GetV86PageableArray service returns at least one nonzero bit in the array. ��VMStat_PM_App �Virtual machine contains a protected-mode application. ��VMStat_PM_Exec �Virtual machine execution currently in a protected-mode application. ��VMStat_PM_Use32 �Virtual machine contains a 32-bit protected-mode application. ��VMStat_Suspended �Virtual machine is not scheduled. ��VMStat_TS_Sched �Virtual machine is scheduled by the time slicer. ��VMStat_V86IntsLocked �Virtual machine locks any V86 memory that cannot be paged. Locking regardless of the pager type has been enabled for the virtual machine. ��VMStat_VxD_Exec �Virtual machine has received a call from a virtual device. ��

CB_High_Linear

Base address of the virtual machine's memory in the ring-0 linear address space. Virtual devices can access memory in a virtual machine by adding the appropriate V86-mode linear address to this value.

CB_Client_Pointer

Address of a Client_Reg_Struc structure containing the register values for the virtual machine.

CB_VMID

Virtual machine identifier.

CB_Signature

Value VMCB_ID.

See also Close_VM, Client_Reg_Struc

Exception_Handler_Struc

include vmm.inc

Exception_Handler_Struc struc

EH_Reserved dd ?

EH_Start_EIP dd ?

EH_End_EIP dd ?

EH_Handler dd ?

Exception_Handler_Struc ends

The Exception_Handler_Struc structure contains information about a ring-0 exception handler.

EH_Reserved

Reserved; must be zero.

EH_Start_EIP

Specifies the starting address of the exception handler's supported range of addresses.

EH_End_EIP

Specifies the ending address of the exception handler's supported range of addresses.

EH_Handler

Points to the exception handler.

See also Install_Exception_Handler

IPF_Data

include vmm.inc

IPF_Data struc

IPF_LinAddr dd ? ; CR2 address of fault

IPF_MapPageNum dd ? ; possible converted page number of fault

IPF_PTEEntry dd ? ; contents of PTE that faulted

IPF_FaultingVM dd ? ; may not = current VM (IPF_V86PgH set)

IPF_Flags dd ? ; flags

IPF_Data ends

The IPF_Data structure contains information about the current invalid page fault.

IPF_LinAddr

Specifies the CR2 address of the page fault. Do not read from the CR2 register directly; use this value instead.

IPF_MapPageNum

Specifies the possible converted page number of the fault.

IPF_PTEEntry

Specifies the contents of the page-table entry that caused the fault.

IPF_FaultingVM

Specifies the handle identifying the virtual machine that caused the fault. This is not necessarily the current virtual machine.

IPF_Flags

Specifies the invalid page-fault flags. It can be a combination of the following values:

Value �Meaning ��IPF_InvTyp �Page has invalid not-present type. ��IPF_PgDir �Page directory entry not present (not-present page table). ��IPF_PgErr �Page swap device could not page for some reason. ��IPF_PM �Page fault caused by virtual machine running in protected mode. ��IPF_ReFlt �Re-entrant page fault. ��IPF_V86 �Page fault caused by virtual machine running in V86 mode. ��IPF_V86Pg �Unexpected not-present page in V86. ��IPF_V86PgH �Unexpected not-present page in V86 at high linear address. ��IPF_VMM �Page fault caused by a virtual device. ��

Invalid page faults occur in a virtual machine other than the current virtual machine if the high linear address of the virtual machine is accessed. In this case, the IPF_FaultingVM field is set to the handle of the virtual machine that owns the high linear address.

See also Hook_Invalid_Page_Fault

Pushad_Struc

include vmm.inc

Pushad_Struc struc

Pushad_EDI dd ? ; EDI register at time of pushad

Pushad_ESI dd ? ; ESI register at time of pushad

Pushad_EBP dd ? ; EBP register at time of pushad

Pushad_ESP dd ? ; ESP register at time of pushad

Pushad_EBX dd ? ; EBX register at time of pushad

Pushad_EDX dd ? ; EDX register at time of pushad

Pushad_ECX dd ? ; ECX register at time of pushad

Pushad_EAX dd ? ; EAX register at time of pushad

Pushad_Struc ends

Describes the stack frame built by the pushad instruction. Its typical uses are to reach back into a 'pushad' frame to recover a value that was saved in it, or to shove a value into it to be restored by a subsequent 'popad'.

tcb_s

include vmm.inc

tcb_s struc

TCB_Flags dd ? ; thread status flags; see below

TCB_Reserved1 dd ? ; reserved for use by VMM

TCB_Reserved2 dd ? ; reserved for use by VMM

TCB_Signature dd ? ; SCHED_OBJ_THREAD_ID

TCB_ClientPtr dd ? ; address of client registers

TCB_VMHandle dd ? ; VM to which this thread belongs

TCB_ThreadId dw ? ; thread ID

TCB_PMLockOrigSS dw ? ; client SS at Begin_Use_Locked_PM_Stack

TCB_PMLockOrigESP dd ? ; client ESP at Begin_Use_Locked_PM_Stack

TCB_PMLockOrigEIP dd ? ; client EIP at Begin_Use_Locked_PM_Stack

TCB_PMLockStackCount dd ? ; number of outstanding

 ; Begin_Use_Locked_PM_Stack calls

TCB_PMLockOrigCS dw ? ; client CS at Begin_Use_Locked_PM_Stack

TCB_PMPSPSelector dw ? ; used by Vwin32

TCB_ThreadType dd ? ; used by Vwin32

TCB_pad1 db ? ; padding

TCB_pad2 db ? ; padding

TCB_extErrLocus db ? ; used by Vwin32

TCB_extErrAction db ? ; used by Vwin32

TCB_extErrClass db ? ; used by Vwin32

TCB_extErrPtr dd ? ; used by Vwin32

tcb_s ends

Thread control block. Contains information about, and the status of, a thread. The handle of a thread is also the address of its corresponding tcb_s structure. All fields in this structure are read-only.

TCB_Flags

Value specifying the status of the thread. Can be zero or more of these values:

Value �Meaning ��THFLAG_Suspended �Thread is not scheduled. ��THFLAG_Not_Executeable �Thread has stopped executing. ��THFLAG_Thread_Creation �Thread being created. ��THFLAG_Thread_Blocked �Thread is blocked on a semaphore. ��THFLAG_Ring0_Thread �Thread runs completely at ring 0. ��THFLAG_ANSI THFLAG_OEM THFLAG_UNICODE THFLAG_RESERVED �Used by Vwin32 to indicate file system character set. ��THFLAG_Extended_Handles �Thread uses extended handles. ��THFLAG_Open_As_Immovable_File �Used by Vwin32 to prevent defragmenter from moving an open file. ��

These bits are read-only. Virtual devices should not attempt to modify any of these bits. Some of the descriptions might not be directly meaningful; don't worry. Only Vwin32 really cares about them.

TCB_Reserved1, TCB_Reserved2

Reserved by VMM for internal bookkeeping.

TCB_Signature

The value SCHED_OBJ_THREAD_ID.

TCB_ClientPtr

Pointer to thread client registers.

TCB_VMHandle

Handle of VM to which this thread belongs.

TCB_ThreadId

16-bit value that uniquely identifies the thread during its lifetime. Note that thread IDs are recycled. When a thread is destroyed, its ID becomes available for use.

TCB_PMLockOrigSS, TCB_PMLockOrigESP, TCB_PMLockStackCount, and TCB_PMLockOrigCS

Used internally by the Begin_Use_Locked_PM_Stack service.

TCB_PMPSPSelector, TCB_ThreadType, TCB_extErrLocus, TCB_extErrAction, TCB_extErrClass, and TCB_extErrPtr

Used internally by Vwin32.

See also Close_VM, Client_Reg_Struc

VMFaultInfo

include vmm.inc

VMFaultInfo struc

VMFI_EIP dd ? ;

VMFI_CS dw ? ;

VMFI_Ints dw ? ;

VMFaultInfo ends

The VMFaultInfo structure contains data which describes the client state at the time of a fault in the virtual machine.

VMFI_EIP and VMFI_CS

Specifies the value of the instruction pointer and the code segment address at the time the fault occurred.

VMFI_Ints

Indicates the interrupt request lines (IRQs) that were in service when the fault occurred. Bit 0 is set if IRQ 0 was in service, bit 1 is set if IRQ 1 was in service, and so on.

See also GetSetDetailedVMError

See also

�Chapter

DMA Devices

About DMA Devices

This chapter describes the interfaces of the virtual direct memory access device (VDMAD). Virtual devices that support hardware that requires direct memory access (DMA) transfers should use the services provided by the virtual DMA device to carry out these transfers.

The virtual DMA device virtualizes direct memory access devices and provides services that other virtual devices use to carry data transfers using DMA channels.

Reference

The following is an alphabetic listing of the virtual direct memory access (DMA) device services services and structures.

VDMAD_Copy_From_Buffer

VDMAD_Copy_To_Buffer

VDMAD_Default_Handler

VDMAD_Disable_Translation

VDMAD_Enable_Translation

VDMAD_Get_EISA_Adr_Mode

VDMAD_Get_Region_Info

VDMAD_Get_Version

VDMAD_Get_Virt_State

VDMAD_Lock_DMA_Region

VDMAD_Mask_Channel

VDMAD_Phys_Mask_Channel

VDMAD_Phys_Unmask_Channel

VDMAD_Release_Buffer

VDMAD_Request_Buffer

VDMAD_Reserve_Buffer_Space

VDMAD_Scatter_Lock

VDMAD_Scatter_Unlock

VDMAD_Set_EISA_Adr_Mode

VDMAD_Set_EISA_Phys_State

VDMAD_Set_IO_Address

VDMAD_Set_Phys_State

VDMAD_Set_PS2_Phys_State

VDMAD_Set_Region_Info

VDMAD_Set_Virt_State

VDMAD_Unlock_DMA_Region

VDMAD_Unlock_DMA_Region_No_Dirty

VDMAD_UnMask_Channel

VDMAD_Unvirtualize_Channel

VDMAD_Virtualize_Channel

All VDMAD services are consistent with DMA services as defined by the VDS specifications.

Services

VDMAD_Copy_From_Buffer

include vdmad.inc

mov ebx, BufferID

mov esi, OFFSET32 Region

mov edi, OFFSET32 BufferOffset

mov ecx, BufferSize

VxDcall VDMAD_Copy_From_Buffer

jc ErrorHandler

Allows another device to copy data from the VDMAD buffer to the DMA region associated with that buffer. Uses EAX, flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The carry flag is clear if the data if the function succeeds. Otherwise, the carry flag is set and the AL register contains one of the following error values:

0Ah �DMA_Invalid_Buffer: invalid buffer ID supplied. ��0Bh �DMA_Copy_Out_Range: (ESI + ECX) is greater than buffer size. ��

BufferID

Buffer identifier.

Region

Address of linear region.

BufferOffset

Offset within the buffer to the start of copying.

BufferSize

Buffer size in bytes.

This service is called after the VDMAD_Request_Buffer service, after a memory write transfer and before the VDMAD_Release_Buffer service.

VDMAD_Copy_To_Buffer

include vdmad.inc

mov ebx, BufferID

mov esi, OFFSET32 Region

mov edi, OFFSET32 BufferOffset

mov ecx, BufferSize

VxDcall VDMAD_Copy_To_Buffer

jc ErrorHandler

Allows another device to copy data into the VDMAD buffer from the DMA region associated with that buffer. Uses EAX, flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The carry flag is clear if the function succeeds. Otherwise, the carry flag is set and the AL register contains one of the following error values:

0Ah �DMA_Invalid_Buffer: Invalid buffer ID supplied. ��0Bh �DMA_Copy_Out_Range: (ESI + ECX) is greater than buffer size. ��

BufferID

Buffer identifier.

Region

Address of linear region.

BufferOffset

Offset within the buffer to the start of copying.

BufferSize

Buffer size in bytes.

This service is called after the VDMAD_Request_Buffer service, and before starting a memory-read transfer.

VDMAD_Default_Handler

include vdmad.inc

mov eax, DMA_Handle

mov ebx, VMHandle

VxDcall VDMAD_Default_Handler

Specifies the default DMA channel I/O callback procedure. Uses All

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This service has no return value.

DMA_Handle

Handle of the DMA.

VMHandle

Handle of the VM.

The callback procedure receives notifications of virtual state changes, and configures the physical state to start DMA transfers.

VDMAD_Disable_Translation

include vdmad.inc

mov eax, DMA_Handle

mov ebx, VMHandle

VxDcall VDMAD_Disable_Translation

jc ErrorHandler

Disables the automatic translation done for the standard DMA channels. Uses flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the function succeeds, otherwise the carry flag is set.

DMA_Handle

Handle of the DMA.

VMHandle

Handle of the VM.

If a V86 application, a driver, or a protected-mode application uses the DMA services through INT 4B, it must determine actual physical addresses for DMA transfers.

A disable count is maintained, so a matching call to VDMAD_Enable_Translation is required for each call to this service to re-enable translation.

VDMAD_Enable_Translation

include vdmad.inc

mov eax, DMA_Handle

mov ebx, VMHandle

VxDcall VDMAD_Enable_Translation

Decrements the disable count associated with a standard DMA channel. Uses flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if successful, otherwise sets the carry flag.

DMA_Handle

Specifies the DMA handle.

VMHandle

Specifies the virtual machine handle.

If the disable count goes to 0, the automatic translation is re-enabled.

This service clears the zero flag if automatic translation is re-enabled.

VDMAD_Get_EISA_Adr_Mode

include vdmad.inc

mov eax, Channel

mov ebx, DMA_Handle

VxDcall VDMAD_Get_EISA_Adr_Mode

Returns the EISA extended mode. Uses ECX, flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The CL register contains one of the following values:

0 �8-bit I/O, with count in bytes ��1 �16-bit I/O, with count in words and address shifted ��2 �32-bit I/O, with count in bytes ��3 �16-bit I/O, with count in bytes ��

Channel

Number of channel, it must be in the range 0 to 7.

DMA_Handle

Handle of DMA.

The hardware does not allow for reading the extended mode for a channel, so VDMAD defaults to the ISA defaults (channels 0-3 are byte channels, and 5-7 are word channels with word addresses and counts). A SYSTEM.INI setting can specify an alternate setting.

VDMAD_Get_Region_Info

include vdmad.inc

mov eax, DMA_Handle

VxDcall VDMAD_Get_Region_Info

mov [Buffer], bl

mov [LockFlag], bh

mov Region, esi

mov [RegionSize], ecx

Returns data describing the current region assigned to a DMA handle. This data includes the buffer identifier, page status, region address, and buffer size. Uses EBX, ECX, ESI

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns information about the current region:

BL �Specifies the buffer identifier. ��BH �Specifies whether pages are locked (zero is not locked, nonzero is locked). ��ESI �Specifies the linear region. ��ECX �Specifies the size of the buffer in bytes. ��

DMA_Handle

Handle of the DMA.

The data returned by this service can be used by a handler when it calls following services:

VDMAD_Unlock_DMA_Region

VDMAD_Release_Buffer

VDMAD_Copy_To_Buffer

VDMAD_Copy_From_Buffer

VDMAD_Get_Version

include vdmad.inc

VxDcall VDMAD_Get_Version

mov MajorVersion, ah

mov MinorVersion, al

mov BufferSize, ecx

Returns the major and minor version numbers of the virtual DMA device as well as the size of the buffer if one exists. Uses EAX, ECX, flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if successful and returns the following version and buffer-size information:

AH �Major version number ��AL �Minor version number ��ECX �Buffer size in bytes. ��

A buffer is not available until the Init_Complete message is issued. If the buffer has not been allocated, ECX will contain zero when the service returns.

VDMAD_Get_Virt_State

include vdmad.inc

mov eax, DMA_Handle

mov ebx, VMHandle

VxDcall VDMAD_Get_Virt_State

Allows a channel owner to determine the current virtual state of the channel. Uses ECX, EDX, ESI, flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	If translation is enabled, the ESI register contains the high linear address of the user's DMA region. The high linear address is used so that the DMA can proceed even if a different virtual machine is actually running at the time of the transfer.

If translation is not enabled, the ESI register contains the physical byte address programmed (shifted left 1, for word ports).

The ECX register contains count in bytes.

The DL register contains the mode. This is the same as the 8237 mode byte with channel number removed and the following DMA_masked and DMA_requested values set as appropriate:

DMA_masked �Channel masked and not ready for a transfer. ��DMA_requested �Software request flag set. ��

The DH register contains the extended mode (ignored on non-PS/2 machines that do not have extended DMA capabilities).

DMA_Handle

Handle of DMA.

VMHandle

Handle of VM.

The virtual state consists of all the information necessary to physically program the DMA channel for a DMA transfer (linear address of target region, byte length of region, mode of transfer, and state of mask bit and software request bit).

VDMAD_Lock_DMA_Region

include vdmad.inc

mov esi, OFFSET32 DMA_Region

mov ecx, RegionSize

mov dl, Alignment

VxDcall VDMAD_Lock_DMA_Region

jc ErrorHandler

Attempts to lock a region of memory for a DMA transfer. Uses EAX, ECX, EDX, and flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag and copies the DMA address into EDX if the function succeeds. Otherwise, sets the carry flag and copies the number of bytes that can be locked into ECX (starting from ESI); the AL registers contains one of the following error values:

1 �DMA_Not_Contiguous: Region not contiguous. ��2 �DMA_Not_Aligned: Region crossed physical alignment boundary. ��3 �DMA_Lock_Failed: Unable to lock pages. ��

DMA_Region

Address of the DMA region.

RegionSize

Number of bytes in the DMA region.

Alignment

Region alignment. This parameter can be one of the following values:

1 �Region must be aligned on 64K page boundary. ��2 �Region must be aligned on 128K page boundary. ��

The service first verifies that the region is mapped to contiguous pages of physical memory, then it determines whether the region results in a DMA bank (page) wrap.

Typically, each channel has a base address register and a page address register. The base address register is incremented after each byte or word is transferred. If the increment of this 16-bit register results in the roll over from 0FFFFh to 0, then the transfer wraps to the start of the DMA bank because the page register is not updated. Normally MS-DOS watches for this condition and adjusts Interrupt 13h parameters to split transfers to avoid this wrap, but MS-DOS does not account for the difference between linear and physical addresses with Windows, so VDMAD checks again to prevent wrap from occurring.

If these checks pass, the service calls the memory manager to lock the physical pages.

This service does not check to see if the region is within some physical maximum constraint. If the region can be locked, then it locks the memory, and it is up to the caller to check to see if the physical region is acceptable. If the region is not acceptable, then the caller should unlock the region and perform a buffered DMA transfer.

This service must be called before a DMA transfer is started, that is, before the physical state is set for a channel and before it is unmasked.

VDMAD_Mask_Channel

include vdmad.inc

mov eax, DMA_Handle

VxDcall VDMAD_Mask_Channel

Masks a channel so that it will not attempt any further DMA transfers. Uses flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This service has no return value.

DMA_Handle

Handle of DMA.

VDMAD_Phys_Mask_Channel

include vdmad.inc

mov eax, [DMA_Handle]

VxDCall VDMAD_Phys_Mask_Channel

Masks the channel without checking the terminal count.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

DMA_Handle

Handle of the DMA.

This service is asynchronous.

VDMAD_Phys_Unmask_Channel

include vdmad.inc

mov edx, DMA_Handle

mov ebx, VMHandle

VxDcall VDMAD_Phys_Unmask_Channel

Used by VxD clients to unmask the channel without checking for terminal count. This service may be used directly by VxDs performing DMA transfers.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

DMA_Handle

Handle of the DMA.

VMHandle

Handle of the VM.

This service is asynchronous.

VDMAD_Release_Buffer

include vdmad.inc

mov ebx, Buffer

VxDcall VDMAD_Release_Buffer

jc ErrorHandler

Releases the VDMAD buffer assigned to a DMA channel from a previous call to the VDMAD_Request_Buffer service. Uses flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the buffer is released. Otherwise, sets the carry flag.

Buffer

Identifier of buffer.

This service will exit from a critical section, making the DMA buffer becomes available for other users. Any data in the buffer is not automatically copied, so the VDMAD_Copy_From_Buffer service must be called if the data is important.

VDMAD_Request_Buffer

include vdmad.inc

mov esi, OFFSET32 DMA_Region

mov ecx, RegionSize

VxDcall VDMAD_Request_Buffer

jc ErrorHandler

Reserves the DMA buffer for a DMA transfer. Uses EAX, EBX, ESI, flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the service is successful. The EBX register contains the buffer identifier, and the EDX register contains the physical address of the buffer.

Otherwise, the carry flag is set and the AL register contains one of the following error values:

5 �DMA_Buffer_Too_Small: Region request is too large for buffer. ��6 �DMA_Buffer_In_Use: Buffer already in use. ��

DMA_Region

Address of the actual DMA region.

RegionSize

Size of the DMA region in bytes.

VDMAD_Reserve_Buffer_Space

include vdmad.inc

mov eax, PageCount

mov ecx, MaxAddress

VxDcall VDMAD_Reserve_Buffer_Space

Allows other devices that are going to handle DMA to make sure that VDMAD allocates a buffer large enough for any transfers that they might require. Uses flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

PageCount

Number of pages requested.

MaxAddress

Maximum physical address that can be included in a DMA transfer. If this parameter is zero, there is no limit.

This service also allows a device to specify a maximum physical address that would be valid for the device's DMA requests. During the Init_Complete phase of initialization, VDMAD allocates the DMA buffer using all of the constraints specified by other devices. For example, the buffer is at least as big as the largest size specified by the calls to this service, and it allocates below the lowest maximum physical addresses specified.

This service is only available before the Init_Complete message.

VDMAD_Scatter_Lock

include vdmad.inc

mov ebx, VMHandle

mov al, Flags

mov edi, OFFSET32 DDS

VxDcall VDMAD_Scatter_Lock

jc ErrorHandler

Attempts to lock all pages mapped to a DMA region and returns the addresses of those pages. Uses EDX, ESI, flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag and sets the zero flag if the entire region is locked. Clears the carry flag and the zero flag if a portion of the region is locked. Otherwise, sets the carry flag.

VMHandle

Handle of the virtual machine.

Flags

Operation flags. The parameter can be one of the following values:

0 �Fills the DDS table with physical addresses and sizes of the physical regions that make up the DMA region. ��1 �Fills the DDS table with the actual page table entries. ��2 �Prevents not-present pages from being locked. This value is ignored if bit 0 is not set. ��

DDS

Address of the extended DDS (DMA Descriptor Structure) to receive the information.

Upon returning, the EDX register contains the number of table entries needed to describe whole region, and the DDS_size field specifies the number of bytes locked. If the request was for page table copy (AL set to 1 or 3), then The ESI register contains an offset into first page for start of the region.

VDMAD_Scatter_Unlock

include vdmad.inc

mov ebx, VMHandle

mov al, Flags

mov edi, OFFSET32 DDS

VxDcall VDMAD_Scatter_Unlock

jc ErrorHandler

Attempts to unlock all pages locked by a previous call to the VDMAD_Scatter_Lock service. Uses flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the lock counts have been decremented. Otherwise, the carry flag is set.

VMHandle

Specifies the virtual machine handle.

Flags

Specifies the operation flags. The parameter can be one of the following values:

0 �Fills the DDS table with physical addresses and sizes of the physical regions that make up the DMA region. ��1 �Fills the DDS table with the actual page table entries. ��2 �Prevents not-present pages from being locked. This value is ignored if bit 0 is not set. ��4 �Prevents pages from being marked as dirty. If bits 0 and 1 are set but 2 is clear, then not-present pages are not marked. ��

DDS

Points to the extended DDS (DMA Descriptor Structure) to receive the information.

If bits 0 and 1 in the AL register are set, the table at the end of the DDS is not required to unlock the previously locked pages; otherwise, the table is not used and caller need not maintain the table after the lock call.

VDMAD_Set_EISA_Adr_Mode

include vdmad.inc

mov eax, Channel

mov ebx, DMA_Handle

mov cl, Mode

VxDcall VDMAD_Set_EISA_Adr_Mode

Sets the EISA extended mode. Uses flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Channel

Specifies the channel number. It must be in the range 0 to 7.

DMA_Handle

Specifies the DMA handle.

Mode

I/O mode. It can be one of the following values:

0 �8-bit I/O, with count in bytes ��1 �16-bit I/O, with count in words and address shifted ��2 �32-bit I/O, with count in bytes ��3 �16-bit I/O, with count in bytes ��

VDMAD_Set_EISA_Phys_State

include vdmad.inc

mov eax, [DMA_Handle]

mov ebx, [VMHandle]

mov edx, [Mode]

VxDCall VDMAD_Set_EISA_Phys_State

Programs the DMA controller state for a channel. Uses flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

DMA_Handle

Handle of the DMA.

VMHandle

Handle of the virtual machine.

Mode

Requested mode. The extended mode is specified in DH, the mode itself is specified in DL.

This service should be used instead of VDMAD_Set_Phys_State for EISA systems. The VDMAD_Set_Region service must be called prior to calling VDMAD_Set_EISA_Phys_State.

VDMAD_Set_IO_Address

include vdmad.inc

mov eax, Channel_Number

mov edx, Port_Number

VxDcall VDMAD_Set_IO_Address

Changes the port associated with the given DMA channel to be used in the programmed I/O mode. This service is for use only on PS/2 computers. The Windows 95 I/O subsystem uses this service to determine if the port associated with a DMA channel is in its default location. In most cases, there should be no need for any other VxD to use this service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Channel_Number

Number of the channel.

Port_Number

Number of the I/O port.

VDMAD_Set_Phys_State

include vdmad.inc

mov eax, DMA_Handle

mov ebx, VMHandle

mov dl, Mode

mov dh, Ext_Mode

VxDcall VDMAD_Set_Phys_State

Programs the DMA controller state for a channel. Uses Flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

DMA_Handle

Handle of the DMA.

VMHandle

Handle of the VM.

Mode

Mode.

Ext_Mode

Extended mode.

This service takes the location and size of the buffer from the information passed in a previous call, to the VDMAD_Set_Region_Info service.

VDMAD_Set_PS2_Phys_State

include vdmad.inc

mov eax, [DMA_Handle]

mov ebx, [VMHandle]

mov edx, [Mode]

VxDCall VDMAD_Set_PS2_Phys_State

Programs the DMA controller state for a channel. Uses flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

DMA_Handle

Handle of the DMA.

VMHandle

Handle of the virtual machine.

Mode

Requested mode. The extended mode is specified in DH, the mode itself is specified in DL.

This service should be used instead of VDMAD_Set_Phys_State for PS2 systems if a micro channel is detected at initialization time. The VDMAD_Set_Region service must be called prior to calling VDMAD_Set_PS2_Phys_State.

VDMAD_Set_Region_Info

include vdmad.inc

mov eax, DMA_Handle

mov bl, Buffer

mov bh, LockStatus

mov esi, OFFSET32 Region

mov ecx, RegionSize

mov edx, OFFSET32 PhysAddress

VxDcall VDMAD_Set_Region_Info

Sets information about the current region assigned to a DMA handle. Uses flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

DMA_Handle

Handle of the DMA.

Buffer

Identifier for buffer.

LockStatus

Status of pages (zero if not locked, nonzero if locked).

Region

Address of region.

RegionSize

Size of region in bytes.

PhysAddress

Physical address for the transfer.

This service must be called before calling the VDMAD_Set_Phys_State service.

VDMAD_Set_Virt_State

include vdmad.inc

mov eax, DMA_Handle

mov ebx, VMHandle

mov esi, OFFSET32 Address

mov ecx, Size

mov dl, Mode

mov dh, ExtMode

VxDcall VDMAD_Set_Virt_State

Modifies the virtual state of a DMA channel. Uses flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

DMA_Handle

Handle of the DMA.

VMHandle

Handle of the VM.

Address

A high linear address or a physical byte address. If translation is enabled, this parameter is the high linear address of the user's DMA region. A high linear address is used so that the DMA can proceed even if a different virtual machine is actually running at the time of the transfer. If translation is not enabled, this parameter specifies a physical byte address programmed (shifted left 1, for word ports).

Size

Specifies the count in bytes.

Mode

Specifies the mode. This is the same as the 8237 mode byte with the channel number removed, and the following DMA_masked and DMA_requested values set as appropriate:

DMA_masked �Channel masked and not ready for a transfer. ��DMA_requested �Software request flag set. ��

ExtMode

Specifies the extended mode (ignored on non-PS/2 machines that do not have extended DMA capabilities).

This service is used when a channel owner wants to change the virtual state of a channel from how the virtual machine programmed it. This might be used to split a DMA request into smaller pieces.

VDMAD_Unlock_DMA_Region

include vdmad.inc

mov esi, OFFSET32 DMA_Region

mov ecx, Size

VxDcall VDMAD_Unlock_DMA_Region

jz ErrorHandler

Unlocks the DMA region previously locked to a channel. Uses flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if successful, otherwise the carry flag is set.

DMA_Region

Linear address of the actual DMA region.

Size

Size in bytes of the DMA region.

This service is called after a DMA transfer is complete and the channel has been masked, preventing the controller from attempting any further transfers to the programmed address.

VDMAD_Unlock_DMA_Region_No_Dirty

include vdmad.inc

mov esi, OFFSET32 DMA_Region

mov ecx, Size

VxDcall VDMAD_Unlock_DMA_Region_No_Dirty

jc error

Unlocks the DMA region previously locked to a channel but does not mark each page in the region as dirty. In most cases, the VDMAD_Unlock_DMA_Region service should be used. However, if you are performing a memory read operation, (for example, doing DMA output to a device) and you know that the page has not been touched, VDMAD_Unlock_DMA_Region_No_Dirty may be used to prevent the page from being marked as dirty. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if successful, otherwise the carry flag is set.

DMA_Region

Linear address of the DMA region.

Size

Size in bytes of the DMA region.

VDMAD_UnMask_Channel

include vdmad.inc

mov eax, DMA_Handle

mov ebx, VMHandle

VxDcall VDMAD_UnMask_Channel

Physically unmasks a channel so that DMA transfers can proceed. Uses flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

DMA_Handle

Handle of the DMA.

VMHandle

Handle of the virtual machine.

VDMAD_Unvirtualize_Channel

include vdmad.inc

mov eax, DMA_Handle

VxDcall VDMAD_Unvirtualize_Channel

jc error

Allows a VxD to release its virtualization of a standard DMA channel. The previously registered callback procedure will not be called again. The channel is available for virtualization by other VxDs. VDMAD will continue to trap the I/O for the channel, but will not change the physical state of the channel as a result of any VM I/O. Uses EAX, EDX, Flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if successful. Sets the carry flag if the DMA_Handle is invalid.

