

DISCONTINUED

SCA-3

Product Description

Darlington configuration is utilized for broadband performance up to 3 GHz. The heterojunction increases breakdown voltage and minimizes leakage current between junctions. Cancellation of emitter junction non-linearities results in higher suppression of intermodulation products. Typical IP3 at 100mA is +38dBm.

These unconditionally stable amplifiers provides 13.5dB of gain and 100mW of 1dB compressed power and requires only a single positive voltage supply. Only 2 DC-blocking capacitors, a bias resistor and an optional inductor are needed for operation.

This MMIC is an ideal choice for wireless applications such as cellular, PCS, CDPD, wireless data and SONET.

Output IP3 vs. Id vs. Frequency

DC-3 GHz, Cascadable GaAs HBT MMIC Amplifier

Product Features

• High Output IP3: +38dBm

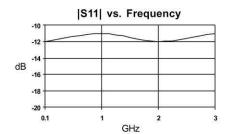
Cascadable 50 Ohm: 1.5:1 VSWR

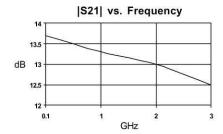
Patented GaAsHBT Technology

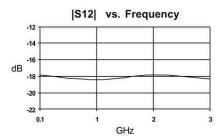
Operates From Single Supply

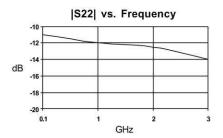
Low Thermal Resistance Package

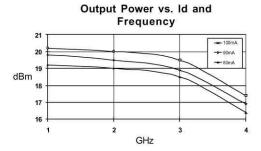
Applications


Cellular, PCS, CDPD, Wireless Data, SONET


Electrical Specifications at Ta = 25C


Symbol	Param eters: Test C on ditions: I _d = 100m A, Z ₀ = 50 Ohm s		Units	M in .	Тур.	Мах.
G p	Power Gain	f = 0.1-3.0 GHz	d B	11	13.5	
G _F	Gain Flatness Gain Flatness over any 100 M Hz band	f = 0.1-3.0 GHz	d B d B		+/- 0.4 +/- 0.1	
P 1 dB	Output Power at 1dB Compression:	f = 0.9 G H z f = 1.9 G H z f = 2.5 G H z	d B m d B m d B m		2 0 . 1 1 9 . 6 1 8 . 5	
NF	Noise Figure	f = 0.1-3.0 GHz	d B		5 .5	
VSWR	Input / Output	f = 0.1-3.0 GHz			1 .5 :1	
IP ₃	Third Order Intercept Point Output Tones @ 0dBm 10 MHz apart	f = 0.9 G H z f = 1.9 G H z f = 2.5 G H z	d B m d B m d B m	35.5 36	37.5 38 36.5	
T D	Group Delay	f = 1.9 GHz	psec		120	
ISOL	Reverse Isolation	f = 0.1-3.0 GHz	d B) ·	18	
V D	Device Voltage		V	4 .3	5 .2	5 .7
d G /d T	Device Gain Temperature Coefficient		dB/degC		-0.0027	
dV/dT	Device Voltage Temperature Coefficient		m V /degC		-5.0	


SCA-3 DC-3 GHz Cascadable MMIC Amplifier


Typical Performance at 25° C (Vd = 5.2V, Id = 100mA)

Typical S-Parameters Vds = 5.2V, Id = 100mA

Freq GHz	S11	S11 Ang	S21	S21 Ang	S12	S12 Ang	S22	S22 Ang
.100	.234	167	4.973	172	.150	-7	.187	-13
.250	.070	-19	3.762	158	.149	-17	.183	-32
.500	.059	-37	3.759	138	.149	-34	.171	-62
1.00	.033	-52	3.783	96	.147	-66	.138	-125
1.50	.029	-30	3.784	53	.145	-99	.104	159
2.00	.033	-45	3.814	11	.142	-132	.104	77
2.50	.016	-70	3.914	-32	.139	-166	.145	6
3.00	.025	30	3.858	-77	.134	162	.201	-45

(S-Parameters include the effects of two 1.0 mil diameter bond wires, each 20 mils long, connected to the gate and drain pads on the die)

SCA-3 DC-3 GHz Cascadable MMIC Amplifier

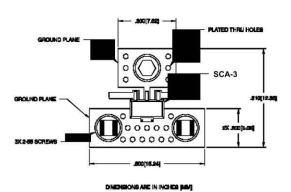
Absolute Maximum Ratings

Param eter	A b so lu te Maximum
Device Current	120 m A
Power Dissipation	660 m W
RF Input Power	200m W
Junction Temperature	+200C
Operating Temperature	-45C to +85C
Storage Temperature	-65C to +150C

Notes

1. Operation of this device above any one of these parameters may cause permanent damage.

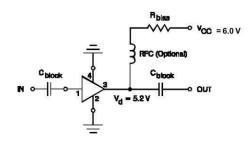
Recom	mend	ed Bias I