DMA_Handle

Handle of the DMA.

VDMAD_Virtualize_Channel

include vdmad.inc

mov eax, Channel

move esi, OFFSET32 CallbackProc

VxDcall VDMAD_Virtualize_Channel

jz ErrorHandler

Allows another virtual device to claim ownership of a standard DMA channel. Uses EAX, EDX, flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag and places the DMA handle in EAX if the function is successful, otherwise sets the carry flag.

Channel

Number of channel.

CallbackProc

Address of the callback procedure. If this parameter is zero, no callback procedure is called.

The system calls the callback procedure by passing it the following input parameters:

EAX ; DMA handle

EBX ; virtual machine handle

The procedure can modify EAX, EBX, ECX, EDX, ESI, EDI, and flags.

In some cases a virtual device does not allow a virtual machine to perform DMA to a channel. Instead, the virtual device handles programming based on a private API and not on virtualized hardware I/O. This means it is possible to pass a zero to specify no callback procedure. VDMAD continues to trap the I/O for the channel, but never changes the physical state of the channel as a result of any virtual machine I/O.

The new owner registers a callback procedure that is called whenever the virtual state of the channel is changed as a result of I/O carried out in a virtual machine.

Structures

DMA_Descriptor_Struc

include vdmad.inc

DMA_Descriptor_Struc STRUC

DDS_size dd ? ; see below

DDS_linear dd ? ; see below

DDS_seg dw ? ; see below

DDS_bufferID dw ? ; see below

DDS_physical dd ? ; see below

DMA_Descriptor_Struc ENDS

Describes the DMA region.

DDS_size

Size in bytes of the of the DMA region.

DDS_linear

Linear address of the DMA region.

DDS_seg

Segment or selector of the DMA region.

DDS_bufferID

This field is filled in by the Request DMA Buffer service and possibly the Lock DMA Region service.

DDS_physical

This field is filled in by the Lock DMA Region and Request DMA Buffer services.

DDS_linear and DDS_seg specify a 48-bit segment:offset pointer for virtual 8086 mode, or a selector:offset pointer for protected mode programs. Note that if the linear address has already been determined then you may set the DDS_seg to 0 and place the linear address in the linear offset field. It is possible to specify 32-bit offsets, even with real mode segment values; this makes it much easier for device drivers to split up DMA transfers, by simply modifying the offset without having to modify the segment/selector.

Extended_DDS_Struc

include vdmad.inc

Extended_DDS_Struc STRUC

 dd ? ; DDS_size see DMA_Descriptor_Struc

 dd ? ; DDS_linear see DMA_Descriptor_Struc

 dw ? ; DDS_seg see DMA_Descriptor_Struc

 dw ? ; reserved

DDS_avail dw ?

DDS_used dw ?

Extended_DDS_Struc ENDS

Describes the DMA region.

DDS_avail

The number of physical regions/page table entries that immediately follows the Extended_DDS_Struc structure.

DDS_used

The number of table entries filled in with physical regions information.

�Chapter

MS-DOS Manager

About the MS-DOS Manager

The virtual MS-DOS manager virtualizes the elements of the MS-DOS operating system, such as device drivers and internal flags. This device also manages instance data for MS-DOS.

Reference

The virtual MS-DOS manager provides the following services:

DOSMGR_Add_Device

DOSMGR_Alloc_Local_Sys_VM_Mem

DOSMGR_Begin_V86_App

DOSMGR_BackFill_Allowed

DOSMGR_Copy_VM_Drive_State

DOSMGR_Enable_Indos_Polling

DOSMGR_End_V86_App

_DOSMGR_Exec_VM

DOSMGR_Get_DOS_Crit_Status

DOSMGR_Get_IndosPtr

DOSMGR_Get_Version

DOSMGR_Init_UMB_Area

DOSMGR_Instance_Device

DOSMGR_LocalGlobalReg

DOSMGR_Remove_Device

_DOSMGR_Set_Exec_VM_Data

Services

DOSMGR_Add_Device

include dosmgr.inc

mov ebx, VMAdd

mov eax, OFFSET32 Device_Header

VxDcall DOSMGR_Add_Device

jc error_handler

Adds a device to the device list. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if successful; otherwise, sets the carry flag if the device could not be added to device list.

VMAdd

Handle of the virtual machine to add device to. If this parameter is zero, the device is added to all virtual machines.

Device_Header

Address of device header. This address must be in low memory (less than 100000h).

The address of this device for the chain is computed as:

(eax >> 4) & 0FFFFh : (eax & 000Fh)

This service links the device into the list but does not call it. If the device needs to be initialized, the caller must do it. This service adds the device to the end of the device chain. Therefore, this service cannot be used to replace an existing device. This service applies to character devices only. Block devices cannot be added with this service.

All devices put on the list this way are removed when Windows exits, including any devices added by virtual mode code.

The only supported method to add a device globally is to use the service _Allocate_Global_V86_Data_Area to allocate memory to contain the device header, initialize it, then call this routine to add it to the list. Global devices must be added during the Device_Init message. They cannot be added later. Local devices must be added at the VM_Init, VM_Critical_Init or Sys_VM_Init message or they will be global because they will be part of the initial VM state.

If this device hooks an interrupt and it is a local device, the vector must be set in the appropriate virtual machine during the VM_Init, VM_Critical_Init or Sys_VM_Init message.

A global device can also work this way, hooking the vector in every virtual machine. This allows the global device to be removed before Windows exits. The other method for a global device is to hook the vector during the Device_Init message which makes the hook part of the initial virtual machine state. Such a hook must be removed during the Sys_Critical_Exit message, or the vector will point to a nonexistent device after Windows exits.

DOSMGR_Alloc_Local_Sys_VM_Mem

include dosmgr.inc

mov ax, NumParagraphs

VxDcall DOSMGR_Alloc_Local_Sys_VM_Mem

Reserves local V86 memory in the system VM. Uses EAX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns in the AX register the offset in paragraphs from the First V86 Page to the start of the reserved area.

The offset returned is an offset from First V86 Page which is returned by the service GetFirstV86Page. This page is not valid until the start of the Sys_VM_Init System_Control broadcast. So, a client of this service must watch for that control call, then call GetFirstV86Page and add the offset returned by this service to determine the actual location of the reserved memory. The memory is actually not ready until the SHELL VxD calls DOSMGR to do the initial exec, so the memory is only available after the SHELL VxD's Sys_VM_Init handler. Also note that this service is an initialization time only service, so it must be called before the end of the Init_Complete control call.

DOSMGR_BackFill_Allowed

include dosmgr.inc

VxDcall DOSMGR_BackFill_Allowed

jc no_backfilling

Specifies whether the MS-DOS configuration allows for low-memory backfills. The V86MMGR device calls this service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if backfilling is allowed; otherwise, set the carry flag.

This service depends on the high MS-DOS state. Certain high MS-DOS configurations prevent low memory 640K backfill from being possible.

DOSMGR_Begin_V86_App

include vmm.inc

include dosmgr.inc

; Install a hook procedure

GetVxDServiceOrdinal eax, DOSMGR_Begin_V86_App

mov esi, OFFSET32 HookProc

VMMcall Hook_Device_Service

jc error

This service is called internally by DOSMGR when a V86-mode application is about to begin execution. The application has been loaded and relocated, but its code has not yet been run. VxDs which wish to be notified of this activity must hook this service. VxDs must not call this service directly. The hook procedure must be a 4.0 Hook_Proc style procedure.

VxDs which monitor resources may wish to hook this service (and the corresponding DOSMGR_End_V86_App) in order to allocate and free resources for each MS-DOS-based application. To monitor Windows-based applications, VxDs should monitor the system control calls related to threads.

The system calls the hook procedure as follows:

mov ebx, VMHandle

mov esi, HighLinearPSP

mov dx, AppPSP

call HookProc

VMHandle

VM that performed the int 21h.

HighLinearPSP

High linear address of the program segment prefix (PSP) of the application which is about to run.

AppPSP

Segment value of the PSP of the application which is about to be run.

Any VxD which hooks this service must pass the call down to the previously-installed hook, preserving all registers (except Flags), even registers reserved for future use.

Do not assume that the high word of the EDX register will be zero.

DOSMGR_Copy_VM_Drive_State

include dosmgr.inc

mov ebx, VMCopyTo

mov esi, VMCopyFrom

VxDcall DOSMGR_Copy_VM_Drive_State

Copies the drive and current directory state of all drives from one virtual machine to another virtual machine. This service can be called during a Create_VM message since it does not simulate calls or interrupts in either virtual machine; it just copies instance data from one to the other. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

VMCopyTo

Handle of the virtual machine to receive a copy of the drive state.

VMCopyFrom

Handle of the virtual machine from which to copy the drive state.

This service does not change the current drive of the destination virtual machine.

This service does not disturb the InitDrvDir value set using the _DOSMGR_Set_Exec_VM_Data service if it is called before the _DOSMGR_Exec_VM service. The processing of InitDrvDir occurs during calls to the _DOSMGR_Exec_VM service.

DOSMGR_Enable_Indos_Polling

include dosmgr.inc

VxDcall DOSMGR_Enable_Indos_Polling

Enables the InDOS polling for the Windows session. This allows TSR drivers that hook Interrupt 21h, and claim the critical section by setting the internal MS-DOS InDOS flag to continue to operate normally.

This service is intended for use by the virtual DOSNET device so that it can enable polling if the installed network requires it. The virtual device must not call this service during a Sys_Critical_Init message. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if InDOS polling is enabled; otherwise, sets the carry flag to indicate polling was already enabled.

Enabling InDOS polling has a severe impact on overall system performance.

This service overrides the InDOSPOLLING value specified in the SYSTEM.INI file. Since the virtual MS-DOS manager evaluates the SYSTEM.INI file during the Init_Complete message, a virtual device must call this service during the Device_Init message.

DOSMGR_End_V86_App

include vmm.inc

include dosmgr.inc

; Install a hook procedure

GetVxDServiceOrdinal eax, DOSMGR_End_V86_App

mov esi, OFFSET32 HookProc

VMMcall Hook_Device_Service

jc error

This service is called internally by DOSMGR when a V86-mode application has ended execution. VxDs which wish to be notified of this activity must hook this service. VxDs must not call this service directly. The hook procedure must be a 4.0 Hook_Proc style procedure.

VxDs which monitor resources may wish to hook this service (and the corresponding DOSMGR_Begin_V86_App) in order to allocate and free resources for each MS-DOS-based application. To monitor Windows-based applications, VxDs should monitor the system control calls related to threads.

The system calls the hook procedure as follows:

mov ebx, VMHandle

mov esi, HighLinearPSP

mov dx, AppPSP

mov cx, AppExitCode

VMHandle

VM that performed the int 21.

HighLinearPSP

High linear address of the program segment prefix (PSP) which is terminating.

AppPSP

Segment value of the PSP of the application which is terminating.

AppExitCode

Application exit code. This is the value which will be returned in AX when the parent calls Get Child-Program Return Value (Interrupt 21h function 4Dh).

CH �Application exit type ��CH = 0 �Normal termination ��CH = 1 �Terminated via Ctrl+C ��CH = 2 �Terminated due to critical error (e.g., disk I/O error) ��CH = 3 �Terminated and stayed resident ��CL �Application return code (application-specific value) ��

Any VxD which hooks the service must pass the call down to the previously-installed hook, preserving all registers, (except Flags) even registers reserved for future use.

Do not assume that the high bytes of the EDX and ECX registers will be zero.

_DOSMGR_Exec_VM

include dosmgr.inc

VxDcall _DOSMGR_Exec_VM <VMHandle, V86Size, CallBack, RefData>

Schedules the execution specified by a previous call to the _DOSMGR_Set_Exec_VM_Data service, and sets other parameters of the execution.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

VMHandle

Handle of the current virtual machine.

V86Size

Size in pages of the virtual machine. This service does not map these pages; the value is simply used to set the MS-DOS size of the virtual machine.

CallBack

Callback procedure to call when the virtual machine terminates. If this parameter is zero, no callback is called.

RefData

Reference data to pass to the callback procedure.

The system calls the callback when the virtual machine terminates. The callback receives the following input parameters:

EBP �points to a Client_Reg_Struc ��EBX �virtual machine handle ��EDX �points to reference data ��

The callback must preserve the EBX, EBP, and segment registers. After the callback returns, the system carries out the normal virtual machine termination sequence. At this time, the virtual machine is still in a running state. The callback can delay termination by delaying its return. However, the callback must simulate interrupts into the virtual machine to keep the scheduler moving if it is holding termination.

DOSMGR_Get_DOS_Crit_Status

include dosmgr.inc

VxDcall DOSMGR_Get_DOS_Crit_Status

Specifies whether it is possible to call MS-DOS at the current time (that is, whether MS-DOS is in a critical section).

This service is intended for use by the virtual page swap device to determine whether MS-DOS is currently available to page. This is an asynchronous service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Sets the zero flag if MS-DOS can be called; otherwise, clears the zero flag if MS-DOS is in a critical section, and must not be called.

This service does not specify whether Windows is in a critical section, nor does it specify which virtual machine has ownership of MS-DOS.

DOSMGR_Get_IndosPtr

include dosmgr.inc

VxDcall DOSMGR_Get_IndosPtr

Retrieves the linear address of the MS-DOS InDOS and ErrorMode flags. Uses EAX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the linear address (V86 mode address) of InDOS and ErrorMode word in EAX. The low byte is the ErrorMode variable, the high byte is InDOS.

This is a low linear address. To examine the value in a virtual machine which is not the current virtual machine, the virtual device must add the virtual-machine high-linear address to this value.

DOSMGR_Get_Version

include dosmgr.inc

VxDcall DOSMGR_Get_Version

Retrieves the virtual MS-DOS manager version number. Uses EAX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the version number in EAX. AH contains the major version number, and AL contains the minor version number.

DOSMGR_Init_UMB_Area

include dosmgr.inc

VxDcall DOSMGR_Init_UMB_Area

Initializes the MS_DOS upper memory block.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if successful.

DOSMGR_Instance_Device

include dosmgr.inc

mov esi, OFFSET32 Device_Name

VxDcall DOSMGR_Instance_Device

Instances the installed MS-DOS character device driver. This service is only valid during the Init_Complete message. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the device is instanced; otherwise, sets the carry flag to indicate one of the following errors:

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No device with this name in device list

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Device is in MS-DOS RAM BIOS (Segment of device == 70h)

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	User overrides with the global setting in SYSTEM.INI

Device_Name

Address of the 8-character device name. This name must exactly match the name as it found in the device header in low memory. Characters must be in uppercase; case conversion is not performed. Names shorter than 8 characters must be padded with spaces. The colon (:) must not be used.

This service applies only to installed character devices (where the device segment is not equal to 70h). It cannot instance devices that are in the MS-DOS RAM BIOS because there is no way to determine their start and end addresses. It is the job of MS-DOS instancing to correctly instance things related to character devices in the MS-DOS RAM BIOS.

This service instances the entire device. It cannot differentiate code and data.

This service is available only during the Init_Complete message. The service is in the ICODE segment so it becomes invalid after the Init_Complete message. Calls to the _AddInstanceItem service are also invalid after Init_Complete.

Do not use this service to instance devices added with the service DOSMGR_Add_Device. To instance an added device, a virtual device must call the _AddInstanceItem service or use the GVDAInstance flag in the _Allocate_Global_V86_Data_Area service.

DOSMGR_LocalGlobalReg

include dosmgr.inc

mov edx, PageStart

mov edi, PageEnd

VxDcall DOSMGR_LocalGlobalReg

mov [Page_Range_Flag], eax

Determines whether the indicated V86 memory region is local or global memory The VMM memory manager calls this service whenever the TestGlobalV86Mem service is called. This service is only available for Windows version 3.1 and later. Uses EAX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a page range flag in EAX. It can be one of these values:

0 �Page range is local. ��1 �Page range is global. ��2 �Page range is partially global and partially local. ��3 �Page range is unknown. ��

PageStart and PageEnd

Page numbers of the start and end of the region.

This service returns 3 unless the region is in a local high MS-DOS region.

This service supports high MS-DOS configurations for MS-DOS version 5.0 or later. Other load high configurations are supported only if the corresponding software hooks this service or the TestGlobalV86Mem service.

This service is page (4K) granular and not byte granular.

DOSMGR_Remove_Device

include dosmgr.inc

mov ebx, VMRemove

mov eax, OFFSET32 [Device_Header]

VxDcall DOSMGR_Remove_Device

Removes a device from the device list. The device must have been previously added using the DOSMGR_Add_Device service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if is successful; otherwise, sets the carry flag if the device could not be removed from device list.

VMRemove

Handle of the virtual machine from which to remove the device. If this parameter is zero, the device is removed from all virtual machines.

Device_Header

Address of device header. This parameter must be a low memory linear address (less than 100000h).

Global calls to DOSMGR_Add_Device should not be mixed with local calls to DOSMGR_Remove_Device for the same device. All DOSMGR_Add_Device devices are automatically removed when Windows quits.

This service removes the link to the device from the device list. It does not free any memory or resources that the device may have created or allocated.

_DOSMGR_Set_Exec_VM_Data

include dosmgr.inc

VxDcall _DOSMGR_Set_Exec_VM_Data, <VM, CommTail, PRGName, InitDrvDir>

Sets the data for the initial execution into a virtual machine. It is reserved for exclusive use by the virtual shell device. This service can be called during the Create_VM message because it does not simulate calls or interrupts into the virtual machine; it just sets instance data.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

VM

Handle of the virtual machine to set execution data for.

CommTail

Address of the command tail for the execution. The tail can be up to 128 bytes. The first byte must specify the number of bytes in the tail; the last byte must be 0Dh.

PRGName

Address of a null-terminated string specifying the name of the program to execute.

InitDrvDir

Address of a null-terminated string specifying the initial directory and drive for the virtual machine. The drive letter must be a capital letter. The string must be less than or equal to 64 characters, including null terminator.

If this parameter is zero, the service does not set the default directory. This form of the service is made by the DOSMGR_Exec_VM service. Other virtual devices should not use this form.

This service must be called before calling the _DOSMGR_Exec_VM service.

�Chapter

Page Swapping

About Page Swapping

This chapter describes the interfaces of the virtual paging device (PAGESWAP) and the virtual page swap device (PAGEFILE). The virtual paging device manages all demand-paging operations for Windows, determining which pages can be saved or retrieved from disk. This device uses the virtual swap file device to read and write pages to disk. The swap file device manages the virtual memory swapping file and carries out all read and write operations requested by the paging device.

Reference

Paging Device Services

PageSwap_Init_File

VxDcall PageSwap_Init_File

jc error_handler

mov pager_type, bl ; pager type returned in BL

Called by the memory manager at the end of device initialization to create the swap file. Uses EAX, EBX, ECX, EDX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag set on error. Otherwise, the carry flag is clear and the BL register contains the type of page swap device: 1 if none, 2 if the swap device uses MS-DOS, 3 if the swap device uses the Windows 95 layered device driver.

PageSwap_Get_Version

VxDcall PageSwap_Get_Version

jc not_installed ; carry set if not installed

mov version, eax ; version number (Windows 95 is 400h)

mov maxsize, ecx ; max. size of swap file in pages

mov pager_type, bl ; pager type; see below

Gets the virtual paging device version number, the type of paging in effect, and the maximum size of the paging file in pages. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear and zero in EAX if the pager is not installed. Otherwise, the carry flag is clear and these registers contain these values:

EAX �Version number of paging device. Major version in AH, minor in AL. ��ECX �Maximum size of the swap file, in pages. This value is valid only after device initialization. ��BL �Type of page swap device: 1 if none, 2 if the swap device uses MS-DOS, 3 if the swap device uses the Windows 95 layered device driver. ��

PageSwap_Test_IO_Valid

VxDcall PageSwap_Test_IO_Valid

jc paging_not_permitted

Determines whether paging to or from disk can be performed. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with carry clear if paging is permitted. Otherwise, the carry flag is set, indicating you should avoid operations that may cause paging.

PageSwap_Grow_File

mov ecx, cPages ; number of pages to grow by

VxDcall PageSwap_Grow_File

mov newsize, ecx ; new size of the file, in pages

mov maxsize, ebx ; maximum size of the file, in pages

Increases the size of the swap file by the specified number of pages. Uses EAX, EBX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the new size of the swap file in the EAX register, and the maximum size in the EBX register. The maximum size may be less than when the file was created.

cPages

Number of pages to grow the swap file by.

If the file cannot grow by the requested number of pages, the new size will be less than requested and equal to the maximum size.

PageSwap_Read_Or_Write

mov ch, read_or_write ; PF_Read_Data or PF_Write_Data

mov edi, filepos ; file position, in pages

mov esi, pPage ; linear address of memory to touch

VxDcall PageSwap_Read_Or_Write

or eax, eax

jz error_handler

Reads a page from disk or writes a page to disk. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in EAX if successful, zero otherwise.

read_or_write

Value indicating whether to read from or write to the swap file. Can be PF_Read_Data or PF_Write_Data.

filepos

Offset in the swap file to read from or write to, in pages.

pPage

Linear address of the memory page to read from or write to.

Page Swap Device Services

PageFile_Init_File

VxDcall PageFile_Init_File

mov max_size, ebx ; maximum swap file size, in pages

mov current_size, eax ; current swap file size, in pages

or ebx, ebx

jz error_handler ; ebx = 0 on error

Called by PAGESWAP to initialize the swap file. Can only be called at initialization time. Uses EAX, EBX, ECX, EDX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with zero in the EBX register if an error occurs. Otherwise, EAX contains the swap file's current size and EBX its maximum size, in pages.

PageFile_Clean_Up

Obsolete. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear.

PageFile_Get_Size_Info

VxDcall PageFile_Get_Size_Info

jc not_installed ; carry set if not installed

mov filesize, eax ; size of the paging file, in pages

mov abs_max_size, ebx ; absolute max. size of paging file, in pages

mov max_poss_size, ecx ; max. possible size of paging file, in pages

mov min_size, edx ; min. size of paging file, in pages

mov pager_type, bl ; pager type; see below

Retrieves information about the size of the paging file. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag set and zero in EAX if the pager is not installed. Otherwise, the carry flag is clear and these registers contain these values:

EAX �Current size, in pages, of the paging file. ��EBX �Absolute maximum size of the paging file, in pages. The size determined by the value of the MaxPagingFile entry in SYSTEM.INI. If no value is specified, the size is set to 2 gigabytes. The size is zero if paging is off. ��ECX �Current maximum possible size of the paging file, in pages, given the current amount of free disk space. ��EDX �Minimum size of the paging file, in pages. The size determined by the value of the MinPagingFile entry in SYSTEM.INI. If no value is specified, the minimum size zero. ��ESI �Address of a null terminated string that contains the full path name of the swap file. Do not write to this pointer. If EBX is zero, ESI is undefined. ��

PageFile_Get_Version

VxDcall PageFile_Get_Version

jc not_installed ; carry set if not installed

mov version, eax ; version number (400h for Windows 95)

mov maxsize, ecx ; max. size of swap file in pages

mov pager_type, bl ; pager type; see below

Gets the virtual paging device version number, the type of paging in effect, and the maximum size of the paging file in pages. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag set and zero in EAX if the pager is not installed. Otherwise, the carry flag is clear and these registers contain these values:

EAX �Version number of paging device. Major version in AH, minor in AL. ��ECX �Maximum size of the swap file, in pages. This value is valid only after device initialization. ��BL �Type of page swap device: 1 if none, 2 if the swap device uses MS-DOS, 3 if the swap device uses the Windows 95 layered device driver. This value is not valid until the PageFile_Init_File service has been called. ��

PageFile_Test_IO_Valid

VxDcall PageFile_Test_IO_Valid

jc paging_not_permitted

Determines whether paging to or from disk can be performed. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with carry clear if paging is permitted. Otherwise, the carry flag is set, indicating you should avoid operations that may cause paging.

PageFile_Grow_File

mov ecx, cPages ; number of pages to grow by

VxDcall PageFile_Grow_File

mov newsize, ecx ; new size of the file, in pages

mov maxsize, ebx ; maximum size of the file, in pages

Increases the size of the swap file by the specified number of pages. Uses EAX, EBX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the new size of the swap file in the EAX register, and the maximum size in the EBX register. The maximum size may be less than when the file was created.

cPages

Number of pages to grow the swap file by.

If the file cannot grow by the requested number of pages, the new size will be less than requested and equal to the maximum size.

PageFile_Read_Or_Write

mov ch, read_or_write ; PF_Read_Data or PF_Write_Data

mov edi, filepos ; file position, in pages

mov esi, pPage ; linear address of memory to touch

VxDcall PageSwap_Read_Or_Write

or eax, eax

jz error_handler

Reads a page from disk or writes a page to disk. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a nonzero value in EAX if successful, zero otherwise.

read_or_write

Value indicating whether to read from or write to the swap file. Can be PF_Read_Data or PF_Write_Data.

filepos

Offset in the swap file to read from or write to, in pages.

pPage

Linear address of the memory page to read from or write to.

PageFile_Cancel

VxDcall PageFile_Cancel

Cancels a previously issued read or write operation. This service should only be called if the swap device uses the Windows 95 layered device driver. Uses Flags.

PageFile_Set_Async_Manager

mov eax, FSD_Entry ; entry in FSD

VxDcall PageFile_Set_Async_Manager

jc error_handler

An FSD offering asynchronous page-outs stores an internal entry that a VxD can call to register a callback function that the system calls when the FSD is idle. This service can only be called during initialization. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag is successful, and sets it otherwise.

FSD_Entry

Entry in FSD.

PageFile_Call_Async_Manager

mov eax, OFFSET32 Callback ; address of callback function

VxDcall PageFile_Call_Async_Manager

jc errorhandler

mov eax, pageout_entry

Registers a callback function that the system calls when the FSD is idle, and retrieves the FSD entry for asynchronous page-outs. This service can only be called during initialization. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the FSD asynchronous pageout entry in EAX and clears the carry flag if successful; otherwise, sets the carry flag.

Callback

Address of callback function.

�Chapter

Programmable Interrupt Controller

About the Programmable Interrupt Controller

The virtual programmable interrupt controller (VPICD) virtualizes the programmable interrupt controller (PIC), allowing other virtual devices to support hardware devices, such as disk drives and communications ports, that use hardware interrupts to signal input or status changes. The VPICD routes hardware interrupts to other virtual devices, provides services that allow virtual devices to request interrupts, and simulates hardware interrupts into virtual machines.

Default Interrupt Handling

The VPICD emulates the functions of the programmable interrupt controller (PIC). This entails reflecting interrupts into virtual machines and simulating I/O, such as recognizing when a virtual machine issues an end of interrupt (EOI). When VPICD initializes, it sets up a default interrupt handler for every interrupt request (IRQ). These handlers determine which virtual machine an interrupt should be reflected into, and they arbitrate conflicts between virtual machines that attempt to unmask the same interrupt.

An interrupt that is unmasked when Windows is started is considered a global interrupt. A global interrupt will always be reflected into the currently executing virtual machine, and any virtual machine can mask or unmask the IRQ. If a virtual machine unmasks an IRQ that was masked when Windows was started, it owns that IRQ. All interrupts for owned IRQs are reflected to the owner. If another virtual machine attempts to unmask the interrupt, the second virtual machine is terminated, and Windows may direct the user to restart the computer.

If another virtual device virtualizes an IRQ, it is up to that device to determine which virtual machines receive interrupts and arbitrate conflicts. Once an IRQ is virtualized, the VPICD no longer provides default handling for that IRQ.

Virtualizing an IRQ

A virtual device hooks a specific IRQ by calling the VPICD_Virtualize_IRQ service and passing it a pointer to a VPICD_IRQ_Descriptor structure containing the number of the IRQ and the addresses of the callback procedures to support the interrupt. If another virtual device has already virtualized the IRQ, the call fails if either of the virtual devices is unable to share the IRQ. Both virtual devices must set the VPICD_Opt_Can_Share value in the VID_Options field of the structure to permit sharing.

Virtualized IRQ Callback Procedures

A virtual device may specify the following callback procedures when it virtualizes an interrupt:

VID_EOI_Proc

VID_Hw_Int_Proc

VID_IRET_Proc

VID_Mask_Change_Proc

VID_Virt_Int_Proc

The VID_Hw_Int_Proc procedure is required. The other callback procedures are optional and are used to inform a virtual device whenever the state of the virtualized IRQ changes. For example, the VID_Virt_Int_Proc procedure is called whenever an interrupt is simulated into a virtual machine and the VID_Mask_Change_Proc procedure is called whenever a virtual machine masks or unmasks the interrupt.

Callback procedures may modify EAX, EBX, ECX, EDX, ESI, and Flags registers. Although they are called with interrupts disabled, they can enable them. If the procedures perform a lot of processing, interrupts should be enabled.

Using the VID_IRET_Proc Callback

The VID_IRET_Proc procedure can be used to help prevent stack overflows when an interrupt routine in a virtual machine attempts to process too many simulated interrupts. Consider the following interrupt routine, a routine that is very common in actual terminal applications:

push ax ; push AX, DX is the

push dx ; minimum possible

 .

 . ; read a byte from the COM port

 .

mov al, 20h ; non-specific EOI

out 20h, al ; EOI the PIC

sti ; enable interrupts

 .

 . ; do other stuff

 .

pop dx

pop ax

iret

In this routine, if an interrupt occurs after the sti but before the iret instruction, control re-enters the interrupt routine and the amount of data on the stack grows by 10 bytes (6 bytes for the return address and 4 bytes for the saved AX and DX registers). Since the virtual communications device (VCD) may queue hundreds of bytes of data before the virtual machine begins processing simulated interrupts, this interrupt routine can potentially be re-entered hundreds of times (requiring several kilobytes of stack space) unless the VCD delays its request for the next simulated interrupt until after the iret instruction is executed. Installing the VID_IRET_Proc procedure lets the VCD delay the request, preventing the interrupt routine from being re-entered.

The virtual timer device uses similar logic to prevent sending too many timer interrupts to a virtual machine.

Bimodal Interrupt Handlers

The virtual programmable interrupt controller device provides the following API functions to install and remove bimodal interrupt handlers:

VPICD_API_Get_Ver

VPICD_Install_Handler

VPICD_Remove_Handler

Reference

The VPICD provides the following services.

VPICD_Auto_Mask_At_Inst_Swap

VPICD_Begin_Inst_Page_Swap

VPICD_Call_When_Hw_Int

VPICD_Clear_Int_Request

VPICD_Convert_Handle_To_IRQ

VPICD_Convert_Int_To_IRQ

VPICD_Convert_IRQ_To_Int

VPICD_End_Inst_Page_Swap

VPICD_Force_Default_Behavior

VPICD_Force_Default_Owner

VPICD_Get_Complete_Status

VPICD_Get_IRQ_Complete_Status

VPICD_Get_Status

VPICD_Get_Version

VPICD_Get_Virtualization_Count

VPICD_Phys_EOI

VPICD_Physically_Mask

VPICD_Physically_Unmask

VPICD_Set_Auto_Masking

VPICD_Set_Int_Request

VPICD_Test_Phys_Request

VPICD_Virtual_EOI

VPICD_Virtualize_IRQ

Programmable Interrupt Controller Services

VPICD_Auto_Mask_At_Inst_Swap

include vpicd.inc

mov eax, IRQHandle

VxDcall VPICD_Begin_Inst_Page_Swap

jc errorhandler

Sets the state of an IRQ so that it is automatically masked when the virtual memory manager swaps data in an instance page. This allows a VxD to touch instance memory at interrupt time. This service can not be called at interrupt time. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears carry flag if successful.

IRQHandle

Handle of the IRQ.

VPICD_Begin_Inst_Page_Swap

VxDcall VPICD_Begin_Inst_Page_Swap

Informs VPICD to begin masking interrupts that must be held off until instance data copies are complete. This service should be called only by the virtual machine manger's instance page-swap code. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

VPICD_Call_When_Hw_Int

include vpicd.inc

pushfd

cli

mov esi, OFFSET32 Callback

VxDcall VPICD_Call_When_Hw_Int

popfd

mov [Next_Callback], esi

Installs a callback procedure for hardware interrupts. The system calls the callback procedure whenever a hardware interrupt occurs. The caller must disable interrupts before calling this service. Uses ESI and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns, in ESI, the address of the next procedure in the callback chain.

Callback

Address of the callback procedure. When the system calls the procedure, EBX contains the handle of the current virtual machine.

Although any virtual device can use this service, the service is intended for use by the virtual DMA device to detect completion of DMA transfers. On systems with hardware devices that interrupt frequently, use of this service should be avoided. Installing a callback procedure to process every hardware interrupt can have a major impact on performance.

The callback procedure is responsible for chaining to the next handler in the interrupt chain. It also must preserve the EBX register for the next handler.

VPICD_Clear_Int_Request

include vpicd.inc

mov eax, IRQHandle

mov ebx, VMHandle

VxDcall VPICD_Clear_Int_Request

Resets an IRQ request that was previously set by a call to the VPICD_Set_Int_Request service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

IRQHandle

Handle of the IRQ to clear.

VMHandle

Handle of the VM.

If the IRQ is being shared and another device has also set the virtual IRQ, this service does not reset the virtual request immediately. Instead, the request is reset only after the other device calls VPICD_Clear_Int_Request.

VPICD_Convert_Handle_To_IRQ

include vpicd.inc

mov eax, IRQHandle

VxDcall VPICD_Convert_Handle_To_IRQ

mov [IRQNum], esi

Retrieves the number of the IRQ corresponding to the specified IRQ handle. Uses ESI and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the IRQ number in ESI.

IRQHandle

Handle of a virtualized IRQ.

VPICD_Convert_Int_To_IRQ

include vpicd.inc

mov ebx, VMHandle

mov eax, VecNum

VxDcall VPICD_Convert_Int_To_IRQ

jc not_mapped

mov [IRQNum], eax

Retrieves the IRQ number (if any) corresponding to the specified interrupt vector number. Uses EAX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the IRQ number in EAX and clears the carry flag if the interrupt vector number is mapped to an IRQ; otherwise sets carry flag.

VMHandle

Handle of VM for which to do the conversion.

VecNum

Interrupt vector number.

Since virtual machines can map IRQ numbers of the virtual PIC to any interrupt vector numbers, virtual devices should always explicitly check which interrupt vector is mapped to a particular IRQ.

VPICD_Convert_IRQ_To_Int

include vpicd.inc

mov eax, IRQNum

mov ebx, VMHandle

VxDcall VPICD_Convert_IRQ_To_Int

jc not_valid

mov [VecNum], eax

Retrieves the interrupt vector number that corresponds to the specified IRQ number for the given virtual machine. Uses EAX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns an interrupt vector number in EAX and clears the carry flag if the IRQ number is valid; otherwise sets the carry flag.

IRQNum

IRQ number.

VMHandle

Handle of the virtual machine.

Since virtual machines can map IRQ numbers of the virtual PIC to any interrupt vector numbers, virtual devices should always explicitly check which interrupt vector is mapped to a particular IRQ.

VPICD_End_Inst_Page_Swap

VxDcall VPICD_Begin_Inst_Page_Swap

Informs VPICD to stop masking interrupts that must be held off until instance data copies are complete. This service should be called only by the virtual machine manger's instance page-swap code. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

VPICD_Force_Default_Behavior

include vpicd.inc

mov eax, IRQHandle

VxDcall VPICD_Force_Default_Behavior

Unvirtualizes an IRQ. This allows a virtual device to remove virtualization of an IRQ when it processes a System_Exit message. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

IRQHandle

Handle of the IRQ to unvirtualize.

This service invalidates the IRQ handle. After calling this service, a virtual device must not attempt to use the IRQ handle.

VPICD_Force_Default_Owner

include vpicd.inc

mov eax, IRQNum

mov ebx, VMHandle

VxDcall VPICD_Force_Default_Owner

jc errorhandler

Forces VPICD's default interrupt handler to direct a specified IRQ to a particular virtual machine, or to make the IRQ global so that any virtual machine can receive the interrupt. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the service sets the owner to the specified virtual machine. If the service could not set the owner, such as if the IRQ has been virtualized or the IRQ number is not valid, the carry flag is set.

IRQNum

Number of the IRQ for which ownership is set. The high word of the IRQNum may be one of the following:

VPICD_FDO_NO_CONTENTION �Specifies that VPICD should not indicate contention on a non-virtualized IRQ to the user. ��VPICD_FDO_FAVOR_FOCUS �Specifies that VPICD should request interrupts into the execution focus VM instead of the current VM, if the critical section is not owned. ��

VMHandlle

Handle of the virtual machine to receive ownership. If this parameter is 0, the IRQ is given global ownership and any virtual machine can receive the interrupt.

VPICD_Get_Complete_Status

include vpicd.inc

mov eax, IRQHandle

mov ebx, VMHandle

VxDcall VPICD_Get_Complete_Status

mov [Status], ecx

Retrieves the complete status for a virtual IRQ in a specified virtual machine. Uses ECX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a combination of these status flag values in ECX:

VPICD_STAT_GLOBAL ���VPICD_STAT_IN_SERVICE �The IRQ is virtually in service. ��VPICD_STAT_IRET_PENDING �A virtual iret instruction is pending. ��VPICD_STAT_OWNED_BY_VM ���VPICD_STAT_PHYS_IN_SERV �The IRQ is physically in service. ��VPICD_STAT_PHYS_MASK �The IRQ is physically masked. ��VPICD_STAT_PHYS_REQ �The physical interrupt request has been set. ��VPICD_STAT_VIRT_DEV_REQ �The virtual interrupt request has been set by the calling virtual device. ��VPICD_STAT_VIRT_MASK �The virtual machine has masked the IRQ. ��VPICD_STAT_VIRT_REQ �The virtual interrupt request for the virtual machine has been set (by a virtual device, not necessarily the caller). ��

IRQHandle

Handle of the IRQ for which to receive status.

VMHandle

Handle of the virtual machine.

VPICD_Get_IRQ_Complete_Status

include vpicd.inc

mov eax, IRQNum

VxDcall VPICD_Get_IRQ_Complete_Status

jc already_virtualized

mov [Status], ecx

Retrieves the complete status for the specified IRQ. This service is similar to VPICD_Get_Complete_Status, except that it takes an IRQ number as a parameter instead of an IRQ handle. Uses ECX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Sets the carry flag if the IRQ has been virtualized; otherwise clears the carry flag. ECX contains a combination of these status flag values:

VPICD_Stat_In_Service �The IRQ is virtually in service. ��VPICD_Stat_IRET_Pending �A virtual iret is pending. ��VPICD_Stat_Phys_In_Serv �The IRQ is physically in service. ��VPICD_Stat_Phys_Mask �The IRQ is physically masked. ��VPICD_Stat_Phys_Req �The physical interrupt request has been set. ��VPICD_Stat_Virt_Mask �The virtual machine has masked the IRQ. ��VPICD_Stat_Virt_Req �The virtual interrupt request for the virtual machine has been set (by a virtual device, not necessarily the caller). ��

IRQNum

Number of the IRQ for which to retrieve status.

Virtual devices typically use this service to inspect an IRQ before attempting to virtualize it, or to inspect the state of another virtual device's interrupt. Since the service indicates whether an IRQ has been virtualized, virtual devices use this service to avoid conflicts when more than one device may want to use an IRQ.

VPICD_Get_Status

include vpicd.inc

mov eax, IRQHandle

mov ebx, VMHandle

VxDcall VPICD_Get_Status

mov [Status], ecx

Retrieves the status for a virtual IRQ in a specified virtual machine. Although this service does not return the complete status, it returns the most commonly used information and is much faster than the VPICD_Get_Complete_Status service. Uses ECX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a combination of the following status flag values in ECX:

VPICD_Stat_In_Service �The IRQ is virtually in service. ��VPICD_Stat_IRET_Pending �A virtual iret instruction is pending. ��VPICD_STAT_GLOBAL �VPICD is treating the IRQ as a global IRQ. Interrupts get requested into the current VM at the time of the real hardware interrupt. This applies only to IRQs which have not been virtualized. ��VPICD_STAT_OWNED_BY_VM �The IRQ is owned by the current VM. This applies only to IRQs which have not been virtualized. ��

IRQHandle

Handle of the IRQ for which to receive status.

VMHandle

Handle of the virtual machine.

VPICD_Get_Version

include vpicd.inc

VxDcall VPICD_Get_Version

mov byte ptr [Major], ah

mov byte ptr [Minor], al

mov [Flags], ebx

mov [MaxIRQ], ecx

Retrieves the VPICD major and minor version numbers. Uses EAX, EBX, ECX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag and returns these values:

AH �Specifies the major version number for the virtual PIC device. ��AL �Specifies the minor version number for the virtual PIC device. ��EBX �Specifies the configuration flag for the PIC. The flag can be the following value: ��

1 �System has a master/slave (PC/AT-type) configuration. If this value is not given, the system has a single PIC (PC/XT-type) configuration.

All other values are reserved. ��

���

ECX

Specifies the maximum IRQ supported. It is either 07h or 0Fh.

VPICD_Get_Virtualization_Count

include vpicd.inc

mov eax, IRQ_Number

VxDcall VPICD_Get_Virtualization_Count

mov [VirtCount], eax

Gets the number of times an IRQ has been virtualized. Uses EAX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the virtualization count in the EAX register.

IRQ_Number �The IRQ number. ��

VPICD_Phys_EOI

include vpicd.inc

mov eax, IRQHandle

VxDcall VPICD_Phys_EOI

Ends a physical interrupt and allows further hardware interrupts from the specified IRQ. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

IRQHandle

Handle of the IRQ.

An interrupt that is physically in service will not suppress interrupts to lower priority IRQs since VPICD does not prioritize hardware interrupts. Therefore, it is acceptable for an interrupt to be physically in service for any arbitrary length of time.

VPICD_Physically_Mask

include vpicd.inc

mov eax, IRQHandle

VxDcall VPICD_Physically_Mask

Masks the specified IRQ on the hardware PIC. This suppresses all hardware interrupts on the IRQ until the VPICD_Physically_Unmask or VPICD_Set_Auto_Masking service is called. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

IRQHandle

Handle of the IRQ.

VPICD_Physically_Unmask

include vpicd.inc

mov eax, IRQHandle

VxDcall VPICD_Physically_Unmask

Unmasks the specified IRQ on the hardware PIC. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

IRQHandle

Handle of the IRQ.

This service unmasks the physical IRQ without regard to mask state of the virtual machines. Even if every VM has masked the virtual IRQ, this service unmasks the physical IRQ.

VPICD_Set_Auto_Masking

include vpicd.inc

mov eax, IRQHandle

VxDcall VPICD_Set_Auto_Masking

Enables automatic masking for the specified IRQ. When automatic masking is enabled, the system automatically masks the physical IRQ if all virtual machines have masked the corresponding virtual IRQs. However, if at least one virtual machine has the IRQ unmasked, the physical IRQ remains unmasked. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

IRQHandle

Handle of the IRQ.

Automatic masking is the default for every IRQ. It can be overridden by the VPICD_Physically_Mask and VPICD_Physically_Unmask services.

VPICD_Set_Int_Request

include vpicd.inc

mov eax, IRQHandle

mov ebx, VMHandle

VxDcall VPICD_Set_Int_Request

Sets a virtual interrupt request for the specified IRQ and virtual machine. Setting the request causes the system to simulate an interrupt. Although the simulation may occur immediately, in many cases it may not until a later point in time. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

IRQHandle

Handle of the IRQ to set.

VMHandle

Handle of the virtual machine.

The interrupt is not simulated immediately if any of the following conditions are present:

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The virtual machine has interrupts disabled

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The virtual machine has masked the IRQ

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	A higher priority virtual IRQ is in service

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The virtual machine is suspended, or not able to run

However, since the interrupt may be simulated immediately, a virtual device that has a virtual interrupt handler must be able to handle a call to the handler before this service returns.

Setting an interrupt request does not guarantee that the interrupt will be simulated. For example, if the VM has masked the interrupt and never unmasks it, the interrupt is never simulated. Also, a call to the VPICD_Clear_Int_Request service made before the virtual interrupt is simulated prevents the interrupt simulation.

The virtual VPIC device simulates a level-triggered PIC. This means that once a virtual EOI occurs, another interrupt will be simulated immediately unless the virtual interrupt request is cleared.

VPICD_Test_Phys_Request

include vpicd.inc

mov eax, IRQHandle

VxDcall VPICD_Test_Phys_Request

jc irq_set

Determines whether the physical (hardware PIC) interrupt request is set for the specified IRQ. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the physical interrupt request is set.

IRQHandle

Handle of the IRQ.

VPICD_Virtual_EOI

include vpicd.inc

mov eax, IRQHandle

mov ebx, VMHandle

VxDcall VPICD_Virtual_EOI

Allows another VxD to send VPICD a virtual EOI for the specified IRQ. The EOI handlers are called like a normal EOI.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

IRQHandle

Handle of the IRQ to set.

VMHandle

Handle of the virtual machine.

VPICD_Virtualize_IRQ

include vpicd.inc

mov edi, OFFSET32 vid

VxDcall VPICD_Virtualize_IRQ

jc errorhandler

mov [IRQHand], eax

Assigns a virtual interrupt request to the calling virtual device. This is not an asynchronous service. Uses EAX, Flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	If the carry flag is clear, the EAX register contains the handle for the virtual IRQ. This handle is used for all subsequent communication with the virtual PIC device.

The carry flag is set to indicate an error such as the IRQ has already been virtualized, or the IRQ number is not valid.

vid

Address of a VPICD_IRQ_Descriptor structure containing information about the virtual IRQ. The VID_IRQ_Number and VID_Hw_Int_Proc fields in the VPICD_IRQ_Descriptor structure must be set before calling this service.

The IRQ can be shared by up to 32 virtual devices if every virtual device specifies the VPICD_Opt_Can_Share value in the VID_Options field of the VPICD_IRQ_Descriptor structure.

VPICD_VM_SlavePIC_Mask_Change

include vpicd.inc

mov ebx, VMHandle

mov ecx, bMask

VxDcall VPICD_VM_SlavePIC_Mask_Change

VxDs may hook this service to be notified if a VM has masked or unmasked IRQ 2 which effectively masks/unmasks IRQ 8 through IRQ 15. Uses all registers.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This service has no return value.

VMHandle

VM handle.

bMask

This flag is zero if the IRQ is being unmasked; otherwise it is non-zero.

Programmable Interrupt Controller APIs

The following is an alphabetic listing of the virtual programmable interrupt controller APIs.

VPICD_API_Get_Version

include bimodint.inc

mov ax, VPICD_API_Get_Version

call [lpfnVPICD]

jc errorhandler

mov [Major], ah

mov [Minor], al

Retrieves the major and minor version numbers for the virtual PIC device.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns, in AX, the major and minor version numbers and clears the carry flag, if successful.

lpfnVPICD

Entry-point address of the API handler for the virtual PIC device.

VPICD_Install_Handler

include bimodint.inc

les di, bis

mov ax, VPICD_Install_Handler

call [lpfnVPICD]

jc errorhandler

Installs a bimodal interrupt handler for the IRQ specified by the BIS_IRQ_Number field in the Bimodal_Int_Struc structure.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if successful. Otherwise, sets the carry flag to indicate an error such as the IRQ has already been virtualized or the IRQ number is not valid.

bis

Address of a Bimodal_Int_Struc structure containing information about the interrupt handler to install.

lpfnVPICD

Specifies the entry point address of the API handler for the virtual PIC device.

This function virtualizes the specified IRQ and creates supervisor-mode selectors for the interrupt handler's code, data, and additional segments (if any). The function also sets the supervisor-mode API handler.

VPICD_Remove_Handler

include bimodint.inc

les di, bis

mov ax, VPICD_Remove_Handler

call [lpfnVPICD]

jc error

Removes a bimodal interrupt handler for the IRQ specified by the BIS_IRQ_Number field in the Bimodal_Int_Struc structure.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if successful; sets it if an error occurs. The function returns an error if the IRQ has not been virtualized, or the IRQ number is not valid.

bis

Address of a Bimodal_Int_Struc structure containing information about the interrupt handler to remove.

lpfnVPICD

Entry-point address of the API handler for the virtual PIC device.

This function unvirtualizes the specified IRQ, and frees the supervisor-mode selectors for the interrupt handler's code, data, and additional segments (if any).

Programmable Interrupt Controller Callbacks

The following is an alphabetic listing of the virtual programmable interrupt controller callback procedures.

VID_EOI_Proc

include vpicd.inc

mov eax, IRQHandle

mov ebx, VMHandle

call VID_EOI_Proc

Handles the end of an interrupt. The system calls this procedure whenever a hardware interrupt handler in the virtual machine issues an EOI. The procedure typically calls the VPICD_Clear_Int_Request and VPICD_Phys_EOI services to clear the virtual interrupt and end the physical interrupt.

The system disables interrupts before calling this procedure. The procedure can re-enable interrupts if necessary. Uses EAX, EBX, ECX, EDX, ESI, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

IRQHandle

Handle for the interrupt request.

VMHandle

Handle of the current virtual machine.

This procedure is typically used by a virtual device, such as the virtual mouse device, that lets a corresponding MS-DOS driver process hardware interrupts. The virtual device reflects the interrupt to the virtual machine that owns the mouse. The MS-DOS driver services the interrupt, and issues an EOI. At this point, the system calls the VID_EOI_Proc procedure.

VID_Hw_Int_Proc

include vpicd.inc

mov eax, IRQHandle

mov ebx, VMHandle

call VID_Hw_Int_Proc

jc not_handled

Handles hardware interrupts for a virtual device. The system calls the procedure whenever a hardware interrupt occurs. Typically, VID_Hw_Int_Proc services the physical device, calls the VPICD_Phys_EOI service to end the physical interrupt, and sets the virtual IRQ request for a specific virtual machine.

The system disables interrupts before calling this procedure. The procedure can re-enable interrupts if necessary. Uses EAX, EBX, ECX, EDX, ESI, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if it processed the interrupt. If the IRQ can be shared, the procedure can direct the system to pass the interrupt to the next handler by setting the carry flag. In this case, it must not process the interrupt.

IRQHandle

Handle of the interrupt request.

VMHandle

Handle of the current virtual machine.

The VMM services the procedure is allowed to call is limited. If processing the interrupt requires use of restricted services, this procedure should use the Schedule_Call_Global_Event service to schedule an event that performs the additional processing.

This procedure must return using the ret instruction, not an iret instruction.

VID_IRET_Proc

include vpicd.inc

clc

cmp [TimeOut],0

jz no_timeout

stc

no_timeout:

mov eax, IRQHandle

mov ebx, VMHandle

call VID_IRET_Proc

Handles attempts by a virtual machine to return from an interrupt. The system calls this procedure whenever a virtual machine executes an iret instruction, or whenever a time out occurs for a simulated interrupt.

The system disables interrupts before calling this procedure. The procedure can re-enable interrupts if necessary. Uses EAX, EBX, ECX, EDX, ESI, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

IRQHand

Handle of the interrupt request.

VM

Handle of the current virtual machine.

This procedure is useful for devices that must simulate large numbers of interrupts in a short period of time. For example, the virtual COM device simulates an interrupt, allows one character to be read from the COM port, and waits for the virtual machine to execute an iret instruction before putting more data into the virtual COM receive buffer.

VID_Mask_Change_Proc

include vpicd.inc

mov eax, IRQHandle

mov ebx, VMHandle

mov ecx, Mask

call VID_Mask_Change_Proc

Processes attempts to mask or unmask the specified IRQ. The system calls this procedure whenever a virtual machine attempts to mask or unmask an interrupt.

The system disables interrupts before calling this procedure. The procedure can re-enable interrupts if necessary. Uses EAX, EBX, ECX, EDX, ESI, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

IRQHandle

Handle for the interrupt request.

VMHandle

Handle of the current virtual machine.

Mask

Masked flag. This parameter is nonzero if the IRQ is being masked, and is zero if it is being masked.

A virtual device typically uses this procedure to detect contention for a device. The default interrupt routines use this callback to detect conflicts with nonglobal interrupts.

VID_Virt_Int_Proc

include vpicd.inc

mov eax, IRQHandle

mov ebx, VMHandle

call VID_Virt_Int_Proc

Handles virtual interrupts for a virtual device. The system calls the procedure whenever a simulated interrupt occurs. The procedure is useful for implementing critical sections around a simulated hardware interrupt.

The system disables interrupts before calling this procedure. The procedure can re-enable interrupts if necessary. Uses EAX, EBX, ECX, EDX, ESI, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

IRQHandle

Handle of the interrupt request.

VMHandle

Handle of the current virtual machine.

A virtual device requests a virtual interrupt by using the VPICD_Set_Int_Request service. Once set, the system simulates the interrupt at a convenient point in time. The call to this procedure signals that the simulated interrupt is underway, and can no longer be canceled using the VPICD_Clear_Int_Request service.

A virtual device that uses this procedure usually also uses the VID_Virt_IRET_Proc procedure to detect the end of the simulated interrupt.

Structures

Bimodal_Int_Struc

include bimodint.inc

Bimodal_Int_Struc STRUC

BIS_IRQ_Number dw ? ; IRQ number

BIS_VM_ID dw 0 ; see below

BIS_Next dd ? ; next Bimodal_Int_Struc in chain

BIS_Reserved1 dd ? ; see below

BIS_Reserved2 dd ? ; see below

BIS_Reserved3 dd ? ; reserved; do not use

BIS_Reserved4 dd ? ; reserved; do not use

BIS_Flags dd 0 ; bimodal interrupt flags; must be 0

BIS_Mode dw 0 ; see below

BIS_Entry dw ? ; see below

BIS_Control_Proc dw ? ; see below

 dw ?

BIS_User_Mode_API dd ? ; see below

BIS_Super_Mode_API dd ? ; see below

BIS_User_Mode_CS dw ? ; see below

BIS_User_Mode_DS dw ? ; see below

BIS_Super_Mode_CS dw ? ; see below

BIS_Super_Mode_DS dw ? ; see below

BIS_Descriptor_Count dw ? ; see below

Bimodal_Int_Struc ENDS

Contains information for a bimodal interrupt.

BIS_VM_ID

Handle of the virtual machine; this field is used by the virtual PIC device.

BIS_Reserved1

Reserved for IRQ handle; this field is used by the virtual PIC device.

BIS_Reserved2

Reserved for BIS address; this field is used by the virtual PIC device.

BIS_Mode

Flag for user or supervisor mode. It is 0 for user mode; 4 for supervisor mode.

BIS_Entry

Offset to the interrupt service routine for this interrupt.

BIS_Control_Proc

Offset to the control procedure for this interrupt.

BIS_User_Mode_API

Address of the user-mode API procedure for this interrupt. The procedure must check for, and carry out these functions:

BIH_API_Call_Back �Calls specified callback procedure when given virtual machine runs. ��BIH_API_EOI �End interrupt. ��BIH_API_Get_IRR �Retrieve the set state of the physical IRQ. ��BIH_API_Get_ISR �Retrieve service state of the physical IRQ. ��BIH_API_Get_Mask �Retrieve the mask state of the physical IRQ. ��BIH_API_Mask �Mask the physical IRQ. ��BIH_API_Unmask �Unmask the physical IRQ. ��

BIS_Super_Mode_API

Address of the supervisor-mode API procedure for this interrupt; this field is set by the virtual PIC device.

BIS_User_Mode_CS

Selector for the user-mode code segment for the interrupt handler.

BIS_User_Mode_DS

Selector for the user-mode data segment for the interrupt handler.

BIS_Super_Mode_CS

Selector for the supervisor-mode code segment for the interrupt handler; this field is set by the virtual PIC device.

BIS_Super_Mode_DS

Selector for the supervisor-mode data segment for the interrupt handler; this field is set by the virtual PIC device.

BIS_Descriptor_Count

Number of additional EBIS_Sel_Struc structures immediately following this structure.

EBIS_Sel_Struc

include bimodint.inc

EBIS_Sel_Struc STRUC

EBIS_User_Mode_Sel dw ?

 dw ?

EBIS_Super_Mode_Sel dw ?

EBIS_Sel_Struc ENDS

Contains user- and supervisor-mode selectors for extra segments used by a bimodal interrupt handler.

EBIS_User_Mode_Sel

User-mode selector for an extra segment.

EBIS_Super_Mode_Sel

Supervisor-mode selector for an extra segment; this field is used by the virtual PIC device.

VPICD_IRQ_Descriptor

include vpicd.inc

VPICD_IRQ_Descriptor STRUC

 VID_IRQ_Number dw ?

 VID_Options dw 0

 VID_Hw_Int_Proc dd ?

 VID_Virt_Int_Proc dd 0

 VID_EOI_Proc dd 0

 VID_Mask_Change_Proc dd 0

 VID_IRET_Proc dd 0

 VID_IRET_Time_Out dd 500

 VID_Hw_Int_Ref dd ?

VPICD_IRQ_Descriptor ENDS

Contains information about a virtualized IRQ.

VID_IRQ_Number

Number of the IRQ to virtualize.

VID_Options

Options for virtualizing the IRQ. It can be a combination of the following values:

VPICD_OPT_READ_HW_IRR �Reads the hardware interrupt register. ��VPICD_OPT_CAN_SHARE �Virtual IRQ can be shared. ��VPICD_OPT_REF_DATA �Set this bit if you want to pass reference data in the VID_Hw_Int_Ref member to your hardware interrupt handler. ��VPICD_OPT_VIRT_INT_REJECT �Within your virtual interrupt procedure, set this bit and return with the carry flag set if you no longer want the interrupt virtualized. ��VPICD_OPT_SHARE_PMODE_ONLY �This bit is only used in debug Windows and you must also set the bit VPICD_OPT_CAN_SHARE. If set, the system displays a debug warning message if VPICD_Set_Int_Request is called. . ��

VID_Hw_Int_Proc

Address of the callback procedure that handles hardware interrupts for this IRQ.

VID_Virt_Int_Proc

Address of the callback procedure that handles virtual interrupts for this IRQ.

VID_EOI_Proc

Address of the callback procedure that handles end-of-interrupt commands for this IRQ.

VID_Mask_Change_Proc

Address of the callback procedure that handles changes to the IRQ mask for this IRQ.

VID_IRET_Proc

Address of the callback procedure that handles iret instructions for this IRQ.

VID_IRET_Time_Out

Maximum amount of time in milliseconds that the virtual PIC device allows before the time out occurs.

VID_Hw_Int_Ref

Reference data that the system passes to the hardware interrupt handler. The VID_Options bit VPICD_OPT_Ref_Data must be set in order for the data to be passed to the handler.

Time outs are very important to prevent Windows from hanging while simulating a hardware interrupt.

�Chapter

V86-Mode Memory Manager

About V86-Mode Memory Manager

The V86MMGR manages memory for V86-mode applications. It supports the Expanded Memory Specification (EMS) and the Extended Memory Specification (XMS), is responsible for allocating the base memory for new virtual machines, and translates calls made from protected-mode applications to V86-mode API functions.

API Translation

API translation is required for any V86-mode API function that takes a pointer as a parameter; functions that take no parameters or receive value parameters need no translation. By default, Windows reflects interrupts into V86 mode without translation, so functions that need translation must be intercepted by a virtual device. For example, the virtual MS-DOS manager intercepts Interrupt 21h to translate for calls to MS-DOS system functions such as Read File or Device and Load and Execute Program.

Most virtual devices use the V86MMGR_Xlat_API service to translate function parameters. If a function takes a pointer, this service changes the pointer to an address in the translation copy buffer (in the V86 address space), and copies the corresponding data to that address.

Unfortunately, some API functions are too complex to be translated by the V86MMGR_Xlat_API service. For example, the service cannot translate functions that take pointers to structures that contain more pointers. In such cases, the virtual device must provide custom translations to convert all pointers and copy all corresponding data. Another example is a function that uses a buffer that is larger than the current translation copy buffer. The virtual device can customize the translation by dividing the call into several operations using a smaller buffer.

A virtual device that translates calls to API functions must install a protected-mode interrupt handler to carry out the translations. The interrupt handler must be the last handler in the protected-mode interrupt chain, therefore the virtual device must install it using the Set_PM_Int_Vector service when processing either the Sys_Critical_Init or Device_Init message. The handler must be fully initialized before the system begins sending the Init_Complete message. This allows virtual devices to use the Exec_VxD_Int service while processing the message. None of the V86MMGR translation services, except for V86MMGR_Set_Mapping_Info, should be called during the Sys_Critical_Init or Device_Init messages. Only one virtual device should translate a given API function call.

In many cases, a virtual device combines use of the V86MMGR_Xlat_API service with custom translations. The virtual device typically uses the Xlat_API_Jmp_To_Proc macro with the service to identify functions that need custom translation.

Virtual devices must adjust V86 segment registers when translating functions. To do so, a virtual device can modify the alternate client registers (such as Client_Alt_DS) when the virtual machine status is executing in protected-mode (the CB_VM_Status field in the control block specifies VMStat_Pm_Exec). When in protected-mode, these registers contain the V86 segment registers and stack pointer. They will contain the protected-mode segment registers and stack pointer when the virtual machine is in V86-mode execution.

Setting the Copy Buffer and Map Page Sizes

The V86MMGR_Set_Mapping_Info service defines the minimum amount of translation buffer and global V86 map address space required by a virtual device. By default, the translation copy buffer size is 4 kilobytes and there are no global mapping pages. If these defaults are not adequate, a virtual device can set new values by using this service. For example, the VNETBIOS device uses this service to ensure that there will be adequate global page mapping space to map network buffers.

If multiple virtual devices call this service, the V86MMGR uses the largest value specified when allocating buffer space. In other words, if 10 virtual devices request a two-page copy buffer, this service set the copy buffer size to two pages (not 20). While a large copy buffer can speed up I/O operations, it requires extra memory to be allocated for each virtual machine. Virtual devices should keep the copy buffer size as small as possible.

This service must be called during the Sys_Critical_Init or Device_Init phase of device initialization.

API Mapping

The V86MMGR_Xlat_API service copies the data, it does not map it. Some virtual devices, however, need to map pages from extended address space into the 1 megabyte V86 address space. For example, the virtual NetBIOS device uses mapping to ensure that the proper physical memory is updated (regardless of which virtual machine is running) when an asynchronous network function completes execution. When memory is mapped using V86MMGR_Map_Pages, the service maps it to the same linear address in every virtual machine.

Mapping must not be used as an alternative to copying. It is faster to copy memory than to map it, because the memory manager does not need to perform any page table mapping and locking. Mapping also uses an address space in all virtual machines. Therefore, the mapping services should only be used for API functions that require memory mapped to the same address in every virtual machine. For the same reason, mapping must not be used to implement interprocess communication. If an IPC interface is needed, it should be implemented for protected-mode applications (which can share memory) or by copying the data.

Reference

Initialization Services

V86MMGR provides initialization services that other virtual devices use to set the base memory and EMS and XMS memory limits when a virtual machine is first created. There are the following initialization services:

V86MMGR_Allocate_V86_Pages

include v86mmgr.inc

mov ebx, VMHandle

mov esi, DesiredSize

mov edi, MinimumSize

mov ecx, Flags

VxDcall V86MMGR_Allocate_V86_Pages

jc error_handler

mov [NumPages], eax

Allocates and maps the base V86 memory for a virtual machine. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, or set otherwise. If the service succeeds, the actual number of pages allocated and mapped to the VM is returned in the EAX register. This value does not include the space from zero to the first VM page.

VMHandle

Handle of the VM.

DesiredSize and MinimumSize

Desired size and minimum size of the VM address space, in kilobytes. These sizes include the address range from zero through the first VM page.

Flags

Memory attributes for the VM. Can be zero or this flag:

AV86PLocked (bit number AV86PLockedBit) �Specifies that the VM memory is to be always locked, regardless of the pager type or whether the VM is suspended. ��

If an error occurs, this service calls the GetSetDetailedVMError service to set an error value.

V86MMGR_Get_EMS_XMS_Avail

Do not use this service. Attempting to do so may result in unexpected behavior.

<!--include v86mmgr.inc

mov ebx, VMHandle

VxDcall V86MMGR_Get_EMS_XMS_Avail

mov [LargestFreeBlockXMS], eax

mov [AvailableEMS], ecx

mov [TotalEMS], edx

mov [TotalXMS], edi

Gets the current EMS and XMS usage information for a VM. Uses all registers except EBX, EBP, and the segment registers.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear and these values in these registers:

EAX �Largest free XMS memory block, in kilobytes. ��ECX �Amount of available EMS memory, in units of 16 K. ��EDX �Total EMS memory size for the VM, in units of 16 K. This value does not take into account the minimum EMS limit for the VM. ��EDI �Total XMS memory size for the VM, in kilobytes. This value does not take into account the minimum XMS limit for the VM. ��

To determine the minimum EMS and XMS limits, use the V86MMGR_Get_EMS_XMS_Limits service.

VMHandle

Handle of the VM to get the information for.

This service is always available for versions of V86MMGR greater than 3.1. For version 3.1, the service may or may not be available. To find out, you can attempt to hook the service using the Hook_Device_Service service. If the hook fails, the service is not available. Otherwise, the service is available, and you should unhook it by calling Hook_Device_Service again. The service is not available for versions prior to 3.1.-->

V86MMGR_Get_EMS_XMS_Limits

include v86mmgr.inc

mov ebx, VMHandle

VxDcall V86MMGR_Get_EMS_XMS_Limits

mov [MinEMS], eax ; min EMS kilobytes (multiple of 4)

mov [MaxEMS], edx ; max EMS kilobytes (multiple of 4)

mov [MinXMS], esi ; min XMS kilobytes (multiple of 4)

mov [MaxXMS], edi ; max XMS kilobytes (multiple of 4)

mov [fHMAEnabled], ecx ; 1 if HMA is enabled, 0 otherwise

Gets the current EMS and XMS limits. Uses all registers except EBX, EBP, and segment registers.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with these values in these registers:

EAX �Minimum EMS kilobytes (multiple of 4) ��ECX �Access to HMA is disabled (if zero) or enabled (if 1) ��EDI �Maximum XMS kilobytes (multiple of 4) ��EDX �Maximum EMS kilobytes (multiple of 4) ��ESI �Minimum XMS kilobytes (multiple of 4) ��

VMHandle

Handle of the virtual machine to get the EMS and XMS limits of.

V86MMGR_Get_Version

include v86mmgr.inc

VxDcall V86MMGR_Get_Version

mov [MajorVersion], ah

mov [MinorVersion], al

Gets the V86MMGR version number. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the major version number in AH, the minor version number in AL, and the carry flag clear.

V86MMGR_Set_EMS_XMS_Limits

include v86mmgr.inc

mov ebx, VMHandle

mov eax, MinEMS

mov edx, MaxEMS

mov esi, MinXMS

mov edi, MaxXMS

mov ecx, Flags

VxDcall V86MMGR_Set_EMS_XMS_Limits

jc error_handler

Sets the EMS and XMS memory limits for a VM. A VxD should only call this service when processing the Create_VM control message. Uses Flags.

This service must be made during the Create_VM message for it to work properly. This service should not be called on the system virtual machine. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, or set otherwise.

VMHandle

Handle of the VM to set limits for. Cannot be the system VM.

MinEMS and MaxEMS

Minimum and maximum EMS limits for the VM, in kilobytes. Specify zero for both values to disable EMS memory; specify -1 to leave the current EMS limits unchanged.

MinXMS and MaxXMS

Minimum and maximum XMS limits for the VM, in kilobytes. The XMS limits do not include the high memory area (HMA). Specify zero for both values to disable XMS memory; specify -1 to leave the current XMS limits unchanged.

Flags

Flags. Can be zero or more of these values.

EMS_XMS_Limit_DisableHMA (bit number EMS_XMS_Limit_DisableHMABit) �Disables access to the the HMA. ��EMS_XMS_Limit_EnableHMA (bit number EMS_XMS_Limit_EnableHMABit) �Enables access to the HMA. ��EMS_XMS_Limit_XMS_Is_Locked (bit number EMS_XMS_Limit_XMS_Is_LockedBit) �Lock XMS memory ��EMS_XMS_Limit_EMS_Is_Locked (bit number EMS_XMS_Limit_EMS_Is_LockedBit) �Lock EMS memory. ��

If neither EMS_XMS_Limit_DisableHMA nor EMS_XMS_Limit_EnableHMA is specified, the HMA state (enabled or disabled) is not changed.

The service fails if there is insufficient memory for the minimum allocation request. In this case, the service uses the GetSetDetailedVMError service to set error values. Some of the limits may have been set; use the V86MMGR_Get_EMS_XMS_Limits service to determine the new settings.

API Translation and Mapping Services

V86MMGR provides services that other virtual devices use to translate V86-mode API function calls when made by protected-mode applications. API translation consists of converting addresses provided by a protected-mode application into V86-mode addresses. The services copy data to the translation copy buffer, allocate buffer space, map memory into global V86 address space, and perform other functions necessary for API translation. The services work only for the current virtual machine.

V86MMGR provides the following API translation and mapping services:

Applications can also translate API functions without installing a virtual device by using DPMI functions.

V86MMGR_Allocate_Buffer

include v86mmgr.inc

mov ebp, OFFSET32 ClientRegisters

mov ebx, VMHandle

mov ecx, NumBytes

stc ; set carry flag to copy, clear otherwise

lfs esi, FarPtrMem ; extended memory to copy if carry set

VxDcall V86MMGR_Allocate_Buffer

jc error_handler

mov [BytesCopied], ecx

mov [FarPtrBuffer], edi

Allocates a portion of the current virtual machine's translation buffer, and optionally copies data into the buffer. Uses ECX, EDI, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, or set otherwise. If successful, these registers contain these values:

ECX �Actual number of bytes allocated in the translation buffer. Because this may be less than than the NumBytes parameter, you should preserve this value to pass to the V86MMGR_Free_Buffer service. For more information, see below. ��EDI �Virtual 8086-mode address of the allocated portion of the translation buffer. The segment address is in the high-order word, the offset address in the low-order word. ��

ClientRegisters

Address of a Client_Reg_Struc structure containing the register values of the current VM.

VMHandle

Handle of the current VM. The VM must be in protected mode.

NumBytes

Number of bytes to copy if the carry flag is set, or the size of the buffer to allocate otherwise.

FarPtrMem

Selector and offset address (in FS and ESI) of the extended memory to copy, if the carry flag is set. This parameter is ignored if the carry flag is clear.

If the carry flag is set on entry, the service may return successfully (with the carry flag clear) yet allocate fewer bytes than are specified by NumBytes parameter. This is because the service ensures that number of bytes to copy plus the offset in ESI does not extend beyond the segment limit for the selector in FS.

The buffers are maintained as a stack. Therefore, the last buffer allocated must be the first buffer freed. To free a buffer allocated by this service, use the V86MMGR_Free_Buffer service.

V86MMGR_Free_Buffer

include v86mmgr.inc

mov ebp, OFFSET32 ClientRegisters

mov ebx, VMHandle

mov ecx, NumBytes

stc ; set carry flag to copy, clear otherwise

lfs esi, FarPtrMem ; buffer to receive data if carry set

VxDcall V86MMGR_Free_Buffer

Frees a buffer that was allocated by the V86MMGR_Allocate_Buffer service, and optionally copies data from the translation buffer. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

ClientRegisters

Address of a Client_Reg_Struc structure containing the register values of the current VM.

VMHandle

Handle of the current virtual machine. The current virtual machine must be in protected mode.

NumBytes

Number of bytes to free (returned from the V86MMGR_Allocate_Buffer service).

FarPtrMem

Selector and offset address (in FS and ESI) of the extended memory buffer to receive the contents of the freed translation buffer if the carry flag is set. This parameter is ignored if the carry flag is clear.

The buffers are maintained as a stack. Therefore, the last buffer allocated must be the first buffer freed.

V86MMGR_Free_Page_Map_Region

include v86mmgr.inc

mov esi, MapHandle

VxDcall V86MMGR_Free_Page_Map_Region

Unmaps pages that were mapped by the V86MMGR_Map_Pages service. Uses ESI, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

MapHandle

Specifies the map handle to free.

After a call to this service, the old map buffer address contains null.

V86MMGR_Get_Mapping_Info

include v86mmgr.inc

VxDcall V86MMGR_Get_Mapping_Info

mov [NumReservedPages], ch

mov [NumAvailablePages], cl

Gets information about the current page mapping areas. Uses ECX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the total number of pages reserved for global mapping in the CH register, and the number of pages available (not in use) for global mapping in the CL register.

V86MMGR_Get_VM_Flat_Sel

include v86mmgr.inc

mov ebx, VMHandle

VxDcall V86MMGR_Get_VM_Flat_Sel

mov [Selector], eax

Gets a selector that points to the base of the virtual 8086-mode address space of the specified VM. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the selector in EAX (the high-order word is zero).

VMHandle

Handle of a VM.

This is useful for 32-bit applications since this selector can be used to point to any address in the virtual machine's V86 address space. The selector is writable, and has a limit of 11000h bytes so that the high memory area is also addressable.

The selector returned is in the specified virtual machine's LDT. Therefore, the selector is only valid to use when the virtual machine is running (is the current virtual machine).

V86MMGR_Get_Xlat_Buff_State

include v86mmgr.inc

mov ebx, VMHandle

VxDcall V86MMGR_Get_Xlat_Buff_State

Gets information about the current mapping buffer status. Uses EAX, ECX, EDX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with these values in these registers:

EAX �The V86 segment of the translation buffer; the high word is zero. ��ECX �The number of bytes of the buffer not in use. ��EDX �The total size of the buffer in bytes; the maximum size is 10000h. ��

VMHandle

Handle of the VM.

Always call this service to find the segment of the translation buffer. Because the buffer can move at any time, a virtual device should never make any assumptions about the size or location of the buffer.

V86MMGR_Load_Client_Ptr

include v86mmgr.inc

mov ebx, VMHandle

mov ebp, OFFSET32 ClientRegisters

mov ah, IdSegmentReg

mov al, IdOffsetReg

VxDcall V86MMGR_Load_Client_Ptr

Loads the FS:ESI register pair with the far pointer in the specified client registers. Uses ESI, Flags, FS.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the specified client pointer in the FS:ESI register pair.

VMHandle

Handle of the current VM. The VM must be in protected mode.

ClientRegisters

Address of a Client_Reg_Struc structure containing the register values of the current VM.

IdSegmentReg and IdOffsetReg

Values identifying the client's segment register and offset register. These values refer to Client_Reg_Struc structure fields. For example, to load the pointer in the virtual machine's DS:(E)DX register pair:

mov ax, (Client_DS * 100h) + Client_DX

VxDcall V86MMGR_Load_Client_Ptr

If the virtual machine is running a 16-bit protected-mode application, the high word of the offset in ESI is set to zero. Otherwise, if the virtual machine is running a 32-bit program or is in VxD_Exec_Mode, the high word of ESI is not set to zero. This allows most translation procedures to operate correctly without the need to test the execution mode of the current virtual machine.

V86MMGR_Map_Pages

include v86mmgr.inc

mov esi, LinAddr

mov ecx, NumBytes

VxDcall V86MMGR_Map_Pages

jc error_handler

mov [MapHandle], esi

mov [MapBuffer], edi

Maps the specified buffer into every virtual machine at the same address using page mapping. If the contents of memory are changed in one virtual machine, that change will be reflected in the original buffer as well in all other virtual machines. Uses EDI, ESI, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, or set otherwise. If successful, the ESI register contains the map handle (used to free the map region), and the EDI register contains the linear address of the map buffer.

If the carry flag is clear, the memory is mapped. The ESI register contains the map handle (used to free the map region), and the EDI register contains the linear address of map buffer (always less than 1 megabyte).

LinAddr

Linear address of the buffer map. Can be zero, in which case the service reserves the map region without mapping any memory.

NumBytes

Number of bytes to map.

If the address specified in ESI is zero, no memory is mapped, but a global linear address range is allocated. It is then up to the caller to map appropriate pages into virtual machines. Use the linear address returned in EDI for the base page to map memory into.

V86MMGR_Set_Mapping_Info

include v86mmgr.inc

mov al, MinCopyBuffer

mov ah, MaxCopyBuffer

mov bl, MinPrivateMapping

mov bh, MinSharedMapping

mov cl, MaxGlobalMapping

VxDcall V86MMGR_Set_Mapping_Info

Notifies the V86MMGR mapper services of the amount of space a virtual device requires for calls to the mapper service calls. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

MinCopyBuffer and MaxCopyBuffer

Minimum required size and the maximum desired size, in pages, of the translation copy buffer. The default size is one page.

MinPrivateMapping

Minimum number of pages required for private global mapping region.

MinSharedMapping

Minimum number of pages required for shared global mapping region.

MaxGlobalMapping

Maximum number of pages desired for the global page mapping region. The default is zero pages.

Virtual devices with an initialization order less than V86MMGR_Init_Order must call this service while processing the Sys_Critical_Init or Device_Init control message. Other virtual devices must call this service during Sys_Critical_Init. V86MMGR uses these settings when it processes the Device_Init message.

V86MMGR_Set_Xlat_Buff_State

include v86mmgr.inc

mov ebx, VMHandle

mov eax, BufferSeg

mov ecx, FreeSize

mov edx, BufferSize

VxDcall V86MMGR_Set_Xlat_Buff_State

Switches to an alternate mapping buffer. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

VMHandle

Handle of a VM. Any VM is valid.

BufferSeg

Virtual 80806-mode segment address of the translation buffer. The high-order word must be zero.

FreeSize

Number of bytes currently not in use in the buffer.

BufferSize

Total size of the buffer, in bytes. The maximum size is 10000h.

This feature is provided for protected-mode TSR programs which may need to switch to a private translation buffer before executing protected mode MS-DOS calls because the default buffer may be full. A virtual device should get the current translation buffer state, set the new state, perform any MS-DOS call, and then set the state back to the original values.

V86MMGR_Xlat_API

include v86mmgr.inc

mov ebx, VMHandle

mov ebp, OFFSET32 ClientRegisters

mov edx, OFFSET32 Script

VxDcall V86MMGR_Xlat_API

Interprets a translation script. Uses EDX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, or set otherwise.

VMHandle

Handle of the current VM.

ClientRegisters

Address of a Client_Reg_Struc structure containing the register values for the current VM.

Script

Address of the script to interpret. You can create translation scripts using macros defined in V86MMGR.INC.

Miscellaneous Services

V86MMGR_GetPgStatus

include v86mmgr.inc

mov ebx, VMHandle

mov ecx, PageNum

VxDcall V86MMGR_GetPgStatus

Gets the status of a page. This service is only available for Windows version 3.1 and later. Uses EAX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with one of these values in the EAX register:

V86PS_EMM �Page belongs to EMM driver. ��V86PS_MAP �Page belongs to mapper. ��V86PS_UMB �Page is part of a UMB. ��V86PS_XMS �Page belongs to XMS driver. ��

The V86PS_XMS value is not necessarily set.

VMHandle

Handle of the virtual machine to get information for. If this parameter is zero, the service retrieves global information.

PageNum

Page number in the virtual 8086-mode address space. Must be in the rage 0 through 110h.

You can use this service to determine various aspects of what a specific page is being used for. This service can be called with any page number in the 0 through 110h range, but it is intended to return useful information only for pages above the last V86 page. One particular use of this service is to determine if a page is part of an imported high-memory UMB.

This service will not work if called during the Sys_Critical_Init message. The service is not valid until the Device_Init message. Calls during Device_Init only return useful information if paging import from a LIMulator/UMBulator is performed. In cases where no paging import exists, the information will not be correct until after the Init_Complete message.

V86MMGR_LocalGlobalReg

include v86mmgr.inc

mov edx, FirstPageNum

mov edi, LastPageNum

VxDcall V86MMGR_LocalGlobalReg

mov [Result], eax

Determines whether the indicated V86 memory region is local or global memory. This VMM memory manager calls this service whenever the TestGlobalV86Mem service is called. Uses EAX, Flags.

This service is only available for Windows version 3.1 and later.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with one of these values in the EAX register.

0 �Page range is local. ��1 �Page range is global. ��2 �Page range is partially global and partially local. ��3 �Page range is unknown. ��

FirstPageNum and LastPageNum

Page numbers of the first and last page in the region.

This service is intended to support UMBs. UMB regions are local or global, depending on the free per virtual machine UMB list.

V86MMGR_NoUMBInitCalls

include v86mmgr.inc

VxDcall V86MMGR_NoUMBInitCalls

Supports QEMM version 5.x. This service is called by the VMM before the Sys_Critical_Init message is done, and allows the XMSUMBINITCALLS=FALSE setting in the SYSTEM.INI file.

This service is only available for Windows version 3.1 and later.

V86MMGR_ResetBasePages

include v86mmgr.inc

mov ebx, VMHandle

mov eax, FirstPageNum

mov ecx, NumPages

VxDcall V86MMGR_ResetBasePages

jc error_handler

Used by the virtual MS-DOS manager to manipulate MS-DOS related memory associated with the base memory handle of a virtual machine. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, set otherwise.

VMHandle

Handle of the virtual machine.

FirstPageNum and NumPages

Linear or physical page number of the first page to manipulate, and the number of pages to manipulate.

V86MMGR_SetAvailMapPgs

include v86mmgr.inc

mov eax, FirstPageNum

mov ecx, NumPages

VxDcall V86MMGR_SetAvailMapPgs

jc error_handler

Relinquishes regions above the last V86 page to the V86MMGR's mapper services for use as a mapper region. This service is only available for Windows version 3.1 and later. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag clear if successful, set otherwise.

FirstPageNum and NumPages

Page number of the first page in the region, and the number of pages in the region.

Virtuals devices other than the V86MMGR can relinquish regions above the last V86 page to the V86MMGR's mapper services for use as a mapper region. These regions usually overlap with V86MMGR XMS UMB import pages, but this is not required. A virtual device can hand over a page that it has already marked as owned by the device in the Device_V86_Pages array. The V86MMGR marks the page as one it owns (even though it did not actually do the _Assign_Device_V86_Pages for it).

Once a region is relinquished, the virtual device must not attempt to access it. These regions may only be marked as in-use by the V86MMGR XMS driver. This happens when the region overlaps XMS UMB import pages.

This routine has a global effect. It does not take a virtual machine handle argument.

V86MMGR_SetLocalA20

include v86mmgr.inc

VxDcall V86MMGR_SetLocalA20

Changes the default global behavior of A20 to local if the HMA is global. This service has no effect if the HMA is not global. This service is only available for Windows version 3.1 and later. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

When there is a global HMA user, the A20 state associated with the HMA is also global. Changing A20 in a virtual machine changes it in all virtual machines simultaneously. Some global A20 users (such as MS-DOS 5.0) desire that the A20 state be local, even though the HMA is global.

The V86MMGR device does a V86 Interrupt 2Fh device broadcast which also can set this state. This service is effectively a duplicate of the broadcast service which can be called by a virtual device. It is not an error if the state is set using both methods.

This service cannot be called after the Init_Complete system control message is processed, which occurs before the first VM is created. Essentially, this limits the use of this service to the Device_Initialization section of VxDs, and to static VxDs only (no dynamically loaded VxDs).

Translation Macros

You invoke translation macros in a virtual device's data segment to create translation scripts, which are used with the V86MMGR_Xlat_API service. For more information, see There are the following translation macros:

Xlat_API_ASCIIZ

Xlat_API_ASCIIZ Segment, Offset

Copies a null-terminated string from the protected-mode address into the translation copy buffer, and converts the address to a V86-mode address.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Segment

Register containing the selector of the protected-mode address.

Offset

Register containing the offset of the protected-mode address.

This macro does not copy the string back after the call is complete. This macro fails if there is not enough room in the translation buffer to copy the string.

For example, Rename File (Interrupt 21h Function 56h) is called with two null-terminated filenames. The following script translates this function:

Rename_API:

 Xlat_API_ASCIIZ ds, dx

 Xlat_API_ASCIIZ es, di

 Xlat_API_Exec_Int 21h

Xlat_API_Calc_Len

Xlat_API_Calc_Len Segment, Offset, Calc_Proc_Addr

Copies a calculated number of bytes from the protected-mode address to the translation copy buffer, and converts the address into a V86-mode address.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Segment

Register containing the selector for the protected-mode address.

Offset

Register containing the offset for the protected-mode address.

Calc_Proc_Addr

Name of the callback procedure that calculates the length, in bytes, of the data to copy. The V86MMGR_Xlat_API service calls the callback procedure with the FS:ESI register pair pointing to the buffer. The callback procedure must return the number of bytes to copy in the ECX register, and must preserve all other registers.

The V86MMGR_Xlat_API service fails if there is not enough room in the translation buffer to copy the specified number of bytes.

For example, Buffered Keyboard Input (Interrupt 21h Function 0Ah) can have a buffer size from 3 to 257 bytes; the size depends on the value of the first byte in the buffer. The following script and callback procedure translates this function:

VxD_DATA_SEG

Buff_Keyboard_Input_API:

 Xlat_API_Calc_Len ds, dx, Calc_Input_Buff_Size

 Xlat_API_Exec_Int 21h

VxD_DATA_ENDS

VxD_CODE_SEG

BeginProc Calc_Input_Buff_Size

 movzx ecx, BYTE PTR fs:[esi]

 add ecx, 2

 ret

EndProc Calc_Input_Buff_Size

VxD_CODE_ENDS

Xlat_API_Exec_Int

Xlat_API_Exec_Int IntNum

Reflects the specified interrupt into V86 mode. When the interrupt returns, the V86MMGR_Xlat_API service terminates the script and returns to the virtual device that called it.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

IntNum

Interrupt to execute.

Xlat_API_Fixed_Len

Xlat_API_Fixed_Len Segment, Offset, Length

Copies a fixed number of bytes from the specified protected-mode address to the translation copy buffer and converts the address into a V86-mode address.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Segment

Specifies the segment register containing the selector for the protected-mode address.

Offset

Specifies the register containing the offset for the protected-mode address.

Length

Specifies the length (in bytes) of the data to copy. The V86MMGR_Xlat_API service fails if there is not enough room in the translation buffer to copy the specified number of bytes.

For example, Get Current Directory (Interrupt 21h Function 47h) is called with the DS:SI register pair pointing to a 64-byte buffer. The following script translates this function:

DOS_Get_Current_Directory_API:

 Xlat_API_Fixed_Len ds, si, 64

 Xlat_API_Exec_Int 21h

Xlat_API_Jmp_To_Proc

Xlat_API_Jmp_To_Proc Proc_Name

Transfers control to the specified translation procedure.

Proc_Name

Name of the custom translation procedure. The V86MMGR_Xlat_API service calls the translation procedure with these values in these registers:

EBX �Handle of the current VM. ��EBP �Address of the Client_Reg_Struc structure containing the client register values for the current VM. ��EDX �Address of the next entry in the translation script, if any. ��

The translation procedure can either carry out the complete translation, or use the V86MMGR_Xlat_API to carry out portions of the translation. The procedure must increment the EDX register for each byte it reads from the script, and must preserve all other registers. It should return with the carry flag clear if successful, or set otherwise.

Xlat_API_Return_Ptr

Xlat_API_Return_Ptr Segment, Offset

Gets the protected-mode address pointing to data retrieved by a function. This macro is used for functions that return addresses.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Segment

Register to receive the selector for the returned address.

Offset

Register to receive the offset for the returned address.

For 16-bit protected-mode applications, this macro creates an LDT selector if an appropriate selector does not already exist. For 32-bit protected-mode applications, the macro always returns the same selector as the V86MMGR_VM_Flat_Selector service and adjusts the offset to point to the data. The V86MMGR_Xlat_API service fails if it can not create an appropriate LDT selector.

Although this macro is placed before the Xlat_API_Exec_Int macro in a translation script, the returned address is created after the interrupt has been executed.

The following example translates the return value of Interrupt 15h Function 0C0h. On PS/2 computers, this function returns a pointer to hardware information in the ES:BX register pair.

Get_Machine_Info:

 Xlat_API_Return_Ptr es, bx

 Xlat_API_Exec_Int 15h

Xlat_API_Return_Seg

Xlat_API_Return_Seg Segment

Returns a protected-mode selector pointing to the segment retrieved by a function.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Segment

Segment register to receive the protected-mode selector.

Although this macro is placed before the Xlat_API_Exec_Int macro in a translation script, the selector is created after the interrupt has been executed.

If an appropriate selector does not already exist, the macro automatically creates one. This service fails if it cannot create an appropriate LDT selector.

The following example translates the return value of Interrupt 15h Function 0C1h, which returns the segment address of the EBIOS data area in the ES register.

Get_EBIOS_Selector:

 Xlat_API_Return_Seg es

 Xlat_API_Exec_Int 15h

Xlat_API_Var_Len

Xlat_API_Var_Len Segment, Offset, Length

Copies a specified number of bytes from the protected-mode address to the translation copy buffer and converts the address into a V86-mode address.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Segment

Segment register containing the selector for the protected-mode address.

Offset

Register containing the offset for the protected-mode address.

Length

Register containing the length in bytes of the data to copy. The V86MMGR_Xlat_API service fails if there is not enough room in the translation buffer to copy the specified number of bytes.

For example, Write String (Interrupt 10h Function 0Eh) is called with the ES:BP register pair pointing to the string to print and the CX register specifying the number of bytes to display. The following script translates this function:

Int_10h_Write_String:

 Xlat_API_Var_Len es, bp, cx

 Xlat_API_Exec_Int 10h

�Chapter

Virtual-Device Loader

About the VxD Loader

A dynamically loadable VxD can be loaded and unloaded at any time. (By contrast, static VxDs can be loaded only when the system is initialized and cannot be unloaded.) A dynamically loadable VxD can be loaded by another VxD using the services provided by the dynamic VxD loader (VXDLDR), by a 16-bit, ring-3 application using protected- and virtual-86 mode API, or by a Win32 application using the DeviceIOControl function. For more information about DeviceIOControl, see the Guide to Programming Windows 95.

Dynamically loaded VxDs are new for this release of Windows. Dynamically loadable VxDs are useful when a VxD is needed only once, because when it is no longer needed it can be unloaded. If a device monopolizes many system resources but is used rarely or intermittently, the VxDs could be loaded and unloaded again whenever required. (Networks are a good example of this.) If a VxD is required to temporarily modify the capabilities of a device, it can be loaded and used without forcing the user to restart their computer. In addition, the Plug and Play architecture is dependent on dynamically loadable VxDs. When the system starts, it determines what devices are present, then uses the VxD loader to load VxDs for those devices. The protected-mode block-device driver model (Dragon) also requires dynamically loadable VxDs.

Dynamically loadable VxDs use the same file format as static VxDs. VxDs are labeled as dynamically loadable by using the module flags. The real-mode VxD loader accepts both static and dynamically loadable VxDs; this allows a VxD binary file to be both dynamically loadable and static. The VxD loader (VXDLDR) loads only VxDs that are marked as dynamically loadable.

Applications can use the VXDLDR_LoadDevice service to load a dynamically loadable VxD and the VXDLDR_UnloadDevice service to unload one. The VXDLDR_GetVersion service retrieves the version number of VXDLDR.

Initialization

Dynamically loadable VxDs do not receive SYS_CRITICAL_INIT, DEVICE_INIT, or INIT_COMPLETE messages. Instead, their control procedure is sent a SYS_DYNAMIC_DEVICE_INIT message when the device is being initialized and a SYS_DYNAMIC_DEVICE_EXIT message when the VxD is being unloaded. (The control procedure has the option of rejecting either the load or the unload request.)

A VxD that processes all 5 of these messages can be both dynamically loadable and static.

When a dynamically loadable VxD receives the SYS_DYNAMIC_DEVICE_EXIT message it should release any resources and hooks it has acquired. No cleanup is performed by the services that unload the device. For example, if the VxD is using the Hook_V86_Int_Chain and Call_When_Idle VMM services, it should call the Unhook_V86_Int_Chain and Cancel_Call_When_Idle services when it receives SYS_DYNAMIC_DEVICE_EXIT.

If a VxD or its initialization module specifies zero for the Flags parameter of the VXDLDR_LoadDevice function it must handle its own initialization. In this case, it should use the VXDLDR_DevInitSucceeded or VXDLDR_DevInitFailed service to inform the system of the initialization's outcome. If the initialization succeeds, the initialization module should send the SYS_DYNAMIC_DEVICE_INIT message to the VxD. (If VXDLDR_INIT_DEVICE is specified for the Flags parameter, the system does this work for you.)

When creating a dynamically loadable VxD, the InitOrder parameter of the Declare_Virtual_Device macro specifies the position of the VxD in the VMM's internal list of loaded devices.

Building Dynamically Loadable VxDs

Building a dynamically loadable VxD requires a change to the build procedure. The module-definition file should specify that the VxD being linked is a dynamically loadable VxD. This is accomplished by adding the keyword DYNAMIC at the end of the LIBRARY line, following the device's name.

Limitations of Dynamically Loadable VxDs

Some limitations are imposed on dynamically loadable VxDs.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	If a dynamically loadable VxD provides VXD services, it cannot be dynamically unloaded.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Dynamically loadable VxDs must release any acquired resources when they are unloaded; the system does not release the resources automatically.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Certain non-releasable resources (for example, V86/PM break points) should not be reallocated every time a dynamically loadable VxD is loaded. Because the static data and code segments are never unloaded, they should be used to store the resources and then reused when the VxD is loaded again.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The following services are provided only during initialization and are not available to dynamically loadable VxDs.

_Add_Global_V86_Data_Area �Get_Next_Arena ��_AddFreePhysPage �Get_Next_Profile_String ��_AddInstanceItem �Get_Profile_Boolean ��_Allocate_Global_V86_Data_Area �Get_Profile_Decimal_Int ��_Allocate_Temp_V86_Data_Area �Get_Profile_Fixed_Point ��_Free_Temp_V86_Data_Area �Get_Profile_Hex_Int ��Get_Profile_String �GetDOSVectors ��_SetLastV86Page �Locate_Byte_In_ROM ��Allocate_PM_App_CB_Area �MMGR_SetNULPageAddr ��Convert_Boolean_String �OpenFile ��Convert_Decimal_String �PageSwap_Init_File ��Convert_Fixed_Point_String �Set_Physical_HMA_Alias ��Convert_Hex_String �V86MMGR_NoUMBInitCalls ��DOSMGR_BackFill_Allowed �V86MMGR_Set_Mapping_Info ��DOSMGR_Enable_Indos_Polling �V86MMGR_SetAvailMapPgs ��DOSMGR_Instance_Device �V86MMGR_SetLocalA20 ��Get_Name_Of_Ugly_TSR �VDMAD_Reserve_Buffer_Space ��

Protected-mode API Elements

Before calling any protected-mode API functions, an application must retrieve VXDLDR's protected-mode API address by using Interrupt 2Fh function 1684h (Get Device API Entry Point Address).

xor di, di

mov es, di ;es:di = 0 on entry

mov ax, 1684h ;function number

mov bx, VXDLDR_Device_ID ;device ID

int 2Fh ;get protected-mode API address

mov ax, es ;if es:di=0:0, VXDLDR

or ax, di ; was not loaded (by default,

jz vxdldr_not_there ; it is loaded under Windows 95)

mov word ptr [_VXDLDRCallAddr], di ;segment in high-order word

mov word ptr [_VXDLDRCallAddr+2], es ;offset in low-order word

This example stores the selector:offset address used to call VXDLDR in a doubleword variable called _VXDLDRCallAddr. To call protected-mode API functions, an application calls this address after placing the command code in AX. The function names corresponding to these command codes are Get VXDLDR Version, Load Device, and Unload Device.

Reference

The VxD loader exports eight services, provides three protected-mode functions and provides eight services for the Portable Exectuable (PE) Loader.

Group �Elements ��Services and Structures �VXDLDR_DevInitFailed, VXDLDR_DevInitSucceeded, VXDLDR_GetDeviceList, VXDLDR_GetVersion, VXDLDR_LoadDevice, VXDLDR_Notify, VXDLDR_UnloadDevice, VXDLDR_UnloadMe, DeviceInfo, ObjectInfo ��Protected- and Virtual-Mode Functions �Get VXDLDR Version, Load Device, Unload Device ��Control Messages �SYS_DYNAMIC_DEVICE_EXIT, SYS_DYNAMIC_DEVICE_INIT ��PE Loader Services �_PELDR_LoadModule, _PELDR_GetModuleHandle, _PELDR_GetModuleUsage, _PELDR_GetEntryPoint, _PELDR_GetProcAddress, _PELDR_AddExportTable, _PELDR_RemoveExportTable, _PELDR_FreeModule ��

Services

The following sections describe the API elements associated withVXDLDR.

VXDLDR_DevInitFailed

include vxdldr.inc

mov edx [DeviceHandle]

VxDcall VXDLDR_DevInitFailed

Informs the VxD loader that a device initialization failed. Uses EAX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The carry flag is clear if the function is successful. Otherwise, the carry flag is set and EAX contains the error code. For a list of possible error codes, see the VXDLDR_LoadDevice service.

DeviceHandle

Handle of the device as returned by VXDLDR_LoadDevice.

This service is called after a VxD has loaded and failed to initialize a dynamically loadable VxD. (The module must initialize the VxD when the VXDLDR_LoadDevice service is called with the Flags parameter set to zero.)

VXDLDR_DevInitSucceeded

include vxdldr.inc

mov edx [DeviceHandle]

VxDcall VXDLDR_DevInitSucceeded

jc errorhandler

Informs the VxD loader that a device has been initialized. Uses EAX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The carry flag is clear if the function is successful. Otherwise, the carry flag is set and EAX contains the error code. For a list of possible error codes, see the VXDLDR_LoadDevice service.

DeviceHandle

Handle of the device as returned by VXDLDR_LoadDevice.

This service is called after a VxD has loaded and initialized a dynamically loadable VxD, sending the SYS_DYNAMIC_DEVICE_INIT message. (The module must initialize the VxD when the VXDLDR_LoadDevice service is called with the Flags parameter set to zero.)

VXDLDR_GetDeviceList

include vxdldr.inc

VxDcall VXDLDR_GetDeviceList

Retrieves the address of the first DeviceInfo structure in VXDLDR's device list.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the address of the first DeviceInfo structure in EAX.

VXDLDR_GetVersion

include vxdldr.inc

VxDcall VXDLDR_GetVersion

Retrieves the version number of the VxD loader.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the version number of VXDLDR in EAX. The major version number is in AH and the minor version number is in AL.

VXDLDR_LoadDevice

include vxdldr.inc

mov edx, [Devicename]

mov eax, [Flags]

VxDcall VXDLDR_LoadDevice

jc errorhandler

Loads a VxD into memory. Uses EAX and EDX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the address of the device-descriptor block in EAX and the device handle in EDX when the function is successful. Otherwise, it sets the carry flag and EAX contains the error code, which can be one of the following values:

Value �Meaning ��VXDLDR_ERR_BAD_DEVICE_FILE �Specified VxD file is not usable. ��VXDLDR_ERR_DEVICE_REFUSED �Specified device operation not allowed. ��VXDLDR_ERR_DUPLICATE_DEVICE �Specified operation has already occurred for the given device. ��VXDLDR_ERR_FILE_OPEN_ERROR �Unable to open specified file. ��VXDLDR_ERR_FILE_READ �Unable to read specified file. ��VXDLDR_ERR_IN_DOS �System error. ��VXDLDR_ERR_NO_SUCH_DEVICE �Specified device not found. ��VXDLDR_ERR_OUT_OF_MEMORY �Out of memory. ��

Devicename

Address of a null-terminated string specifying the filename of the VxD.

Flags

Indicates whether the device is initialized by the system or by the calling VxD. If this parameter is VXDLDR_INIT_DEVICE, the device is initialized by the system. Otherwise, this parameter should be zero, and the calling VxD should initialize the device and send the SYS_DYNAMIC_DEVICE_INIT message.

If you call this function without specifying the VXDLDR_INIT_DEVICE flag, you must call either the VXDLDR_DevInitSucceeded or VXDLDR_DevInitFailed service to free system resources associated with the VxD before calling VXDLDR_UnloadDevice to unload the VxD.

VXDLDR_Notify

include vmm.inc

include vxdldr.inc

; Install a hook procedure

mov esi, OFFSET32 HookProc

VMMcall Hook_Device_Service

jc error

This service is called internally by VXDLDR at various stages of its operation. Devices which need to be notified of VXDLDR activity should hook this service.

The system calls the hook procedure as follows:

mov eax, NotificationCode

; other registers depending on the NotificationCode

call HookProc

NotificationCode

The notification code. Note that other registers may be used depending on the notification code. The following VXDLDR notification codes are defined:

Code �Meaning ��Ordinal of VXDLDR_Notify �General notification. ��VXDLDR_NOTIFY_OBJECTUNLOAD �A dynamic object is being uloaded. ��

Register �Meaning ��EDI �Address of the DeviceInfo structure for device being unloaded ��EBX �Address of the ObjectInfo structure for object being unloaded. ��EDX �Object number. ��

Each hook must preserve all registers and propagate the call down the chain. Any registers not explicitly defined are reserved for future extension of this service.

Do not use the DI_DDB member in the DeviceInfo structure because the DDB may have been freed.

VXDLDR_UnloadDevice

include vxdldr.inc

mov ebx [DeviceID]

VxDcall VXDLDR_UnloadDevice

jc errorhandler

Unloads a VxD from memory. Uses EAX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The carry flag is clear if the function is successful. Otherwise, the carry flag is set and EAX contains the error code. For a list of possible error codes, see the VXDLDR_LoadDevice service.

DeviceID

Identifier of the device to be unloaded. If this value is -1, EDX should contain the address of a null-terminated string giving the module name of the VxD.

VXDLDR_UnloadMe

include vxdldr.inc

mov bx, VxD_ID

VxDcall VXDLDR_UnloadMe

jc error

Unloads a self-loaded VxDfrom memory.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if successful, otherwise sets the carry flag.

VxD_ID

The ID of the VxD. If the ID is UNDEFINED_DEVICE_ID, then put the address of a null-terminated string containing the VxD name into DS:EDX.

DeviceInfo

struct DeviceInfo {

 struct DeviceInfo *DI_Next;

 UCHAR DI_Loaded;

 struct VxD_Desc_Block *DI_DDB;

 USHORT DI_DeviceID;

 CHAR *DI_ModuleName;

 ULONG DI_Signature;

 ULONG DI_ObjCount;

 struct ObjectInfo *DI_ObjInfo;

 ULONG DI_V86_API_CSIP;

 ULONG DI_PM_API_CSIP;

};

Contains information about a VxD.

DI_Next

Address of the next DeviceInfo structure in the list of devices maintained by VXDLDR. When there are no more devices, this element is NULL.

DI_Loaded

Nonzero if the VxD is currently loaded.

DI_DDB

Address of the VxD_Desc_Block structure for the VxD.

DI_DeviceID

The device identifier for the VxD.

DI_ModuleName

Address of the name of the VxD module.

DI_Signature

A unique value used by the system to verify the structure.

DI_ObjCount

Number of ObjectInfo structures pointed to by the DI_ObjInfo member.

DI_ObjInfo

Address of an array of ObjectInfo structures. Each ObjectInfo structure describes one of the VxD's memory objects.

DI_V86_API_CSIP

Save area for the virtual-86 mode entry point.

DI_PM_API_CSIP

Save area for the protected-mode entry point.

ObjectInfo

struct ObjectInfo {

 ULONG OI_LinearAddress; // starting address of object

 ULONG OI_Size; // size of object (in bytes)

 ULONG OI_ObjType; // see below

 ULONG OI_Resident; // see below

};

Contains information about a memory object in a VxD.

OI_ObjType

Object type, which can be one of the following values.

Constant �Value �Meaning ��RCODE_OBJ �-1 �Real-mode stub (ignored for dynamically loadable VxDs) ��LCODE_OBJ �0x01 �Locked code segment ��LDATA_OBJ �0x02 �Locked data segment ��PCODE_OBJ �0x03 �Pageable code segment ��PDATA_OBJ �0x04 �Pageable data segment ��SCODE_OBJ �0x05 �Static code segment (dynamically loadable VxDs only) ��SDATA_OBJ �0x06 �Static data segment (dynamically loadable VxDs only) ��CODE16_OBJ �0x07 �16-bit V86 segment ��ICODE_OBJ �0x11 �Initialization-time only code segment ��IDATA_OBJ �0x12 �Initialization-time only data segment ��ICODE16_OBJ �0x13 �Initialization-time only 16-bit V86 segment ��

OI_Resident

Whether or not the memory object is static. This value is zero for VxDs that are not dynamically loadable.

The DeviceInfo structure includes the address of an array of ObjectInfo structures that describe a VxDs memory objects.

Protected- and Virtual-Mode Functions

In the following function descriptions, VXDLDR's protected-mode API address is referred to as _VXDLDRCallAddr. For more information about retrieving this address, see .

Get VXDLDR Version

mov ax, 0

call [_VXDLDRCallAddr]

Retrieves the version number of the VxD loader. Uses DX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the version number of VXDLDR in DX if successful.

Load Device

lds dx, [VxDFilename]

mov ax, 1

call [_VXDLDRCallAddr]

Loads a VxD. Uses AX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The carry flag is clear if the function is successful. Otherwise, the carry flag is set and AX contains the error code. For a list of possible error codes, see the VXDLDR_LoadDevice service.

DS:DX

Address of null-terminated string giving the filename of the VxD to load.

Unload Device

mov bx, VxDID

mov ax, 2

call [_VXDLDRCallAddr]

Unloads a VxD. Uses AX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	The carry flag is clear if the function is successful. Otherwise, the carry flag is set and AX contains the error code. For a list of possible error codes, see the VXDLDR_LoadDevice service.

BX

The identifier of the VxD to unload. If BX is -1, DS:DX should contain the address of a null-terminated string giving the module name of the VxD to unload.

Control Messages

The following control messages are sent to dynamically loadable VxDs.

SYS_DYNAMIC_DEVICE_EXIT

mov eax, SYS_DYNAMIC_DEVICE_EXIT

call [VSAMPLED_Control]

jc error_handler

VSAMPLED_Control

The address of the device control procedure, as specified in the Declare_Virtual_Device macro.

Control dispatches for dynamically loadable VxDs should be in locked memory, such as memory locked using the VxD_LOCKED_CODE_SEG macro.

SYS_DYNAMIC_DEVICE_INIT

mov eax, SYS_DYNAMIC_DEVICE_INIT

call [VSAMPLED_Control]

jc error_handler

Notifies a dynamically loadable VxD that it is being loaded and that it should perform any required initialization.

VSAMPLED_Control

The address of the device control procedure, as specified in the Declare_Virtual_Device macro.

This message is sent by the system when the VXDLDR_LoadDevice service is called with the Flags parameter equal to VXDLDR_INIT_DEVICE. Otherwise, this message is sent by the application that initializes the VxD.

While processing this message, dynamically loadable virtual devices typically initialize any critical functions needed to support interrupts and claim any V86 pages required to support the device.

Control dispatches for dynamically loadable VxDs should be in locked memory, such as memory locked using the VxD_LOCKED_CODE_SEG macro.

PE Loader Services

The PE loader provides an interface that allows a Plug-N-Play DevLoader (or other layered device architecture) to load portable executable device drivers into ring-0 address space. The following provides information about the Portable Exectuable (PE) Loader services for the VXDLDR device.

_PELDR_AddExportTable

include vxdldr.inc

LRESULT CDECL PELDR_AddExportTable(PHPEEXPORTTABLE phExportTable,

 PSTR pszModuleName, ULONG cExportedFunctions, ULONG cExportedNames,

 ULONG ulOrdinalBase, PVOID *pExportNameList,

 PUSHORT pExportOrdinals, PVOID *pExportAddrs, PHLIST phList);

Adds an export table to the export table list. Uses C calling conventions.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns PELDR_ERR_NOERROR if successful, otherwise returns PELDR_ERR_MEM_NOMEMORY which means there is insufficient memory to complete the request.

phExportTable

Address of an HPEEXPORTTABLE that receives the handle to the export table on successful return.

pszModuleName

Address of a null-terminated string containing the module name. For example: "VXDLDR.VXD".

cExportedFunctions

Number of exported functions.

cExportedNames

Number of exported names.

ulOrdinalBase

Base value for ordinal table.

pExportNameList

Address of an array of pointers to null-terminated strings. This list contains the exported names of the module.

pExportOrdinals

Address of an array of ordinals. This array must have a one to one correspondence with the exported name list.

pExportAddrs

Address of an array of exported addresses. This array is used during import resolution. The ordinal is an index into this array.

phList

Address of a list handle of export tables. This parameter is specified when a client restricts the export table list. If NULL, the global export table list is used. If the handle pointed to by phList is NULL, a new local export table list is created.

The pointers and data referenced by pszModuleName, pExportNameList, pExportOrdinals, pExportAddrs, and phList must remain valid until the export table is removed using _PELDR_RemoveExportTable.

_PELDR_FreeModule

#include <vxdldr.h>

LRESULT CDECL PELDR_FreeModule(HPEMODULE hModule, PHLIST phList);

Decrements usage count of given module and frees the module when usage count reaches zero.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the module load count if successful, otherwise returns PELDR_ERR_INVALIDHANDLE if the specified handle is not valid.

hModule

A handle to a module. This parameter must be a valid handle returned by _PELDR_LoadModule or _PELDR_GetModuleHandle.

phList

A pointer to a list handle of export tables. This parameter is specified when a client restricts the export table list. If NULL, the global export table list is used.

_PELDR_GetEntryPoint

#include <vxdldr.h>

PVOID PELDR_GetEntryPoint(HPEMODULE hModule);

Returns the address of the entry point of the given module. Uses C calling conventions.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the address of the entry point of the given module or NULL if the module handle is invalid.

hModule

A handle to a module. This parameter must be a valid handle returned by _PELDR_LoadModule or _PELDR_GetModuleHandle.

_PELDR_GetModuleHandle

#include <vxdldr.h>

HPEMODULE PELDR_GetModuleHandle(PSTR pFileName);

Gets the module handle to the given a file name. Uses C calling conventions.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns NULL if the module is not found, otherwise the return value is the handle of the module.

pFileName

A pointer to a null terminated string containing the file name of the module.

Note that it is not necessary to specify the full path of the executable. Module information is stored by the filename (8.3 format).

_PELDR_GetModuleUsage

#include <vxdldr.h>

LRESULT CDECL PELDR_GetModuleUsage(HPEMODULE hModule);

Gets the usage count of the given module. Uses C calling conventions.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the usage count or PELDR_ERR_INVALIDHANDLE if the specified handle is not valid.

hModule

A handle to a module. This parameter must be a valid handle returned by _PELDR_LoadModule or _PELDR_GetModuleHandle.

_PELDR_GetProcAddress

#include vxdldr.h

PVOID CDECL PELDR_GetProcAddress(HPEMODULE hModule,

 PVOID FuncName, PHLIST phList);

Returns the address of the specified exported dynamic-link library (DLL) function.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the address of to the function entry point or NULL if the function is not found.

hModule

A handle to a module or pointer to a null-terminated string containing the module name. If this parameter is a handle to a module it must be a valid handle returned by _PELDR_LoadModule or _PELDR_GetModuleHandle.

pFuncName

Address of a null-terminated string containing the function name or specifies the function's ordinal value. If this parameter is an ordinal value, it must be in the low-order word; the high-order word must be zero.

phList

Address of a list handle of export tables. This parameter is specified when a client restricts the export table list. If NULL, the global export table list is used.

_PELDR_InitCompleted

#include <vxdldr.h>

LRESULT CDECL PELDR_GetModuleUsage(HPEMODULE hModule);

Decommits memory in INIT sections. This function should be used when the caller has completed the module specific initialization sequence and the INIT section is no longer required.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the module load count if successful, otherwise returns PELDR_ERR_INVALIDHANDLE if the specified handle is not valid.

hModule

A handle to a module. This parameter must be a valid handle returned by _PELDR_LoadModule or _PELDR_GetModuleHandle.

_PELDR_LoadModule

#include <vxdldr.h>

LRESULT CDECL PELDR_LoadModule(PHPEMODULE phModule,

 PSTR pFileName, PHLIST phList);

Loads a portable executable, performs relocation fixups and resolves imports. Uses C calling conventions.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns PELDR_ERR_NOERROR if successful, otherwise returns a non-zero error number. Possible error return values include the following:

PELDR_ERR_FILE_UNABLETOOPEN �Unable to open the specified file. ��PELDR_ERR_MEM_NOMEMORY �Insufficient memory to complete the request. ��PELDR_ERR_IMAGE_INVALIDSIZE �Module image size is invalid. ��PELDR_ERR_IMAGE_INVALIDFORMAT �The specified file is not a valid portable executable type binary. ��PELDR_ERR_FILE_READERROR �A read error occurred while loading the file. ��

phModule

Address of the handle to receive the module handle on successful return.

pFileName

Address of a null terminated string containing the path and filename to the executable. If the path is not specified, the path of the VMM32 executable is used.

phList

Address of the list handle of export tables. This parameter is specified when a client restricts the export table list. If NULL, the global export table list is used. If the handle pointed to by phList is NULL, a new local export table list is created.

Note that this function does not load modules to resolve external dependencies, instead, this function assumes that the caller is loading modules in the appropriate order to resolve dynamic link dependencies. During system initialization (up to the Init_Complete notification), _PELDR_LoadModule will check the V86MMGR translation buffer state and automatically allocate a temporary global V86 data area for I/O buffering if the translation buffer does not exist.

_PELDR_LoadModuleEx

#include <vxdldr.h>

LRESULT CDECL PELDR_LoadModuleEx(PHPEMODULE phModule,

 PSTR pFileName, PHLIST phList, DWORD dwFlag);

Loads a portable executable, performs relocation fixups and resolves imports. Uses C calling conventions.

This service is similar to _PELDR_LoadModule, except that _PELDR_LoadModuleEx includes the following additional parameter:

dwFlag

Flag that specifies whether resources are freed when the portable executable is loaded. If this parameter is PELDR_LOADFLAG_FREERESOURCES, resources are freed; otherwise, they are not.

_PELDR_RemoveExportTable

#include <vxdldr.h>

LRESULT CDECL PELDR_RemoveExportTable(HPEEXPORTTABLE hExportTable,

 PHLIST phList);

Removes an export table from the export table list.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns PELDR_ERR_NOERROR successful, otherwise returns PELDR_ERR_INVALIDHANDLE if the specified handle is not valid.

hExportTable

A handle to an export table. This parameter must be a valid handle as returned by _PELDR_AddExportTable.

phList

A pointer to a list handle of export tables. This parameter is specified when a client restricts the export table list. If NULL, the global export table list is used.

�Chapter

Virtual File Cache Services

About Virtual File Caching

Four types of virtual file caching services are defined for Windows 95: lookup cache services, memory manager services, debug services, and miscellaneous services. The following sections introduce these services.

Lookup Cache Services

The lookup cache is a separate caching subsystem that allows arbitrary keys to be associated with arbitrary data. This data is stored in the registry and is persistent. Note that the caches themselves live in locked memory, the registry is used as a backup store and is updated periodically as a background process - so _VCache_Lookup and _VCache_UpdateLookup can be called at event time.

Service �Description ��_VCache_CloseLookupCache �Closes a look-up cache. ��_VCache_CreateLookupCache �Creates/Opens a look-up cache. ��_VCache_DeleteLookupCache �Deletes a look-up cache. ��_VCache_Lookup �Retrieves data associated look-up key. ��_VCache_UpdateLookup �Updates/Creates a key entry in a look-up cache. ��

Memory Manager Services

These services are to be used only by the memory manager.

Service �Description ��VCache_RelinquishPage �Returns a page to the memory manager. ��VCache_UseThisPage �Creates a new page for the cache. ��

Debug Services

There are these debug services:

Service �Description ��VCache_RecalcSums �Recalculates buffer checksums. ��VCache_TestHandle �Validates a cache block handle. ��VCache_VerifySums �Verifies checksums for a buffer. ��

Miscellaneous Services

There are these miscellaneous services:

Service �Description ��VCache_AdjustMinimum �Adjusts the minimum buffer quota. ��VCache_CheckAvail �Checks available space for a data transfer ��VCache_Deregister �Deregisters a cache associated with an FSD. ��VCache_Enum �Enumerates the cache blocks. ��VCache_FindBlock �Locates a block of data in a cache. ��VCache_FreeBlock �Places a cache block on the free list. ��VCache_GetSize �Reports the cache size. ��VCache_GetStats �Returns cache statistics. ��VCache_Get_Version �Get version number. ��VCache_Hold �Increments the hold count of a buffer. ��VCache_MakeMRU �Marks a block as most-recently-used. ��VCache_Register �Register a buffer discard function with VCache. ��VCache_SwapBuffers �Swaps two cache buffers. ��VCache_TestHold �Returns hold count of a buffer. ��VCache_Unhold �Decrements the hold count of a buffer. ��

Reference

Lookup Cache Services

_VCache_CloseLookupCache

_VCache_CloseLookupCache(HLOOKUP _hnd_)

Closes an open lookup cache.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns zero in EAX on success or an appropriate Win32 error value otherwise.

_VCache_CreateLookupCache

_VCache_CreateLookupCache (char *lpszName, DWORD nMaxElems, DWORD Flags,

 HLOOKUP *phlookup);

Creates a new (or opens an existing) lookup cache.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns zero in EAX on success or an appropriate Win32 error value otherwise.

lpszName

Name of the lookup cache. This value must be a valid registry key name.

nMaxElems

Maximum number of elements in the cache. When this limit is reached, adding new keys will in old keys being aged out, LRU style.

Flags

Reserved. This value must be zero.

phlookup

Address of the DWORD that will receive the opened cache handle.

_VCache_DeleteLookupCache

_VCache_DeleteLookupCache(char *lpszName)

Deletes a lookup cache.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns zero in EAX on success or an appropriate Win32 error value otherwise.

hnd

Handle of previously opened cache.

_VCache_Lookup

_VCache_Lookup(HLOOKUP hLookup, unsigned long keylen, void *pKey,

 unsigned long *pdatalen,void *pData)

Moves a specified key value to the head of the cache LRU list and retrieves the associated data.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns zero in EAX on success or an appropriate Win32 error value otherwise.

hLookup

Handle of previously opened cache.

keylen

Length, in bytes, of the supplied key value.

pKey

Address of the key value.

pdatalen

Length, in bytes, of the destination buffer.

pData

Address of destination buffer.

_VCache_UpdateLookup

_VCache_UpdateLookup(HLOOKUP hLookup, unsigned long keylen, void *pKey,

 unsigned long datalen, void *pData)

If an existing key is present, it's associated data is updated with pData. Otherwise a new key entry is generated, aging the LRU entry if the cache is full.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns zero in EAX on success or an appropriate Win32 error value otherwise.

hLookup

Handle of previously opened cache

keylen

Length, in bytes, of the supplied key value.

pKey

Address of the key value.

datalen

Length, in bytes, of the destination buffer.

pData

Address of the destination buffer.

Memory Manager Services

VCache_RelinquishPage

Returns a page to the memory manager. Uses flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the result in EAX. The value is the linear address of the located page or zero.

This service tries to find a page it can return to the memory manager. In general it will only fail if all pages are currently reserved, held, or dirty.

VCache_UseThisPage

Add a a page to the cache. Uses flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

EAX contains the address of the page to add.

By virtue of this routine, the memory manager makes a new page available to the cache.

Debug Services

VCache_RecalcSums

Recalculate buffer checksums. Uses flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

On entry, EAX contains sector size for this block

On entry, ESI contains the cache block handle.

This routine will compute a sector by sector checksum of a buffer's contents and save the sums for later verification by calling VCache_VerifySums. An FSD should recalculate the checksums whenever the contents of a buffer are change but the buffer is not going to be made dirty. EG: by reading data into the buffer.

VCache_TestHandle

Test the validity of a cache buffer handle.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

On entry, AH contains the FSD ID.

On entry, ESI contains the cache buffer handle.

VCache_VerifySums

Verifies buffer checksums. Uses all the registers except ESI.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value; however, the Zero flag is set if the checksums match.

On entry, EAX contains the block sector size, in bytes.

On entry, ESI contains the cache block handle.

This routine verifies that the correct dirty bits for a buffer are set. This is done by calculating checksums of the buffer contents sector by sector and comparing against stored sums. The checksums are set by calling VCache_RecalcSums for the block.

This service only checks the sectors that aren't marked dirty.

Miscellaneous Services

VCache_AdjustMinimum

Adjusts the client's minimum buffer quota. Uses EAX, EBX, ECX, EDX, EDI, ESI, and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value; however, the Carry flag is cleared if the quota is adjusted. If the quota is not adjusted, the Carry flag is set.

On entry, AH contains the FSD ID.

On entry, ECX contains the new buffer quota.

VCache_CheckAvail

Checks the availability of a specified number of buffers. Uses EAX, EBX, ECX, EDX, and flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the number of available buffers in EAX. In addition, the Carry flag is clear if the specified number of buffers is available. If fewer buffers are available, the Carry flag is set.

On entry, AH contains the FSD ID.

On entry, ECX contains the number of buffers needed.

An FSD can call VCache_CheckAvail to decide whether to cache a data transfer or use a direct transfer instead.

VCache_Deregister

Deregisters a cache and its associated resources. Uses EAX, EBX, ECX, EDX, EDI, ESI, and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

On entry, AH contains an FSD ID of the cache to deregister.

An FSD must call this function to tell VCache that it no longer needs any cache resources.

Each cache ID is unique. They are not recycled.

VCache_Enum

Enumerates cache blocks for a specified FSD. Uses all registers.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

On entry, AH contains the FSD ID.

On entry, EDX contains the function to call for each buffer.

On entry, EBX, ECX, and EBP can contain information to pass to the callback function. This information will be forwarded unchanged to the callback function.

The callback function passed will be invoked for each block as follows:

On entry of the callback function, ESI contains the cache block handle.

On entry of the callback function, the Zero flag is clear if the block is held or is set if the block is free.

On entry of the callback function, EBX, ECX, and EBP contain information forwarded from VCache_Enum.

If the callback function changes EBX, ECX, or EBP, the changed values will be passed to subsequent invocations of the function. That is, this service does not preserve the values of EBX, ECX, and EBP across the call.

VCache_FindBlock

Looks up data in virtual cache and can create a buffer if one is not found. Always uses EAX, ESI, and flags. If creating a buffer, ECX and EDX are also used.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns information in the following locations:

Location �Contents or settings ��Carry flag �Set if the block is not found. Clear if the block is found. ��ESI �contains the cache block handle if the block is found or created. Otherwise, ESI contains the value zero. ��Zero flag �set if the buffer is not locked. ��EAX �contains the address of the buffer if ESI is nonzero. ��

When a buffer is created, the value of its FSD private fields are set to zero.

On entry, AL contains one or more of the following options that determine how VCache_FindBlock acts:

Option �Description ��VCFB_Create �create buffer if not found ��VCFB_Hold �hold buffer if found ��VCFB_LowPri �low priority create ��VCFB_MakeMRU �make buffer most recently used ��VCFB_MustCreate �creation must succeed if there are any clean, unheld buffers (only valid with VCFB_Create) ��VCFB_RemoveFromLRU �remove buffer from LRU list entirely (for buffers that will be held for a long time). Cannot be used with VCFB_MakeMRU. ��

Other options are obsolete and ignored.

On entry, AH contains the file system identifier.

On entry, EBX contains key1 information that includes the sector and byte #.

On entry, EDI contains key2 information that includes the volume id and file id.

NOTE: (0, 0) is not a valid key value.

VCache_FreeBlock

Put cache block onto free list. Uses ECX, EDX, and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

On entry, ESI contains the cache block handle.

VCache_FreeBlock invalidates the contents of a buffer and places the buffer at the the LRU end of the MRU/LRU list. VCache_FreeBlock assumes that the file system has already performed any cleanup required, so the buffer flush routine will not be called.

VCache_GetSize

Retrieves the cache size. Uses EAX, EDX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns information in the following locations:

Location �Contents ��EAX �contains the current number of blocks in the cache if AH is zero. Contains the current quota of the FSD if AH contains an FSD ID (maximum number of block the FSD can own). ��EDX �contains the maximum number of cache blocks. ��

On entry, AH contains the FSD ID or zero.

VCache_GetStats

Retrieve cache statistics. Uses EBX, ECX, EDI.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns statistics in the following registers:

Register �Contents on exit ��EBX �Number of cache misses to one of the last 26 discarded cache blocks since the last call to VCache_GetStats. ��ECX �Number of cache hits to one of the last 26 LRU cache blocks since the last call to VCache_GetStats. ��EDX �Base address of range reserved for VCache. ��EDI �Number of cache blocks discarded since the last call to VCache_GetStats. ��

This service returns some statistics used by the memory manager to tune how much memory is available for VCache and how much for paging.

When the statistics are queried, the counts are cleared. Therefore, if an application other than the memory manager uses this service, system performance will suffer.

VCache_Get_Version

Get version number. Uses EAX, EBX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the version number in EAX.

The version number returned during development will be bumped any time something in the VCache service interface changes.

VCache_Hold

Hold a buffer. Uses flags and preserves the contents of the carry flag.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

On entry, ESI contains the cache block handle.

VCache_Hold increments the buffer hold count to prevent the buffer from being recycled.

VCache_MakeMRU

Make block "most recently used." Uses EAX, ECX, EDX, and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

On entry, ESI contains the cache block handle.

This service is used when an FSD wants to update a buffer's access information without the overhead of calling VCache_FindBuffer.

VCache_Register

Registers an FSD with cache. Uses EAX, flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns in AL a one-byte identifier that the FSD will use to identify itself when issuing FindBlock requests.

On entry, ESI contains the value of a buffer discard procedure. This value cannot be -1.

On entry, ECX contains the minimum number of blocks to reserve for this FSD.

An FSD must call this function to register a buffer discard function with VCache.

This service can only be called during DEVICE_INIT.

VCache_SwapBuffers

Given two cache block handles, this procedure swaps the buffers associated with the handles. The blocks must be owned by the same client and they must both be held. Uses EAX and flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value; however, the Carry flag is cleared if the blocks are swapped. If the blocks are not swapped, the Carry flag is set.

On entry, ESI contains the handle of the first cache block.

On entry, EDI contains the handle of the second cache block.

VCache_TestHold

Test hold status of a buffer. Uses EAX, flags

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the value of the buffer hold count in EAX. If the buffer can be released (the hold count is zero), the Zero flag is set.

On entry, ESI contains the cache block handle.

VCache_Unhold

Release a buffer hold. Uses flags and preserves the carry bit.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value; however, the Zero flag is set if the buffer is released.

On entry, ESI contains the cache block handle.

VCache_Unhold decrements the buffer's hold counter. When the hold counter reaches zero, the buffer can be recycled. If the buffer is recycled, the file system will be notified so that it can flush the buffers contents.

�Chapter

Virtual Math Coprocessor

About the Virtual Math Coprocessor

The virtual math coprocessor device virtualizes the math coprocessor, allowing multiple virtual machines to preserve the state of the coprocessor across task switches. This chapter describes the interfaces of the virtual math coprocessor device (VMCPD).

Reference

The VMCPD provides the following services:

VMPCD_Get_CR0_State

VMPCD_Get_Thread_State

VMCPD_Get_Version

VMCPD_Get_Virt_State

VMCPD_Set_CR0_State

VMPCD_Set_Thread_State

VMCPD_Set_Virt_State

Virtual Math Coprocessor Services

VMPCD_Get_CR0_State

mov edi, ThreadHandle

VxDcall VMPCD_Get_CR0_State

mov [CR0_Flags], eax

Retrieves the current state of the EM (emulate), MP (math present), and TS (task switched) coprocessor flags for the given thread. The flags are retrieved from the CR0 register. Uses EDI, EAX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the coprocessor flags in EAX.

ThreadHandle

Handle of the thread.

VMPCD_Get_Thread_State

mov esi, OFFSET 32 SaveBuffer

mov edi ThreadHandle

VxDcall VMPCD_Get_Thread_State

Retrieves the current state (environment and register stack) of the floating point unit (FPU) for the given thread. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

SaveBuffer

Address of a buffer that receives the state information.

ThreadHandle

Handle of thread for which to retrieve the FPU state.

VMCPD_Get_Version

include vmcpd.inc

VxDcall VMCPD_Get_Version

mov [Major], ah

mov [Minor], al

mov [Coprocessor_Flag], ecx

Retrieves the VMCPD version number. Uses EAX, ECX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the version number in EAX. AH contains the major version number; AL contains the minor version number. ECX contains one of these values:

0 �No coprocessor ��2 �80287 ��3 �80387 ��

VMCPD_Get_Virt_State

include vmcpd.inc

mov ebx, VMHandle

VxDcall VMCPD_Get_Virt_State

mov [Virt_State], al

Retrieves the virtual state of EM and MP bits for the given virtual machine. Uses EAX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the virtual state of EM and MP bits in AL. Bit 0 specifies the MPv bit; bit 1 the EMv bit.

VMHandle

Handle of the virtual machine.

VMCPD_Set_CR0_State

mov edi, ThreadHandle

mov eax, CR0_Flags

VxDcall VMCPD_Set_CR0_State

Sets the state of the EM (emulate) and MP (math present) coprocessor flags for the given thread. Uses EAX, EDX, EDI, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

ThreadHandle

Handle of the thread.

CR0_Flags

Coprocessor CR0 flags to set.

VMPCD_Set_Thread_State

mov esi, OFFSET32 RestoreBuffer

mov edi, ThreadHandle

VxDcall VMPCD_Set_Thread_State

Sets the state of the floating point unit (FPU) for the given thread. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

RestoreBuffer

Address of a buffer that contains the state information to set.

ThreadHandle

Handle of thread for which to set the FPU state.

VMCPD_Set_Virt_State

include vmcpd.inc

mov ebx, VMHandle

mov al, Virt_State

VxDcall VMCPD_Set_Virt_State

Sets the virtual state of EM and MP bits for the given virtual machine. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

VMHandle

Handle of the virtual machine.

Virt_State

New virtual state of the EM and MP bits. Bit 0 sets the MPv bit; bit 1 the EMv bit.

�Chapter

Virtual Power Device

About Virtual Power Device

The virtual power device (VPOWERD) provides power management support for the Windows 95 operating system. It works in conjunction with the system BIOS or other power management software to provide a system-independent interface to power management services. This means virtual devices and device drivers written for Windows 95 use VPOWERD services for power management rather than access the power management software directly.

VPOWERD supports power management software written to the Advanced Power Management (APM) specifications, versions 1.0 and 1.1. VPOWERD does not support the UPS functionality provided by APM 1.1.

Power Management Services

The VPOWERD services let other virtual devices determine the power management capabilities of the system, check the current system power status, set the system power management level or device power state, and set a power handler. There are these VPOWERD services:

_VPOWERD_Deregister_Power_Handler

_VPOWERD_Get_APM_BIOS_Version

_VPOWERD_Get_Power_State

_VPOWERD_Get_Power_Management_Level

_VPOWERD_Get_Power_Status

_VPOWERD_Get_Version

_VPOWERD_OEM_APM_Function

_VPOWERD_Register_Power_Handler

_VPOWERD_Restore_Power_On_Defaults

_VPOWERD_Set_Device_Power_State

_VPOWERD_Set_Power_Management_Level

_VPOWERD_Set_System_Power_State

Power Messages

VPOWERD broadcasts WM_POWERBROADCAST messages to notify applications and Windows-based drivers of changes to the system power state. These broadcasts can be initiated by the user, the timer, or the BIOS. Only user-initiated messages allow for user interaction. In all other cases, drivers must respond to the messages on their own. For detailed information about WM_POWERBROADCAST messages, see the Microsoft Win32 Programmer's Reference.

The Configuration Manager notifies ring-0, plug and play device drivers of power changes by sending configuration messages to these drivers instead of WM_POWERBROADCAST messages. The drivers respond to the configuration messages in a similar manner as Windows-based device drivers respond to the corresponding WM_POWERBROADCAST messages. For more information about configuration messages, see the Configuration Manager documentation.

If the system is running APM 1.1 and a low-level driver rejects a request to change the power mode to suspend or standby, VPOWERD sends a "last request rejected" notification to the BIOS if the request was initiated by the BIOS. Similarly, VPOWERD sends "busy processing last request" notifications to the BIOS as needed.

Power Handler

Power handler services are intended for use by Configuration Manager only. Virtual devices that require notification of power changes should install a message hook procedure using the _SHELL_HookSystemBroadcast service.

A power handler is a device-driver-supplied routine that carries out power-related tasks during power suspension and resumption. VPOWERD calls all registered power handlers as part of its normal sequence of shutting down and starting up power.

VPOWERD typically schedules an application-time event, using the SHELL_CallAtAppyTime service, when the request to suspend occurs. Within the application-time event, VPOWERD calls each handler once for each POWERFUNC_SUSPEND value. It orders the calls such that all handlers receive a POWERFUNC_SUSPEND_PHASE1 call before any receives a POWERFUNC_SUSPEND_PHASE2 call and so on.

When power is resumed, VPOWERD calls each handler once for each POWERFUNC_RESUME value. It orders the calls such that all handlers receive a POWERFUNC_SUSPEND_PHASE2 call before any receives a POWERFUNC_SUSPEND_PHASE1 call.

VPOWERD calls the handlers in the order specified by their initialization order, as given when a handler is registered. The PFG_REVERSE is set for the suspend messages and not for the resume messages. That is, VPOWERD normally calls the suspend in reverse load order, like a shutdown, so that the highest priority devices get suspended last yet resume first.

If at any point a handler fails a call, VPOWERD restores the system to the previous state. For example, if a handler rejects a POWERFUNC_SUSPEND_PHASE2 call, VPOWERD makes POWERFUNC_RESUME_PHASE2 and subsequent POWERFUNC_RESUME_PHASE1 calls to all handlers that had previously accepted the suspension.

Reference

This section describes the power management services, structures, and constants.

Services

_VPOWERD_Deregister_Power_Handler

POWERRET _VPOWERD_Deregister_Power_Handler(POWER_HANDLER power_handler);

Deregisters a power handler from the event notification queue.

This is intended for use by Configuration Manager only. Virtual devices that require notification of power changes should install a message hook procedure using the _SHELL_HookSystemBroadcast service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns PR_SUCCESS if successful, or one of the error values beginning with PR_ listed in VPOWERD.H.

power_handler

Address of the callback function to remove from the notification queue.

This service may only be called synchronously, that is, not at interrupt time.

_VPOWERD_Get_APM_BIOS_Version

DWORD _VPOWERD_Get_APM_BIOS_Version(VOID);

Retrieves the version of the current connection to the APM BIOS. If the service returns a valid version (that is 1.0 or 1.1), an APM BIOS exists in the system.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns one of these values:

0x0000 �No APM connection exists. ��0x0100 �An APM 1.0 connection has been made. ��0x0101 �An APM 1.1 connection has been made. ��

_VPOWERD_Get_Power_State

POWERRET _VPOWERD_Get_Power_State(POWER_DEVICE_ID Power_Device_ID,

 LPPOWER_STATE lpPower_State);

Retrieves the power state of a device or class of devices by passing the request directly to the APM BIOS. This function is available only for APM 1.1 connections.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns PR_SUCCESS if successful, or one of the error values beginning with PR_ listed in VPOWERD.H.

Power_Device_ID

APM 1.1 identifier of the device. Use the Plug and Play BIOS function Get APM 1.1 ID Table (Function 0Bh) to retrieve an identifier.

lpPower_State

Address of a variable that receives the power state for a device. Can receive one of these values:

PSTATE_APM_ENABLED (0x0000) �On ��PSTATE_STANDBY (0x0001) �Standby ��PSTATE_SUSPEND (0x0002) �Suspended ��PSTATE_OFF (0x0003) �Off ��0x0030 thru 0x007F �OEM-defined device states ��

All other values are reserved.

If Power_Device_ID specifies a class of devices (that is, the identifier has the form 0xxxFF), the function returns successfully only if the service _VPOWERD_Set_Device_Power_State has been previously used to set the state for that identifier.

This function does not supported the global system identifier 0x0001.

_VPOWERD_Get_Power_Management_Level

DWORD _VPOWERD_Get_Power_Management_Level(VOID);

Retrieves the power management level of the system.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns one of these values:

PMLEVEL_OFF �Power management off. ��PMLEVEL_STANDARD �BIOS power management on. ��PMLEVEL_ADVANCED �Both BIOS and cooperative power management on. ��

_VPOWERD_Get_Power_Status

POWERRET _VPOWERD_Get_Power_Status(POWER_DEVICE_ID Power_Device_Id,

 LPPOWER_STATUS lpPower_Status);

Retrieves the power status of the system, such as whether the system is running on AC or DC power, whether the battery is currently charging, and how much battery life currently remains.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns PR_SUCCESS if successful, or one of the error values beginning with PR_ listed in VPOWERD.H.

Power_Device_ID

APM 1.1 identifier of the device. Use the Plug and Play BIOS function Get APM 1.1 ID Table (Function 0Bh) to retrieve an identifier.

lpPower_Status

Address of a POWER_STATUS structure that receives the power status.

_VPOWERD_Get_Version

DWORD _VPOWERD_Get_Version(VOID);

Retrieves the version number of the VPOWERD device.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag and returns a non-zero value if the VPOWERD device is loaded. The low-order word of the return value contains the VPOWERD version. The high-order byte contains the major version number and the low-order byte contains the minor version number.

For example, the function returns 0x400 for version 4.0 of the VPOWER device.

_VPOWERD_OEM_APM_Function

POWERRET _VPOWERD_OEM_APM_Function(LPOEM_APM_REGS lpOEM_APM_Regs);

Carries out an OEM-specific APM 1.1 function by passing the function number and parameters directly to the BIOS. This function is available only for APM 1.1 connections.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns PR_SUCCESS if successful, otherwise an OEM-defined error value. In either case, the service sets members of the OEM_APM_REGS structure to appropriate values.

lpOEM_APM_Regs

Address of a OEM_APM_REGS structure that contains information about the function to carry out.

To get an OEM ID, refer to the APM 1.1 specification.

_VPOWERD_Register_Power_Handler

POWERRET _VPOWERD_Register_Power_Handler(POWER_HANDLER Power_Handler,

 DWORD Priority);

Registers a power handler to be notified of standby, suspend, and resume events.

This is intended for use by Configuration Manager only. Virtual devices that require notification of power changes should install a message hook procedure using the _SHELL_HookSystemBroadcast service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns POWER_SUCCESS if successful, or one of the error values beginning with PR_ listed in VPOWERD.H.

Power_Handler

Address of the callback function that is notified of power management events. For more information about this callback, see the VPowerHandlerProc function.

Priority

Notification-order value. Callback functions with high values, relative to other callback functions, receive power-suspension event notifications before the other callbacks, but receive power-resumption event notifications after others.

This service may only be called synchronously, that is, not at interrupt time.

_VPOWERD_Restore_Power_On_Defaults

POWERRET _VPOWERD_Restore_Power_On_Defaults(VOID);

Reinitializes all APM BIOS power-on defaults. This service is intended to be used only by the operating system.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns PR_SUCCESS if successful, or one of the error values beginning with PR_ listed in VPOWERD.H.

_VPOWERD_Set_Device_Power_State

POWERRET _VPOWERD_Set_Device_Power_State(

 POWER_DEVICE_ID Power_Device_ID, POWER_STATE Power_State);

Sets the power management state for a given device by passing the request directly to the APM BIOS. This service is available only for APM 1.1 connections.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns PR_SUCCESS if successful, or one of the error values beginning with PR_ listed in VPOWERD.H.

Power_Device_ID

APM 1.1 identifier of the device. Use the Plug and Play BIOS function Get APM 1.1 ID Table (Function 0Bh) to retrieve an identifier.

Power_State

Power state for the device. Can be one of these values:

PSTATE_APM_ENABLED (0x0000) �On ��PSTATE_STANDBY (0x0001) �Standby ��PSTATE_SUSPEND (0x0002) �Suspended ��PSTATE_OFF (0x0003) �Off ��0x0030 thru 0x007F �OEM-defined device states ��

All other values are reserved.

This service returns 0x0001 if the power management level is off and 0x000B if the power management level is standard.

_VPOWERD_Set_Power_Management_Level

POWERRET _VPOWERD_Set_Power_Management_Level(DWORD Power_Management_Level);

Sets the power management level of the system.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns PR_SUCCESS if successful, or one of the error values beginning with PR_ listed in VPOWERD.H.

Power_Management_Level

Power management level. Can be one of these values:

PMLEVEL_OFF �Disables both BIOS and cooperative power management. ��PMLEVEL_STANDARD �Enables BIOS power management but disables cooperative power management. ��PMLEVEL_ADVANCED �Enables both BIOS and cooperative power management. ��

When APM 1.1 is available, this service uses the APM Engage/Disengage and Enable/Disable Power Management functions.

_VPOWERD_Set_System_Power_State

POWERRET _VPOWERD_Set_System_Power_State(POWER_STATE Power_State,

 DWORD Request_Type);

Sets system power state to low- or no-power state. If a low-power state is set, this service returns successfully after power is restored. If a no-power state, this service never returns and the system loses all power.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns PR_SUCCESS if successful,or one of the error values beginning with PR_ listed in VPOWERD.H.

Power_State

Power state for the device. Can be one of these values:

PSTATE_STANDBY (0x0001) �Standby ��PSTATE_SUSPEND (0x0002) �Suspended ��PSTATE_OFF (0x0003) �Off ��

All other values are reserved.

Request_Type

Type of request. Can be one of these values:

REQTYPE_USER_INITIATED (0x00000000) �Request is User-initiated. ��REQTYPE_TIMER_INITIATED (0x00000001) �Request is Timer-initiated. ��REQTYPE_FORCED_REQUEST (0x00000002) �Force acceptance of request. ��REQTYPE_BIOS_CRITICAL_SUSPEND (0x00000004) �Request is BIOS Critical Suspend. ��

Windows 95 does not support the APM 1.1 OEM-defined system states.

VPowerHandlerProc

POWERRET VPowerHandlerProc(POWERFUNC PowerFunc, ULONG Flags);

A driver-supplied callback function that receives notifications of power management events. This function must be registered using the _VPOWERD_Register_Power_Handler service and must be in locked code.

This is intended for use by Configuration Manager only. Virtual devices that require notification of power changes should install a message hook procedure using the _SHELL_HookSystemBroadcast service.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns PR_SUCCESS if it handles the event successfully, or one of the error values beginning with PR_ listed in VPOWERD.H.

PowerFunc

Power function. Can be one of these values:

PF_SUSPEND_PHASE1 ���PF_SUSPEND_PHASE2 ���PF_RESUME_PHASE2 ���PF_RESUME_PHASE1 ���PF_BATTERY_LOW ���PF_POWER_STATUS_CHANGE ���PF_UPDATE_TIME ���

Flags

Power flags. Can be one of these values:

PFG_UI_ALLOWED (0x00000001) ���PFG_CANNOT_FAIL (0X00000002) ���PFG_REQUEST_VETOED (0X00000004) �Indicates that the user may not be available to answer questions prior to the suspend operation. If this value is not given, higher levels of software may attempt some user interaction prior to accepting a suspend request. ��PFG_REVERSE (0x00000008) �Clear for suspend operations, set on resume. ��PFG_STANDBY (0x00000010) �Indicates a standby request when set as opposed to a suspend request. ��PFG_CRITICAL (0x00000020) �Set to notify power handlers of critical resume operations so that they may attempt to resume their clients as best as possible. Critical suspends do not reach the power handlers in order to maintain compliance with the APM 1.1 specification. ��

Although the callback function is called from within application time, the function must not use application-time services when interrupts are disabled.

Structures

This section describes the power management structures.

OEM_APM_BYTE_REGS

typedef struct _OEM_APM_BYTE_REGS {

 WORD OEMAPM_Reserved1[6];

 BYTE OEMAPM_BL;

 BYTE OEMAPM_BH;

 WORD OEMAPM_Reserved2;

 BYTE OEMAPM_DL;

 BYTE OEMAPM_DH;

 WORD OEMAPM_Reserved3;

 BYTE OEMAPM_CL;

 BYTE OEMAPM_CH;

 WORD OEMAPM_Reserved4;

 BYTE OEMAPM_AL;

 BYTE OEMAPM_AH;

 WORD OEMAPM_Reserved5;

 BYTE OEMAPM_Flags;

 BYTE OEMAPM_Reserved6[3];

} OEM_APM_BYTE_REGS;

Contains values representing the values in the 8-bit CPU registers.

OEM_APM_DWORD_REGS

typedef struct _OEM_APM_DWORD_REGS {

 DWORD OEMAPM_EDI;

 DWORD OEMAPM_ESI;

 DWORD OEMAPM_EBP;

 DWORD OEMAPM_EBX;

 DWORD OEMAPM_EDX;

 DWORD OEMAPM_ECX;

 DWORD OEMAPM_EAX;

 DWORD OEMAPM_Reserved14;

} OEM_APM_DWORD_REGS;

Contains values representing the values in the 32-bit CPU registers.

OEM_APM_REGS

typedef union _OEM_APM_REGS {

 struct _OEM_APM_BYTE_REGS ByteRegs;

 struct _OEM_APM_WORD_REGS WordRegs;

 struct _OEM_APM_DWORD_REGS DwordRegs;

} OEM_APM_REGS;

typedef OEM_APM_REGS * LPOEM_APM_REGS;

Contains information about the CPU registers that can be used by OEM-specific APM functions. This structure is a representation in memory of the values of the CPU registers.

OEM_APM_WORD_REGS

typedef struct _OEM_APM_WORD_REGS {

 WORD OEMAPM_DI;

 WORD OEMAPM_Reserved7;

 WORD OEMAPM_SI;

 WORD OEMAPM_Reserved8;

 WORD OEMAPM_BP;

 WORD OEMAPM_Reserved9;

 WORD OEMAPM_BX;

 WORD OEMAPM_Reserved10;

 WORD OEMAPM_DX;

 WORD OEMAPM_Reserved11;

 WORD OEMAPM_CX;

 WORD OEMAPM_Reserved12;

 WORD OEMAPM_AX;

 WORD OEMAPM_Reserved13[3];

} OEM_APM_WORD_REGS;

Contains values representing the values in the 16-bit CPU registers.

POWER_STATUS

typedef struct _POWER_STATUS {

 BYTE PS_AC_Line_Status;

 BYTE PS_Battery_Status;

 BYTE PS_Battery_Flag;

 BYTE PS_Battery_Life_Percentage;

 WORD PS_Battery_Life_Time

} POWER_STATUS;

Contains information about the APM BIOS power status. With the exception of the BatteryLifeTime parameter, this information is structured identically to that specified in the APM 1.1 specification.

PS_AC_Line_Status

AC line status. Can be 00h for off-line, 01h for on-line, or 02h for on backup power (that is, on an uninterruptible power supply). It is 0FFh if the AC status is unknown. All other values are reserved.

PS_Battery_Status

Battery charge status. Can be 00h for high charge, 01h for low charge, 02h for critical, 03h for charging, and 0FFh for unknown status. All other values are reserved.

PS_Battery_Flag

Battery status. Can be a combination of 01h for high charge, 02h for low charge, 04h for critical, 08h for charging, and 080h for no system battery. all other bit values are reserved. This member is 0FFh if status is unknown.

PS_Battery_Life_Percentage

Percentage of Full Charge remaining. Can be a value in the range 0 to 100, or 0xFF if the battery life is unknown. All other values are reserved.

PS_Battery_Life_Time

Number of seconds of battery life remaining, or 0FFFFFFFFh if the life time is unknown.

When PS_AC_Line_Status is 02h (on backup power), the power status values apply to the system's backup battery.

Since PS_Battery_Flag and PS_Battery_Life_Time are not supported by an APM 1.0 BIOS, VPOWERD returns 0FFh and 0FFFFFFFFh in these fields when connected to an APM 1.0 BIOS. The PS_Battery_Flag value should be used preferentially over the PS_Battery_Status value. The PS_Battery_Status specifies only the most recently changed status item since the last call to the BIOS power status function and therefore is supported only for backward compatibility with older systems not capable of reporting the PS_Battery_Flag value.

�Chapter

Virtual Shell Device

About the Shell

The virtual shell device (SHELL) provides services that virtual devices use to display messages, resolve contention between devices, post Window messages to applications and VxDs, monitor changes to virtual machine properties, and carry out two-way communication with Windows-based applications or DLLs. This chapter describes the interfaces of the virtual shell device.

Application Time Events

Application time (also known as 'Appy time, a play on the words "Happy" and "Application") occurs when the system VM runs in the context of an application. At application time, VxDs can perform any operations that Windows-based applications can. For example, a VxD can load DLLs, link to exported functions, and call the functions.

The system does not automatically notify VxDs when application time occurs. To receive notification, you must use the _SHELL_CallAtAppyTime service to install a callback procedure. The system calls this procedure once and only once when application time next occurs. An arbitrary amount of time may elapse between the call to _SHELL_CallAtAppyTime and a call to the callback procedure. The system does not dispatch application time events while the critical section is held or while the system VM is blocked on any semaphores. There are no guarantees as to the order in which application time events are dispatched.

There are periods of time during which application time is not available, such as during system initialization and system shutdown. Application time may also be momentarily unavailable during the normal operation of the system. You can determine whether application time is available by using the _SHELL_QueryAppyTimeAvailable service. A zero return value means that application time events are not currently available. Even if application time is not available, you can still call _SHELL_CallAtAppyTime. In such cases, the system places the requested event on a queue and does not dispatch the event until application time becomes available. Application time never becomes available if system shutdown is in progress.

Although application time is not available during system initialization, you can still use _SHELL_CallAtAppyTime to request notification as soon as application time is available. This is especially useful for VxDs that need to carry out tasks while the graphical shell starts. For example, an accessibility VxD may use the ShellExecute function during application time to start a screen reader or magnifying glass application. This is important for users who would otherwise find the standard network logon dialog box inaccessible. (The system displays the network logon dialog box before it processes the Startup folder, so placing an accessibility application in the Startup folder does not solve the problem.)

You can cancel an application time event that has not yet been dispatched by using the _SHELL_CancelAppyTimeEvent service. The service requires either the handle of the event as returned by _SHELL_CallAtAppyTime or zero. Attempting to cancel a dispatched event can crash the system. To prevent crashes, most VxDs set the event handle to zero while processing the event. _SHELL_CancelAppyTimeEvent ignores calls in which the handle is zero.

When an application time event is dispatched, the following services are available:

_SHELL_CallDll

_SHELL_FreeLibrary

_SHELL_GetProcAddress

_SHELL_LoadLibrary

_SHELL_LocalAllocEx

_SHELL_LocalFree

These services are similar to the Windows functions having corresponding names. For example, the _SHELL_LoadLibrary service loads the given DLL and returns an instance handle that can be used to dynamically link to exported functions.

Two-way Communication

Two-way communication occurs when a VxD receives information from and sends information to a Windows application. A 16-bit application can send information to a VxD by calling the protected-mode API procedure for the VxD. Use Get Device Entry Point Address (Interrupt 2Fh Function 1684h) to retrieve the address of this procedure. A Win32 application can use the DeviceIOControl function to communicate with a VxD.

A VxD can send information to an application by using a variety of shell services. For example, a VxD can use the services associated with appy time events, such as _SHELL_CallDll, to call a DLL and pass it data. A VxD can also use services such as _SHELL_BroadcastSystemMessage and _SHELL_PostMessage, to post messages to the queues of one or more Windows-based applications.

The _SHELL_BroadcastSystemMessage service is a convenient way to send a window message to a list of recipient windows. A VxD can also intercept these broadcast messages by installing a callback procedure using the _SHELL_HookSystemBroadcast service. The system calls the procedure whenever the _SHELL_BroadcastSystemMessage is called. The _SHELL_UnhookSystemBroadcast service removes the callback procedure.

The _SHELL_PostMessage service calls the Windows PostMessage function. If a VxD calls the _SHELL_PostMessage service when the current VM is not the system VM, the system schedules the message and does not actually post the message until the system VM receives CPU time. If the current VM is the system VM, the system may call the PostMessage function immediately.

When the call to PostMessage is actually made, the system notifies the VxD of the message result by calling a callback procedure specified by the VxD when it called _SHELL_PostMessage. The VxD must be prepared for failure at two points: immediate failure returned by _SHELL_PostMessage and eventual failure passed to the callback procedure.

If the current VM is the system VM, the system may call the callback procedure before _SHELL_PostMessage returns. To prevent this, use the SPM_UM_AlwaysSchedule value in the uMsg parameter.

Do not make multiple, successive calls to _SHELL_PostMessage. This can fill up the message queue of the window and exhaust available memory.

Do not block the system VM while waiting for the PostMessage function callback. This will deadlock the system.

VM Properties

You can use the SHELL_Hook_Properties service to install a callback procedure to monitor changes the user makes to VM properties. The SHELL_Unhook_Properties service removes the callback procedure when you no longer need to monitor changes.

Miscellaneous

The miscellaneous services let you carry out tasks such as starting applications and checking for user activity. There are the following miscellaneous services:

_SHELL_ShellExecute

SHELL_Update_User_Activity

Shell Service API

The shell services API let applications use the shell VxD to carry out useful tasks, such as enumerating the property groups associated with a given virtual machine.

Reference

This section provides detailed reference information for the shell services. The information is separated into the following functional groups.

Group �Elements ��Windows 3.x Compatible �SHELL_Event, SHELL_Get_Version, SHELL_Message, SHELL_Resolve_Contention, SHELL_SYSMODAL_Message ��Application Time Events �_SHELL_CallAtAppyTime, _SHELL_CallDll, _SHELL_CancelAppyTimeEvent, _SHELL_FreeLibrary, _SHELL_GetProcAddress, _SHELL_LoadLibrary, _SHELL_LocalAllocEx, _SHELL_LocalFree, _SHELL_QueryAppyTimeAvailable ��Two-way Communication �_SHELL_BroadcastSystemMessage, _SHELL_HookSystemBroadcast, _SHELL_PostMessage, _SHELL_PostShellMessage, _SHELL_UnhookSystemBroadcast ��VM Properties �SHELL_Hook_Properties, SHELL_Unhook_Properties ��Miscellaneous �_SHELL_ShellExecute, SHELL_Update_User_Activity ��Shell Service API �SHSV_Enumerate_Properties, SHSV_Get_Version, SHSV_GiveSYSVMfocus, SHSV_Install_New_Task_Manager, SHSV_Set_ScreenSaver_Info, SHSV_Update_Properties, SHSV_WinExec, SHSV_WinExecWait ��

Windows 3.x Compatible Services

SHELL_Event

include shell.inc

mov ebx, Handle ; virtual machine handle

mov ecx, Event ; event number

mov ax, wParam ; word parameter for event

mov esi, OFFSET32 Callback ; address of event callback proc

mov edx, OFFSET32 ReferenceData ; reference data for the callback

VxDcall SHELL_Event

jc error

mov [EventHandle], eax ; event handle only if callback is used

Posts an event in the Windows shell to WINOLDAPP. Uses EAX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the event is placed in the queue. If a event callback procedure is given, the EAX register contains the handle of the event. The carry flag is set to indicate an error, such as the WINOLDAPP is not present or there is insufficient memory for placement.

Handle

Virtual machine handle for the event.

Event

Event number.

wParam

16-bit parameter value for the event. The high 16 bits specify the special boost flags.

Callback

Address of the callback procedure for the event. If this parameter is zero, no callback procedure is called. For more information about the callback procedure, see the comments section.

ReferenceData

Address of reference data for the event callback procedure.

The system calls the callback procedure with the following input parameters:

mov edx, ReferenceData ; points to reference data

mov ebp, ClientReg ; points to a WINOLDAPP Client_Reg_Struc frame

call [Callback]

If the carry flag is clear on entry, the event was processed and the EBP register points to a Client_Reg_Struc structure containing the register values after the event returned. If the carry flag is set, the event could not be placed in the queue and only the EDX register contains valid data. In both cases, the EBX register does not contain a virtual machine handle.

SHELL_Get_Version

include shell.inc

VxDcall SHELL_Get_Version

jc error

mov [Major], ah

mov [Minor], al

Returns the version number for the virtual shell device. Uses EAX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag, copies the major version number to the AH register and the minor version number to AL.

SHELL_GetVMInfo

include shell.inc

mov ebx, Handle ; virtual machine handle

VxDcall SHELL_GetVMInfo

mov [hwnd], dx ; WinOldAp window handle for VM

mov [Flags], eax ; flags for virtual machine

Retrieves PIF information settings for a virtual machine. This service is only available for Windows version 3.1 and later. Uses EAX, ECX, EDI, EDX, ESI, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Sets the DX register to the handle of the WinOldAp window corresponding to the VM and sets the EAX register to one or more of these flag values:

SGVMI_ALTENTERdis �ALT+ENTER is reserved. ��SGVMI_ALTESCdis �ALT+ESC is reserved. ��SGVMI_ALTPRTSCdis �ALT+PRTSC is reserved. ��SGVMI_ALTSPACEdis �ALT+SPACEBAR is reserved. ��SGVMI_ALTTABdis �ALT+TAB is reserved. ��SGVMI_ClsExit �Close on exit enabled. ��SGVMI_CTRLESCdis �CTRL+ESC is reserved. ��SGVMI_EMS_Lock �EMS hands locked. ��SGVMI_FastPaste �Allow fast paste enabled. ��SGVMI_HasHotKey �Has a shortcut key. ��SGVMI_NoHMA �No HMA. ��SGVMI_Polling �Polling detection enabled. ��SGVMI_PRTSCdis �PRTSC is reserved. ��SGVMI_V86_Lock �V86 memory locked. ��SGVMI_Windowed �The virtual machine runs in a window. ��SGVMI_XMS_Lock �XMS hands locked. ��

The undefined bits in the EAX register are reserved. Do not depend on them being zero. The high 16 bits of the EDX register are reserved.

Handle

Handle of the virtual machine to examine.

This service is not valid until after all virtual devices have processed the Create_VM message. This service if called during a Create_VM message will not return proper PIF information. The ECX, EDX, ESI, and EDI register contents are reserved.

SHELL_Message

include shell.inc

mov ebx, Handle ; virtual machine handle

mov eax, Flags ; message box flags

mov ecx, OFFSET32 Message ; address of message text

mov edi, OFFSET32 Caption ; address of caption text

mov esi, OFFSET32 Callback ; address of callback

mov edx, ReferenceData ; reference data for callback

VxDcall SHELL_Message

jc error

or eax, eax ; nonzero if success

Displays a message box using the Windows shell. Uses EAX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag and sets the EAX register to a nonzero value if successful. Otherwise, sets the carry flag to indicate an error such as insufficient memory to display the message.

Handle

Handle of the virtual machine responsible for the message.

Flags

Message box flags. See the MB_ symbols in the SHELL.INC file.

Message

Address of a null-terminated string containing the message text.

Caption

Address of a null-terminated string containing the caption text. If this parameter is zero, the service uses the standard caption. If this parameter points to an empty string, the message box has no caption.

Callback

Address of the callback procedure to process the user's response when the message box returns. If this parameter is zero, no callback procedure is called.

ReferenceData

Reference data to pass to the callback procedure.

The strings pointed to by the ECX and EDI registers must remain valid until the callback procedure is called. In other words, the memory for those strings should not be freed until the callback is made.

The system calls the callback procedure after the user closes the message box. The callback receives the following input parameters:

mov eax, Response ; response code from the message box

mov edx, ReferenceData ; points to reference data

call [Callback]

The response code in the EAX register is one of the ID symbols defined in the SHELL.INC file. The EBX register may or may not contain the current virtual machine handle when the callback is called. The callback must not rely on its value. If this service returns an error, a virtual device can use the SHELL_SYSMODAL_Message service to force the system to display a message.

SHELL_Resolve_Contention

include shell.inc

mov eax, OwnerHandle ; virtual machine handle of device owner

mov ebx, OtherHandle ; virtual machine handle of contender

mov esi, OFFSET32 DeviceName ; address of device name

VxDcall SHELL_Resolve_Contention

jc cannot_resolve

mov [WinnerHandle], ebx ; virtual machine handle of new owner

Resolves contention for the MS-DOS shell. Uses EBX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag and copies the virtual machine handle of contention winner to the EBX register if successful. Otherwise, sets the carry flag to indicate that contention could not be resolved.

OwnerHandle

Handle of virtual machine of the current device owner.

OtherHandle

Handle of the contending virtual machine. This parameter must identify the current virtual machine.

DeviceName

Address of an 8-byte string identifying the name of the device in contention. The name must be in uppercase letters, and be padded with spaces if necessary. This string must remain valid until SHELL_Resolve_Contention returns.

SHELL_SYSMODAL_Message

include shell.inc

mov ebx, Handle ; virtual machine handle

mov eax, Flags ; message box flags

mov ecx, OFFSET32 Message ; address of message

mov edi, OFFSET32 Caption ; address of caption

VxDcall SHELL_SYSMODAL_Message

mov [Response], eax ; response code from message box

Displays a system modal message box in the Windows shell. Uses EAX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the response code from the message box in the EAX register. A response code can be one of the ID symbols defined in the SHELL.INC file.

Handle

Specifies the handle of the virtual machine responsible for the message.

Flags

Specifies the message box flags. See the MB_ symbols in the SHELL.INC file. The MB_SYSTEMMODAL value must be given.

Message

Address of a null-terminated string specifying the message text.

Caption

Address of a null-terminated string specifying the caption text. If this parameter is zero, the service uses the standard caption. If this parameter points to an empty string, the message box has no caption.

The strings pointed to by the ECX and EDI registers must remain valid until SHELL_Sysmodal_Message returns.

Application Time Events

_SHELL_CallAtAppyTime

include shell.inc

VxDcall _SHELL_CallAtAppyTime, <<OFFSET32 pfnCallback>,

 dwRefData, dwFlags, dwTimeout>

cmp eax, 0

je error

mov [EventHandle], eax ; application time event handle

Installs a callback procedure for an application time event. Uses C calling conventions.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the handle of the application time event in the EAX register if successful. Otherwise, returns zero indicating insufficient memory.

pfnCallback

Address of the callback procedure to be called when the system VM reaches the application time state. For more information about the procedure, see the comments below.

dwRefData

Reference data to pass to the callback procedure.

dwFlags

Event flag. Can be one of these values:

CAAFL_RING0 �Ring zero event. ��CAAFL_TIMEOUT �Time out the event after the duration specified by dwTimeout. ��

dwTimeout

Time out duration.

This is an asynchronous service.

The system calls the callback procedure whenever the system VM is in a quiet state. The system calls the procedure using the C calling conventions as follows:

cCall [pfnCallback], <dwRefData, dwFlags>

The dwRefData parameter is the same value passed to the _SHELL_CallAtAppyTime service. No return value is required. The dwFlags parameter is a bitmask of flags describing the conditions under which the callback procedure is made. If the CAAFL_TIMEOUT bit is set, the timeout duration elapsed before application time could be reached, in which case the system is not at application time, and you cannot use application-time-only services. All other bits of dwFlags are reserved.

If application time is not currently available, the event is scheduled for a time when application time is available. If application time never becomes available (for example, if the application time event is scheduled while the system is shutting down), the event is never dispatched.

_SHELL_CallDll

include shell.inc

VxDcall _SHELL_CallDll, <<OFFSET32 lpszDll>, <OFFSET32 lpszProcName>,\

 cbArgs, <OFFSET32 lpvArgs>>

mov [ReturnValue], eax

Loads the given 16-bit library, creates a dynamic link to the given function, thunks the function arguments, and calls the function at ring 3. After return from the function, this service frees the library.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the value returned from the function if successful. Otherwise, returns zero to indicate an error, such as unable to link to function. If the service can not load the given library, it returns a value range 0 through 31 to indicate the error.

lpszDll

Address of a null-terminated string specifying the filename of the DLL to load, or zero to indicate that lpszProcName is a 16:16 raw address.

lpszProcName

Address of a null-terminated string specifying the name of the function to call, or the ordinal of the function to call, or a raw 16:16 address to call. See the following comments for additional information .

cbArgs

Number of bytes of arguments to pass.

lpvArgs

Address of buffer that contains the function arguments. The arguments must be placed in the buffer in the same order as they are pushed on the ring 3 stack. This order depends on whether the function being called uses PASCAL or C calling conventions. The size, in bytes, of each argument must be as required by the function being called.

This service may be called only during application time. Failure to observe this restriction may crash the system. This service is capable of calling only 16-bit DLLs.

The procedure being called must conform to the C or PASCAL calling conventions. Parameters must be accepted on the stack, not in registers; register contents on entry to the procedure are undefined. The procedure must preserve the SI, DI, and BP registers.

If the lpszDll parameter is zero, the lpszProcName is treated as a raw 16:16 pointer with the selector in the high word and the offset in the low word. The procedure at the indicated address is called, with the parameters pushed as in the normal case. This is the only way 16-bit code should be called at application time. Do not attempt to use Begin_Nest_Exec at application time, because it will crash the machine if a timer tick comes in at the wrong time. Do not use the _CallRing3 service because it may crash the machine if the Windows 16-bit memory manager has performed a GlobalCompact.

The following simple example illustrates the basic idea of the _SHELL_CallDll service.

/* PASCAL calling convention passes arguments backwards */

struct tagEXITWINDOWARGS {

 WORD wReserved;

 DWORD dwReturnCode;

} ewa = { 0, EW_REBOOTWINDOWS };

SHELL_CallDll("USER", "EXITWINDOWS", sizeof(ewa), &ewa);

The following example illustrates how a string parameter can be passed, as well as calling the target DLL by ordinal rather than by name:

#define ordWinExec 166

/* PASCAL calling convention passes arguments backwards */

struct tagWINEXECARGS {

....WORD nCmdShow;

....DWORD lpszCmdLine;

} wea = { SW_NORMAL, 0 };

wea.lpszCmdLine = SHELL_LocalAllocEx(LPTR + LMEM_STRING, 0,

 "MyProg.exe");

SHELL_CallDll("KERNEL", ordWinExec, sizeof(wea), &wea);

SHELL_LocalFree(wea.lpszCmdLine);

The following example illustrates how raw 16:16 addresses can be called. This is handy if the address didn't come from a DLL, but was registered by an application. It is also handy if you will be calling into your DLL many times in quick succession, because the normal _SHELL_CallDll loads the library, calls the function, and then frees it. Each LoadLibrary loads the DLL from the disk anew, wasting time with disk I/O. Instead, load it once, do all the calls, and then free it when done.

HINSTANCE hinst;

FARPROC lpfnMyFunction;

struct tagMYFUNCTIONARG {

 WORD wParam;

} mfa = { 0 };

hinst = SHELL_LoadLibrary("MYDLL");

if (hinst < 32) return ERROR;

lpfnMyFunction = SHELL_GetProcAddress(hinst, "MYFUNCTION");

if (lpfnMyFunction == 0) {

 SHELL_FreeLibrary(hinst); return ERROR;

}

/* Now call MyFunction three times with arg 0, 1, and 2. */

mfa.wParam = 0;

SHELL_CallDll(0, lpfnMyFunction, sizeof(mfa), &mfa);

mfa.wParam = 1;

SHELL_CallDll(0, lpfnMyFunction, sizeof(mfa), &mfa);

mfa.wParam = 2;

SHELL_CallDll(0, lpfnMyFunction, sizeof(mfa), &mfa);

/* Finished. Free the library. */

SHELL_FreeLibrary(hinst);

return OK;

There is no way to distinguish between a DLL function that happened to return a value in the range 0 through 31 from the inability to load the DLL. If such fine control is necessary, you should use the method described in the third example.

_SHELL_CancelAppyTimeEvent

include shell.inc

VxDcall _SHELL_CancelAppyTimeEvent, <EventHandle>

Cancels subsequent calls to the callback procedure associated with the given application time event handle. Uses C calling conventions.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

EventHandle

Handle of the application time event to cancel. The handle must have been previously returned by the _SHELL_CallAtAppyTime service.

This is not an asynchronous service.

For convenience, zero is a valid parameter value, in which case the service does nothing and returns immediately.

_SHELL_FreeLibrary

include shell.inc

VxDcall SHELL_FreeLibrary, <Handle>

Frees the given 16-bit library, removing it from memory if the reference count decrements to zero. This service is a thunk for the FreeLibrary function. Use C calling conventions.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Handle

Instance handle returned from a previous call to the SHELL_LoadLibrary service.

This service may be called only during application time. Failure to observe this restriction may crash the system.

_SHELL_GetProcAddress

include shell.inc

VxDcall SHELL_GetProcAddress, <Handle, <OFFSET32 lpszProcName>>

mov [ProcAddress], eax

Retrieves the address of a function exported by the given 16-bit library. Uses C calling conventions.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the 16:16 address of the function if successful. Otherwise, returns zero.

Handle

Instance handle returned from a previous call to the SHELL_LoadLibrary service.

lpszProcName

Address of a null-terminated string specifying the name of the function or the ordinal for the function. If an ordinal is given, the ordinal must be in the low 16 bits; the high 16 bits must be zero.

This service may be called only during application time. Failure to observe this restriction may crash the system.

_SHELL_LoadLibrary

include shell.inc

VxDcall SHELL_LoadLibrary, <<OFFSET32 lpszDll>

mov [Handle], eax

Loads the given 16-bit library. This service is a thunk for the LoadLibrary function. Use C calling conventions.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a handle to instance of library if successful. Otherwise, returns an error value in the range 0 through 31. These are the same error values as for the 16-bit LoadLibrary function.

lpszDll

Address of a null-terminated string specifying the filename of the DLL to load.

This service may be called only during application time. Failure to observe this restriction may crash the system. This service is capable of loading only 16-bit DLLs.

_SHELL_LocalAllocEx

include shell.inc

VxDcall SHELL_LocalAllocEx, <fl, cb, <OFFSET32 lpvBuf>>

mov [Handle], eax

mov [LinearAddress], edx

Allocates memory from the local heap of the message server application. Uses C calling conventions.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the 16:16 address of the allocated block in the EAX register and a 32-bit linear address in the EDX register if successful. Otherwise, returns zero in both EAX and EDX.

fl

Flags. Can be a combination of these values:

LMEM_ZEROINIT �Fill block with zeroes. ��LMEM_FIXED �Allocate non-moveable memory. ��LPTR �Same as LMEM_ZEROINIT and LMEM_FIXED. ��LMEM_STRING �Allocate a block having the same size in bytes as a null-terminated string. The cb parameter must be zero and lpvBuf must be the address of the null-terminated string. ��

Do not use LMEM_MOVEABLE or LMEM_DISCARDABLE.

cb

Size of block to allocate, in bytes.

lpvBuf

Address of buffer containing initialization data or NULL if no initialization is needed. The contents of this buffer will be copied into ring 3.

This service may be called only during application time. Failure to observe this restriction may crash the system.

The message server application runs without a window on the Windows desktop. VxDs should be frugal with the use of this memory since it is a limited resource. Because Windows moves segments, the 32-bit linear address returned in EDX becomes invalid as soon as control is given to the Windows memory manager. The 16:16 pointer remains valid however.

_SHELL_LocalFree

include shell.inc

VxDcall SHELL_LocalFree, <Handle>

Frees the memory that was allocated by SHELL_LocalAllocEx. Uses C calling conventions.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Handle

Handle of block of memory previously allocated by the SHELL_LocalAllocEx service. The handle must be the value previously returned in the EAX register by _SHELL_LocalAllocEx.

This service may be called only during application time. Failure to observe this restriction may crash the system.

_SHELL_QueryAppyTimeAvailable

include shell.inc

VxDcall _SHELL_QueryAppyTimeAvailable

or eax, eax

jz not_available

Specifies whether application time events are available to VxDs. Application time events are available only after Windows initializes; they cease to be available when Windows begins to shutdown or if the message server GP faults. Uses C calling conventions.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns nonzero in the EAX register if application time events are available. Otherwise, returns zero.

This is an asynchronous service.

This service does not specify whether the system is currently in an appy-time state. The message server may GP fault if a call to the CallRing3 service by a VxD GP faults. Under such conditions, application time is permanently disabled until the system shuts down and restarts.

Two-way Communication

_SHELL_BroadcastSystemMessage

include shell.inc

VxDcall SHELL_BroadcastSystemMessage, <dwFlags, \

 <OFFSET32 lpdwRecipients>, uMsg, wParam, lParam>

mov [Result], eax ; 1 if success, 0 if some recipients failed

 ; broadcast, -1 if broadcast failed

Broadcasts a message to a specified list of top-level windows and devices. This is a ring 0 version of the Windows BroadcastSystemMessage function. Use C calling conventions.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns one of these values in the EAX register:

0 �At least one recipient returned FALSE from the broadcast message. ��1 �All components returned TRUE from the broadcast message. ��-1 �The message could not be broadcast. Indicates an error, such as unable to allocate a selector alias for the lParam buffer or the broadcast was attempted at an inappropriate time. ��

dwFlags

Flags identifying the kind of broadcast to perform.

lpdwRecipients

Address of an array of handles identifying the recipients of the broadcast message.

uMsg

Message number. The high 16 bits must be zero.

wParam

16-bit message parameter in the low 16 bits. The high 16 bits must be zero.

lParam

32-bit message parameter.

If Windows is active, the SHELL_BroadcastSystemMessage service can be called only during an application time event. Windows is active if application time is available; use the SHELL_QueryAppyTimeAvailable service to determine whether application time is available. If Windows is not active, SHELL_BroadcastSystemMessage sends the broadcast message only to VxDs. Attempting to broadcast a system message at an inappropriate time may result in unpredictable behavior on the part of the system.

_SHELL_HookSystemBroadcast

include shell.inc

VxDcall SHELL_HookSystemBroadcast, <<OFFSET32 pfnHandler>, \

 dwRef, dwCallOrder>

mov [Handle], eax ; handle of broadcast callback procedure

Installs a callback procedure into the broadcast notification chain. The chain monitors calls to the _SHELL_BroadcastSystemMessage service and to the Windows BroadcastSystemMessage function. Uses C calling conventions.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the handle of the installed callback procedure in the EAX register if successful. Otherwise, returns zero.

pfnHandler

Address of the callback procedure. For more information about the procedure, see the comments below.

dwRef

Reference data for the callback procedure.

dwCallOrder

Call order. Must be zero for non-zero virtual devices. If more than one callback procedure is installed to monitor the broadcast service, the call order specifies the order in which the given callback procedure is called relative to the other callback procedures. Procedures with equal call orders are called in an unspecified (but consistent) order.

The system calls the callback procedure whenever a VxD calls the _SHELL_BroadcastSystemMessage service. The system calls the procedure using the C calling conventions as follows:

VxDcall [pfnHandler], <uMsg, wParam, lParam, dwRef>

The uMsg parameter is the message number and wParam is the 16-bit message parameter. For both uMsg and wParam, the low 16 bits contain the parameter value and the high 16 bits are reserved. The lParam parameter is the 32-bit message parameter and dwRef is the same reference data value passed to _SHELL_HookSystemBroadcast.

The return value from the callback procedure is ignored if the broadcast is not a BSF_QUERY. Otherwise, the procedure should return a nonzero value to allow the broadcast to continue, or zero to fail the message and halt the broadcast. The procedure should return 1 for any messages it does not understand.

If the callback procedure is installed while a broadcast in progress, it is unspecified whether the hook will receive that broadcast. It will, regardless, receive all subsequent broadcasts.

_SHELL_PostMessage

include shell.inc

VxDcall _SHELL_PostMessage, <hwnd, uMsg, wParam, lParam, \

 <OFFSET32 pfnCallback>, dwRefData>

or eax, eax

jz not_posted

Schedules a message for posting to the given window and optionally installs a callback procedure to be notified when the PostMessage function actually posts the message. Uses C calling conventions.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns nonzero in the EAX register if successful. Otherwise, returns zero indicating an error such as insufficient memory.

hwnd

Handle of a window. The upper 16 bits are reserved and must be zero.

uMsg

Message value in the lower 16-bits. The upper 16 bits contain scheduling information and can be one of these values:

SPM_UM_DoNotWaitForCrit �Do not wait for the critical section to become free before posting the message. ��SPM_UM_AlwaysSchedule �Always schedule the postmessage event. See comments below. ��

If WM_NULL (0) is given in the lower 16 bits, the service does not post a message but does call the callback procedure indicating success.

wParam

16-bit message parameter in the lower 16-bits. The upper 16 bits are reserved and must be zero.

lParam

32-bit message parameter.

pfnCallback

Address of the callback procedure to call when the message has been posted. This parameter can be zero if no callback is needed. For more information about the procedure, see the comments below.

dwRefData

Reference data for the callback procedure.

The system calls the callback procedure when the PostMessage function successfully posts the message into the queue of the given window. The system calls the procedure using the C calling conventions as follows:

cCall [pfnCallback], <dwRc, dwRefData>

The dwRefData parameter is the same value as passed to _SHELL_PostMessage. The dwRc parameter is the value returned by the PostMessage function. If this parameter is nonzero, the message was posted; otherwise, it was not posted.

When the callback procedure receives control, the system VM has been boosted by High_Pri_Device_Boost.

_SHELL_PostShellMessage

include shell.inc

VxDcall _SHELL_PostShellMessage, <wParam, lParam>

Posts a message to the current shell window. Uses C calling conventions.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

wParam

Lower 16 bits contain wParam. Upper 16 bits are reserved and must be zero.

lParam

32-bit lParam.

Do not make multiple, successive calls to _SHELL_PostShellMessage. This can fill up the message queue of the window and exhaust available memory.

_SHELL_UnhookSystemBroadcast

include shell.inc

VxDcall SHELL_UnhookSystemBroadcast, <Handle>

Removes a callback procedure from the broadcast notification chain. Uses C calling conventions.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

Handle

Handle of callback procedure to remove. This handle must have been previously returned by the _SHELL_HookSystemBroadcast service. For convenience, zero is a valid parameter value, in which case the service does nothing and returns immediately.

VM Properties

SHELL_Hook_Properties

mov eax, GroupID ; property group identifier

mov edx, OFFSET32 DllName ; address of property group DLL

mov esi, OFFSET32 Callback ; address of callback procedure

VxDcall SHELL_Hook_Properties

jc error

Installs a callback procedure that monitors changes to the properties of virtual machines. The GroupID parameter identifies what group of property data the procedure is associated with. The system calls the procedure simply to notify it of changes the user has made to properties associated with a new or existing VM. This means the procedure can examine the property data but cannot make changes. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if successful. Otherwise, sets the carry flag to indicate an error, such as invalid property identifier or insufficient memory.

GroupID

Property group identifier. Can be either a valid group ordinal, such as GROUP_TASK (as defined in PIF.H), or the address of a null-terminated string specifying the name of a custom PIF group. The string must not be longer than PIFEXTSIGSIZE (16) characters, including the terminating null character.

DllName

Address of a null-terminated string specifying the name of the property group DLL. This parameter can be NULL if no DLL exists.

Callback

Address of the callback procedure. For more information about the procedure, see the comments below.

If addresses are given for the GroupID and DllName parameters, the addresses must remain valid for the duration of system operation.

The system calls the callback procedure immediately after Create_VM processing and whenever the properties for a existing VM are changed. The system calls the procedure as follows:

mov ebx, Handle ; virtual machine handle

mov edx, OFFSET32 Data ; address of property data

mov edi, OFFSET32 Ordinal ; address of property ordinal

call [Callback]

The Handle parameter is the handle of the virtual machine being changed. The Data parameter is the address of the property data associated with the virtual machine. The Ordinal parameter is the address of a 32-bit variable that contains the property ordinal. If the property ordinal is zero, the variable is immediately followed by a null-terminated string specifying the name of the property group. No name is given if the ordinal is not zero. The callback requires no return value.

SHELL_Unhook_Properties

include shell.inc

mov eax, GroupID ; property group identifier

mov esi, OFFSET32 Callback ; address of callback procedure

VxDcall SHELL_Unhook_Properties

jc error

Removes the callback procedure from association with the given property group. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if successful. Otherwise, sets the carry flag to indicate an error such as an invalid property identifier.

GroupID

Property group identifier. Can be NULL, a valid group ordinal such as GROUP_TASK (as defined in PIF.H), or the address of a null-terminated string specifying the name of a custom PIF group. If GroupID is NULL, the service checks all property groups and removes the callback procedure from each group it is associated with.

Callback

Address of the callback procedure. For more information about the procedure, see SHELL_Hook_Properties.

Miscellaneous Services

_SHELL_ShellExecute

include shell.inc

VxDcall _SHELL_ShellExecute, <ShexPacket>

Opens the file specified in the shex_ibFile member of the SHEXPACKET structure. The _SHELL_ShellExecute service calls the Windows ShellExecute function. Uses C calling conventions.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Return the value from the Windows ShellExecute function in the EAX register.

ShexPacket

Flat pointer to a SHEXPACKET structure.

This is an application-time-only service.

Note that the SHEXPACKET contains no pointers. All pointer-like values are byte offsets from the start of the packet. For example, the name of the file to be opened is stored at ShexPacket + ibFile.

SHELL_Update_User_Activity

include shell.inc

VxDcall SHELL_Update_User_Activity

Notifies the shell VxD that user input has occurred. This information is used to determine whether the user is actively using the system, which controls things such as the screen saver.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

This is an asynchronous service.

This service is intened to be called by virtual devices that handle user input, such as the virtual mouse device (VMD) and virtual keyboard device (VKD). A graphics tablet driver, for example, can call this service when it detects activity on the tablet, so that the screen saver does not interrupt a user who is in the middle of using the tablet.

Structures

SHEXPACKET STRUC

shex_dwTotalSize DD ?

shex_dwSize DD ?

shex_ibOp DD ?

shex_ibFile DD ?

shex_ibParams DD ?

shex_ibDir DD ?

shex_ibEnv DD ?

shex_nCmdShow DD ?

rgchBaggage DB ? dup (?) ; variable-sized field

SHEXPACKET ENDS

shex_dwTotalSize

Size in bytes of the SHEXPACKET structure plus the size of optional information in the rgchBaggage member.

shex_dwSize

Must be equal to the size of the SHEXPACKET structure, not including the rgchBaggage.

shex_ibOp

Operation to perform. Specify 0 to open the file. Any other value is a relative offset from the pointer to this structure to a null-terminated string naming the operation to perform.

shex_ibFile

File to open or print. This is a relative offset from the pointer to this structure to a null-terminated string naming the file.

shex_ibParams

Optional parameters passed to the application when the shex_ibFile member specifies an executable file. The parameters are a relative offset from the pointer to this structure to a null-terminated string. Specify zero if there are no optional parameters or if shex_ibFile specifies a document file.

shex_ibDir

Working directory. If zero, the Windows directory will be used as the working directory. Otherwise, it is a relative offset from the pointer to this structure to a null-terminated string.

shex_ibEnv

Environment block to pass to the program. If zero, the master environment will be given to the program. Otherwise, it is a relative offset from the pointer to this structure to an environment block. This field is ignored for MS-DOS-based applications, which will always receive a copy of the master environment.

shex_nCmdShow

How the application window is to be shown. Refer to the documentation for the Windows function ShowWindow for valid values.

shex_rgchBaggage

Optional variable-length information. The rgchBaggage member contains the optional null-terminated strings for the shex_ibOp, shex_ibFile, shex_ibParams, shex_ibDir, and shex_ibEnv members. Those members contain relative offsets to the appropriate string in the shex_rgchBaggage member.

�Chapter

Virtual Timer API

About the Virtual Timer API

The virtual timer device virtualizes the hardware timer. The device provides services that applications can use to set the interrupt rate for the timer. This chapter describes the application programmer interface of the virtual timer device (VTDAPI).

Calling VTDAPI Functions

The VTDAPI provides services for ring 3 components. To obtain the VTDAPI entry point, an application must first call Get Device Entry Point Address (Interrupt 2Fh Function 1684h). For example:

include vtdapi.inc

mov ax, 1684h ; Get Device Entry Point

mov bx, VTDAPI_DEVICE_ID ; device identifier

xor di, di ; initialize di

mov es, di ; initialize es

int 2Fh ; multiplex interrupt

mov [VTDAPI_Addr], di

mov [VTDAPI_Addr+2], es ; es:di contains entry point address

cmp VTDAPI_Addr, 0

jz NotInstalled

Reference

The VTDAPI provides the following services:

VTDAPI_Begin_Min_Int_Period

VTDAPI_End_Min_Int_Period

VTDAPI_Get_Int_Period

VTDAPI_Get_Sys_Time

VTDAPI_Get_System_Time_Selector

VTDAPI_Get_Version

VTDAPI_Start_User_Timer

VTDAPI_Stop_User_Timer

VTDAPI_Timer_Start

VTDAPI_Timer_Stop

Functions

VTDAPI_Begin_Min_Int_Period

; Obtain the entry point address in VTDAPI_Addr

mov cx, InterruptPeriod

mov ax, VTDAPI_Begin_Min_Int_Period

call VTDAPI_Addr

Sets the minimum interrupt period being used globally. Performs boundary checking on the structure elements passed, and uses VTD to set the minimum timer interrupt period.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns TIMERR_NOERROR in AX if successful, otherwise returns TIMERR_NOCANDO.

InterruptPeriod

The requested interrupt period in milliseconds.

VTDAPI_End_Min_Int_Period

; Obtain the entry point address in VTDAPI_Addr

mov ax, VTDAPI_End_Min_Int_Period

call VTDAPI_Addr

Clears the minimum interrupt period being used by Windows 95 which was previously set by a call to VTDAPI_Begin_Min_Int_Period.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns TIMERR_NOERROR in AX if successful, otherwise returns TIMERR_NOCANDO which usually means this request was not matched by a call to VTDAPI_Begin_Min_Int_Period.

VTDAPI_Get_Int_Period

; Obtain the entry point address in VTDAPI_Addr

mov ax, VTDAPI_Get_Int_Period

call VTDAPI_Addr

Retrieves the current minimum interrupt period being used globally.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the current minimum period in milliseconds as a double-word in DX:AX.

VTDAPI_Get_Sys_Time

; Obtain the entry point address in VTDAPI_Addr

mov ax, VTDAPI_Get_Sys_Time

call VTDAPI_Addr

Retrieves the current system time.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the current system time in milliseconds as a double-word in DX:AX.

VTDAPI_Get_System_Time_Selector

; Obtain the entry point address in VTDAPI_Addr

mov ax, VTDAPI_Get_System_Time_Selector

call VTDAPI_Addr

Retrieves the number of milliseconds since the system was started or restarted. Meaningful only in protected mode.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns in AX a read-only selector to a double-word that contains the number of milliseconds since the system was started if successful; otherwise returns zero.

VTDAPI_Get_Version

include vtdapi.inc

; Obtain the entry point address in VTDAPI_Addr

mov bx, SEG RequestStruc

mov es, bx

mov bx, OFFSET RequestStruc

mov ax, VTDAPI_Get_Version

call VTDAPI_Addr

Retrieves the version number of the driver, the shortest interrupt period supported by the hardware, the longest interrupt period supported by the driver. Uses Flags, EAX, EDI.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns TRUE in AX and RequestStruc is filled in with information about the driver if successful; otherwise returns FALSE.

RequestStruc

Address of Request structure which has the following form:

Request Struc

 DAPI_Version dd

 VTDAPI_Min_Period dd

 VTDAPI_Max_Period dd

Request Ends

VTDAPI_Start_User_Timer

; Obtain the entry point address in VTDAPI_Addr

mov di, SEG TimerParams

mov es, di

mov bx, OFFSET TimerParams

mov ax, VTDAPI_Start_User_Timer

call VTDAPI_Addr

mov word ptr [Timer_ID+2], dx

mov word ptr [Timer_ID], ax

Starts the timer and register a timer callback to be called at periodic intervals. Limited to 32 timers.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a 32-bit handle to the timer.

TimerParams

Address of VTDAPI_Timer_Parameters structure.

VTDAPI_Stop_User_Timer

; Obtain the entry point address in VTDAPI_Addr

les bx, [Timer_ID]

mov ax, VTDAPI_Stop_User_Timer

call VTDAPI_Addr

Stop a previously registered timer. The timer handle is invalid after this call and must not be reused.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns TIMERR_NOERROR in AX if successful; otherwise returns TIMERR_NOCANDO.

Timer_ID

32-bit handle to the timer returned from VTDAPI_Start_User_Timer.

VTDAPI_Timer_Start

; Obtain the entry point address in VTDAPI_Addr

mov di, SEG TimerParams

mov es, di

mov bx, OFFSET TimerParams

mov ax, VTDAPI_Timer_Start

call VTDAPI_Addr

mov [Timer_ID], ax

Register a timer callback to be called at periodic intervals. Limited to 32 timers.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a 16-bit handle to the timer if successful; otherwise returns zero.

TimerParams

Address of VTDAPI_Timer_Parameters structure.

VTDAPI_Timer_Stop

; Obtain the entry point address in VTDAPI_Addr

mov cx, Time_ID

mov ax, VTDAPI_Timer_Stop

call VTDAPI_Addr

Stop a previously registered periodic or asynchronous timer. The timer handle is invalid after this call and must not be reused.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns TIMERR_NOERROR in AX if successful; otherwise returns TIMERR_NOCANDO.

Timer_ID

16-bit handle to the timer returned from VTDAPI_Timer_Start.

Structures

VTDAPI_Timer_Parameters

VTDAPI_Timer_Parameters Struc

 VTDAPI_Timer_Period dw ? ; see below

 VTDAPI_Timer_Resolution dw ? ; see below

 VTDAPI_Timer_IPCS dd ? ; see below

 VTDAPI_Timer_Inst dd ? ; see below

 VTDAPI_Timer_Flags dw ? ; see below

VTDAPI_Timer_Parameters Ends

Describes the timer.

VTDAPI_Timer_Period

The time-out value in milliseconds.

VTDAPI_Timer_Resolution

The resolution of the timer. The resolution is the frequency of the base used for generating the timer ticks.

VTDAPI_Timer_IPCS

The address of the timer handler.

VTDAPI_Timer_Inst

Optional, user-defined data passed to the timer handler.

VTDAPI_Timer_Flags

Timer flags. Can be one of these values:

TIME_ONESHOT (0000H) �Single-shot timer. ��TIME_PERIODIC (0001H) �Repeating, periodic timer.. ��

�Chapter

Virtual Timer Device

About the Virtual Timer Device

The virtual timer device virtualizes the hardware timer. The device provides services that other virtual devices can use to set the interrupt rate for the timer, and to disable I/O port trapping for the timer in a given virtual machine. This chapter describes the interfaces of the virtual timer device (VTD).

Reference

The VTD provides the following services:

VTD_Begin_Min_Int_Period

VTD_Disable_Trapping

VTD_Enable_Trapping

VTD_End_Min_Int_Period

VTD_Get_Date_And_Time

VTD_Get_Interrupt_Period

VTD_Get_Real_Time

VTD_Get_Version

VTD_Update_System_Clock

Services

VTD_Begin_Min_Int_Period

include vtd.inc

mov eax, Int_Period

VxDcall VTD_Begin_Min_Int_Period

jc errorhandler

Used by virtual devices to ensure a minimum accuracy for system timing. When this service is called, if the interrupt period specified is lower than the current timer interrupt frequency, the interrupt period will be set to the new frequency. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if the interrupt period is set; otherwise, the specified interrupt period is not valid.

Int_Period

Desired interrupt period.

Until a matching call to the VTD_End_Min_Int_Period service is made, the timer interrupt frequency is guaranteed to never be slower than the value specified.

A virtual device should call this service only once before calling VTD_End_Min_Int_Period.

Typically the Begin_Min_Int_Period and End_Min_Int_Period services are used by devices such as execution profilers that need extremely accurate timing. VMM system time-out services rely on the VTD to keep time. Therefore, if the timer interrupts are more frequent, the accuracy of the time-out services will be greater.

Fast timer interrupt periods can be very expensive in terms of total system performance. For example, on some machines a timer interrupt of 1 millisecond will degrade total machine throughput by 10 percent, and increase disk I/O by 50 percent.

VTD_Disable_Trapping

include vtd.inc

mov ebx, VMHandle

VxDcall VTD_Disable_Trapping

Forces the VTD to stop I/O trapping on the timer ports for a specified virtual machine. The VTD_Enable_Trapping service must be called once for every call made to this service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

VMHandle

Virtual machine handle.

It is sometimes necessary to temporarily disable I/O trapping for virtual machine code that reads the timer in extremely tight timing loops. A good example is the hard drive BIOS code that reads the ports hundreds of times per disk transfer. The overhead of servicing the I/O traps would cause disk performance to slow significantly.

If this service is called n times, then VTD_Enable_Trapping must also be called n times before trapping is re-enabled. This allows nested calls to this service by more than one virtual device.

VTD_Enable_Trapping

include vtd.inc

mov ebx, VMHandle

VxDcall VTD_Enable_Trapping

Reenables timer I/O port trapping after the VTD_Disable_Trapping service has been called. This service must be made once for every call to VTD_Disable_Trapping. Only when every disable call has been matched by a call to this service will port trapping be re-enabled. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

VMHandle

Virtual machine handle.

VTD_End_Min_Int_Period

include vtd.inc

mov eax, Int_Period

VxDcall VTD_End_Min_Int_Period

jc errorhandler

Allows a virtual device to remove a timer interrupt period that it set earlier through the VTD_Begin_Min_Int_Period service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if successful; otherwise, the specified interrupt period is not valid.

Int_Period

Value passed earlier to VTD_Begin_Min_Int_Period.

VTD_Get_Date_And_Time

include vtd.inc

VxDCall VTD_Get_Date_And_Time

mov dword ptr [Time], eax

mov dword ptr [Date], edx

Returns the date and time. Uses EAX, EDX, Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the time in milliseconds in the EAX register and the days since January 1, 1980 in the EDX register.

VTD_Get_Interrupt_Period

include vtd.inc

VxDcall VTD_Get_Interrupt_Period

mov [Int_Period], eax

Retrieves the current timer interrupt frequency. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns, in EAX, the length of time between ticks, in milliseconds.

VTD_Get_Real_Time

include vtd.inc

VxDcall VTD_Get_Real_Time

mov [time_hi], edx

mov [time_lo], eax

Retrieves the number of real time clock ticks that have elapsed since the current Windows session was started. Uses EAX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the current system time based on an unit of 0.8 microseconds, in EDX:EAX. The EDX register contains the high doubleword of the time and EAX the low doubleword.

VTD_Get_Version

include vtd.inc

VxDcall VTD_Get_Version

Retrieves the version number, and the range of interrupt periods allowed by this virtual device. Uses EAX, EBX, ECX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the version number in EAX. AH contains the major version number, and AL contains minor version number. Also returns, in EBX, the fastest possible interrupt period (in milliseconds), and, in ECX, the slowest possible interrupt period (in milliseconds). Clears the carry flag.

VTD_Update_System_Clock

include vtd.inc

VxDcall VTD_Update_System_Clock

Updates the system clock. This service should be called only by the VMM. Virtual devices should call the Get_System_Time service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	No return value.

�Chapter

VWIN32 Services

About VWIN32 Services

This chapter contains information about the VWIN32 services. The VWIN32 VxD provides developers of VxDs with a variety of useful services, some of which may be used when implementing asynchronous procedure calls (APC), synchronization, and device input and output control.

Some of the VWIN32 services may be used for asynchronous procedure calls and synchronization. APCs and Win32 events are both mechanisms which can be used to synchronize ring 3 code with ring 0 code. You can create a ring 3 event, get a VxD handle to that event with the function OpenVxDHandle exported by KERNEL32, then use either _VWIN32_WaitSingleObject or _VWIN32_WaitMultipleObjects from ring 0 to wait on the event. These must be called from task time, and not from within VMM events.

To signal the event, you can use the standard ring 3 functions for setting or pulsing events, or you can use the ring 0 services _VWIN32_SetWin32Event and VWIN32_PulseWin32Event. The ring 0 Win32 event services can be called from within VMM events.

The services VWIN32_EnterCrstR0 and VWIN32_LeaveCrstR0 may be used to manage access to critical sections. To enable mutually exclusive access to a shared resource, each thread calls VWIN32_EnterCrstR0 to request ownership of the critical section before executing any section of code that accesses the protected resource. If another thread currently owns the critical section object, VWIN32_EnterCrstR0 blocks the execution of the calling thread indefinitely until the other thread releases its ownership. If the critical section object is currently unowned, the system grants ownership to the requesting thread so it can access the resource. When it has finished executing the protected code, the thread uses the VWIN32_LeaveCrstR0 function to relinquish ownership, enabling another thread to become owner and access the protected resource.

The VWIN32 services VWIN32_DIOCCompletionRoutine and VWIN32_GetCurrentProcessHandle are useful for VxDs that implement device input and output control (IOCTL) services. VWIN32_DIOCCompletionRoutine sets the state of the specified event object to signaled when I/O is complete. VxDs can use VWIN32_GetCurrentProcessHandle to tag the current device IOCTL connection or request with an ID. By using a process ID, the device can cleanup more easily on process termination.

There are a variety of other general purpose VWIN32 services such as _VWIN32_Get_Thread_Context, _VWIN32_Set_Thread_Context, VWIN32_GetCurrentDirectory, and VWIN32_TerminateApp. See the Reference section of this chapter for a complete listing of the various VWIN32 services.

The following VWIN32 services can only be called when the current VM is the system VM:

_VWIN32_PulseWin32Event

_VWIN32_ResetWin32Event

_VWIN32_SetWin32Event

_VWIN32_WaitMultipleObjects

_VWIN32_WaitSingleObject

Reference

The following services are for internal use only by Windows 95 components:

_VWIN32_CheckDelayedNpxTrap

_VWIN32_Emulate_Npx

_VWIN32_FaultPopup

_VWIN32_Npx_Exception

_VWIN32_QueueKernelAPC

VWIN32_BlueScreenPopup

VWIN32_GetContextHandle

VWIN32_IFSRIPWhenLev2Taken

Services

_VWIN32_CloseVxDHandle

Closes a VxD handle. A VxD handle is a ring 0 event handle created by the function OpenVxDHandle.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a non-zero value in EAX if successful; otherwise returns zero in EAX if the event was invalid.

EAX

Ring 0 handle to an event.

_VWIN32_CopyMem

Copies memory with protection from faults.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a non-zero value in EAX if successful; otherwise returns zero if the source or destination faults. Uses C calling conventions.

pSrc

Source address.

pDest

Destination address.

cb

Count of bytes to copy.

pcbDone

Address of a DWORD that receives the number of bytes that were copied. Ignored if NULL.

_VWIN32_CreateRing0Thread

Provides a service for ring 0 clients to create Win32 threads that execute only at ring 0, which allows the use of Win32 blocking functions. Preserves EBX, EDI, ESI, EBP, and segment registers.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a Win32 ring 3 handle in EAX and a ring 0 thread handle in EDX if successful; otherwise EAX contains 0.

ECX

The size of the ring 3 stack for the thread being created. The recommended stack size is 4096.

EDX

DWORD to pass to startup function specified in ESI.

EBX

Pointer to ring 0 function where execution starts.

ESI

If this is a synchronous thread create, specify FALSE. Otherwise the value is the address of a callback procedure that is called if the create fails. The DWORD parameter passed in EDX is passed to the callback procedure.

_VWIN32_Get_Thread_Context

Copies the registers for the specified thread to the pcontext buffer. Uses C calling conventions.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns non-zero value if successful; zero otherwise.

ptcb

Ring 0 thread handle. Indicates the thread to get the context for.

pcontext

Address of a CONTEXT structure that receives the appropriate context of the specified thread. The value of the ContextFlags member of this structure specifies which portions of a thread's context are retrieved.

This function does not validate the context record address.

_VWIN32_IsClientWin32

This service determines whether the current thread client is currently executing Windows 32-bit code. It does not indicate whether the thread belongs to a Win32-based application. If the thread is in a nested execution, it looks at the current nested state. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns non-zero value in EAX if the client is executing Windows 32-bit code; otherwise returns zero.

_VWIN32_PulseWin32Event

Provides a single operation that sets (to signaled) the state of the specified event object and then resets it (to nonsignaled) after releasing the appropriate number of waiting threads. Preserves EBX, EDI, ESI, EBP, and segment registers.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a non-zero value in EAX if successful; otherwise returns zero in EAX if the event was invalid.

EAX

VxD handle that identifies the event object. A VxD handle is a ring 0 event handle created by the function OpenVxDHandle.

The event object is set to a signaled state. If it is a manual reset event, all threads currently blocked on this event are unblocked if possible. If it is an auto reset event, one waiting thread is unblocked. Before returning, this function resets the event to nonsignaled.

This service can only be called when the current VM is the system VM.

_VWIN32_QueueUserApc

Queues a call to the specified ring 3 code in the specified thread and returns. The thread must have been placed in an alertable wait state by using one of the following Win32 functions: SleepEx, WaitForMultipleObjectsEx, or WaitForSingleObjectEx. (To make an alertable wait state, set the fAlertable parameter in these Win32 functions to TRUE.) This service may be called at event time, but not at interrupt time. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a non-zero value in EAX and clears the zero flag if successful in queuing the asynchronous procedure call (APC). If unable to allocate memory for the APC, EAX contains 0 and the zero flag is set.

pfnRing3APC

Flat offset of ring 3 asynchronous procedure. If 0, the thread is only awakened.

dwParam

DWORD parameter to pass to APC.

ptcb

Ring 0 thread handle. If -1, use kernel service thread.

_VWIN32_ResetWin32Event

Sets the state of the specified event object to nonsignaled. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a non-zero value in EAX if successful; otherwise returns zero in EAX if the event was invalid.

EAX

VxD handle that identifies the event object. A VxD handle is a ring 0 event handle created by the function OpenVxDHandle.

This service can only be called when the current VM is the system VM.

_VWIN32_Set_Thread_Context

Copies the register values from the pcontext buffer to the specified thread's current register set. Uses EAX, ECX, EDX, and Flags..

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns non-zero value if successful; zero otherwise.

ptcb

Ring 0 thread handle. Indicates the thread to set the context for.

pcontext

Address of a CONTEXT structure that contains the context to be set in the specified thread. The value of the ContextFlags member of this structure specifies which portions of a thread's context to set. Some values in the CONTEXT structure that cannot be specified are silently set to the correct value. This includes bits in the CPU status register that specify the privileged processor mode, global enabling bits in the debugging register, and other states that must be controlled by the operating system.

This function does not validate the context record address.

_VWIN32_SetWin32Event

Sets the state of the specified event object to signaled. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a non-zero value in EAX if successful; otherwise returns zero in EAX if the event was invalid.

EAX

VxD handle that identifies the event object. A VxD handle is a ring 0 event handle created by the function OpenVxDHandle.

The event object is set to a signaled state. If it is a manual reset event, it remains in the signaled state until it is explicitly reset and all threads currently blocked on this event are unblocked. If it is an auto reset event, one waiting thread is unblocked.

This service can only be called when the current VM is the system VM.

_VWIN32_WaitMultipleObjects

This function returns either when one or all of the specified objects are in the signaled state, or when the specified time-out interval elapses. It links multiple wait nodes to the current thread and specified synchronization objects, and blocks on the synchronization objects if necessary. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	For information about the return value, see the Win32 ring 3 function WaitForMultipleObjects in the Microsoft Win32 Software Development Kit (SDK).

ECX

Number of objects in the wait array.

ESI

Pointer to array of VxD handles which can be waited on. A VxD handle is a ring 0 event handle created by the function OpenVxDHandle.

EDX

The time-out interval, in milliseconds. The function returns if the interval elapses, even if the wait conditions specified in the AX register are not satisfied. If zero, the function tests the states of the specified objects and returns immediately. If -1, the function's time-out interval never elapses.

AH

Wait Flags. If -1, the function returns when all objects in the wait array are signaled. If 0, the function returns when any one of the objects is signaled. In the latter case, the return value indicates the object whose state caused the function to return.

AL

If non-zero value, the function returns when APCs are queued. The calling thread will deliver the APC by using SleepEx, WaitForMultipleObjectsEx, or WaitForSingleObjectEx at ring 3.

This service can only be called when the current VM is the system VM.

_VWIN32_WaitSingleObject

This function only returns when the specified object is in the signaled state or when the time-out interval elapses. Uses EAX, ECX, EDX, and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	For information about the return value, see the Win32 ring 3 function WaitForSingleObject in the Microsoft Win32 Software Development Kit (SDK).

EBX

VxD handle which can be waited on. A VxD handle is a ring 0 event handle created by the function OpenVxDHandle.

EDX

The time-out interval, in milliseconds. The function returns if the interval elapses, even if the object's state is nonsignaled. If zero, the function tests the object's state and returns immediately. If -1, the function's time-out interval never elapses.

EAX

Flag that indicates if this is an alertable wait. Specifies whether the function returns when the system queues an I/O completion routine for execution by the calling thread. If TRUE, the function returns and the completion routine is executed. If FALSE, the function does not return, and the completion routine is not executed.

A completion routine is queued, but is not executed. The thread must run at ring 3 for this to happen. A completion routine is queued for execution when the ReadFileEx or WriteFileEx function in which it was specified has been completed. The wait function returns and the completion routine is executed only if this flag is TRUE, and the calling thread is the thread that initiated the read or write operation.

This service can only be called when the current VM is the system VM.

OpenVxDHandle

DWORD OpenVxDHandle(HANDLE hSource);

This function is exported by KERNEL32.DLL for DLLs or applications that have associated VxDs that need to set ring 3 events from ring 0. When a ring 3 event handle is used as the source, the handle returned from this function can be passed to a VxD and used to set the event at ring 0 with the service _VWIN32_SetWin32Event.

The VxD Handle must be closed at ring 0 with _VWIN32_CloseVxDHandle or the object will never get freed. The event can be set from any thread in the system VM at VMM32 event time.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns a DWORD that specifies a VxD handle; otherwise returns 0L if the event handle specified in the hSource parameter is not valid.

hSource

Event handle in the current process to convert to a VxD handle.

VWIN32_ActiveTimeBiasSet

Notifies VxDs when the ActiveTimeBias registry entry is set. This service is called whenever the time zone is changed, or the daylight/standard setting is changed. To receive notification, VxDs hook this service. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Clears the carry flag if successful; otherwise sets the carry flag.

This service is called whenever the ActiveTimeBias registry entry is set, which may or may not mean that the value has changed.

If you hook this service, you must chain the call and pass this call to other VxDs who have also hooked this service. If you do not chain this call, the system will become unstable.

VWIN32_DIOCCompletionRoutine

This function is called by VxDs that implement device input and output control (IOCTL) services when I/O is complete. The function sets the state of the specified event object to signaled. Uses EAX, EDX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This service has no return value.

EBX

VxD handle contained in the O_Internal member of the OVERLAPPED structure that identifies the event object. A VxD handle is a ring 0 event handle created by the function OpenVxDHandle.

VWIN32_EnterCrstR0

The VWIN32_EnterCrstR0 function waits for ownership of the specified critical section object. The function returns when the calling thread is granted ownership. Uses EAX, ECX, EDX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns with the carry flag set if there was a fault accessing critical section.

EDX

Pointer to critical section object.

VWIN32_Get_Version

Retrieves the version number of the VWIN32 VxD. Uses EAX.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the driver version number in the EAX register.

VWIN32_GetCurrentDirectory

Returns the current directory, if the current thread is a Win32 thread.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Fills the buffer with the current directory and sets the EAX register to 0 if successful. Otherwise, if the current thread is not a Win32 thread, sets EAX to -1.

ESI

Address of buffer for the current directory. The buffer must be at least as large as MAX_PATH.

If the current VM is not the system VM, or if the current thread is not a 32-bit thread, the function returns an error. In this case, use the VMM service Exec_VxD_Int to call Interrupt 21h Function 47h, Get Current Directory.

VWIN32_GetCurrentProcessHandle

Retrieves the current ring 3 process handle.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the current process handle.

VxDs that support device input and output control (IOCTL)services use this service to tag the current device IOCTL connection or request with an ID. By using a process ID, the device can cleanup more easily on process termination.

VWIN32_LeaveCrstR0

The VWIN32_LeaveCrstR0 function releases ownership of the specified critical section object. Uses EAX, EBX, ECX, EFlags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This function has no return value.

EDX

Pointer to the critical section object.

VWIN32_SysErrorBox

Displays a system modal error box. Uses EAX and Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	Returns the user's response to the dialog box in EAX. A return value of 0 indicates an error.

EBX

Address of the VSEB structure. The VSEB structure has the following format:

typedef struct vseb_s {

 DWORD vseb_resp; // response; indicates buton user pressed

 WORD vseb_b3; // style for button 3

 WORD vseb_b2; // style for button 2

 WORD vseb_b1; // style for button 1

 DWORD vseb_pszCaption; // text for caption bar

 DWORD vseb_pszText; // message text

} VSEB;

VWIN32_TerminateApp

Terminates a Windows-based application. Uses Flags.

�SYMBOL 183 \f "Symbol" \s 9.5 \h �	This service has no return value.

EDI

A ring 0 handle of a thread in the process to kill.

Structures

VSEB

typedef struct vseb_s {

 DWORD vseb_resp;

 WORD vseb_b3;

 WORD vseb_b2;

 WORD vseb_b1;

 DWORD vseb_pszCaption;

 DWORD vseb_pszText;

} VSEB;

Structure that describes the system modal dialog box that the service VWIN32_SysErrorBox displays.

vseb_resp

Response. Indicates which button the user pressed. May be one of the following:

1 �User selected button 1. ��2 �User selected button 2. ��3 �User selected button 3. ��

vseb_b1, vseb_b2, vseb_b3

The button text for each button on the dialog box. Choose from the following:

1 �Button with "OK" ��2 �Button with "Cancel" ��3 �Button with "&Yes" ��4 �Button with "&No" ��5 �Button with "&Retry" ��6 �Button with "&Abort" ��7 �Button with "&Ignore ��8 �Button with "Close" ��9 �Button with "&Help" ��

To make one of the buttons the default, combine the value 0x8000 with one of the above values.

vseb_pszCaption

Address of a null-terminated string used for the dialog box caption title.

vseb_pszText

Address of a null-terminated string containing the message to be displayed.

�PAGE�2� Virtual Machine Manager Services

	Chapter 1 Virtual Machine Manager Overview �PAGE�3�

	�PAGE�1�

�PAGE�2� Virtual Machine Manager Services

	Chapter 2 Breakpoints and Callbacks �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 3 Debugging �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 5 Events �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 9 I/O Trapping �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 6 Free Physical Page Management �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 11 Memory Allocation �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 14 Page Mapping and Address Spaces �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 15 Pagers �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Selector Management �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 23 System-Internal Memory Management �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 30 V86 Address Space Mapping and Allocation �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 4 Error Conditions �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 7 Information Services �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 8 Initialization Information �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 10 Linked Lists �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Miscellaneous Services �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 21 String Management �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 25 Timing Services �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 13 Nested Execution �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 18 Protected-Mode Execution �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 17 Processor Faults �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 19 Registry �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Primary Scheduler �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 24 Time-Slice Scheduler �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 22 Synchronization �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 26 Virtual Machine Interrupts and Callbacks �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 27 VMM Macros �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 28 VMM Messages �PAGE�3�

�PAGE�2� Virtual Machine Manager Services

	Chapter 29 VMM Structures �PAGE�3�

�PAGE�2� Standard Virtual Device Driver Services

	DMA Devices �PAGE�3�

�PAGE�2� Standard Virtual Device Driver Services

	MS-DOS Manager �PAGE�3�

�PAGE�2� Standard Virtual Device Driver Services

	Page Swapping �PAGE�3�

�PAGE�2� Standard Virtual Device Driver Services

	Programmable Interrupt Controller �PAGE�3�

�PAGE�2� Standard Virtual Device Driver Services

	V86-Mode Memory Manager �PAGE�3�

�PAGE�2� Standard Virtual Device Driver Services

	Virtual-Device Loader �PAGE�3�

�PAGE�2� Standard Virtual Device Driver Services

	Virtual File Cache Services �PAGE�3�

�PAGE�2� Standard Virtual Device Driver Services

	Virtual Math Coprocessor �PAGE�3�

�PAGE�2� Standard Virtual Device Driver Services

	Virtual Power Device �PAGE�3�

�PAGE�2� Standard Virtual Device Driver Services

	Virtual Shell Device �PAGE�3�

�PAGE�2� Standard Virtual Device Driver Services

	Virtual Timer API �PAGE�3�

�PAGE�2� Standard Virtual Device Driver Services

	Virtual Timer Device �PAGE�3�

�PAGE�2� Standard Virtual Device Driver Services

	VWIN32 Services �PAGE�3�

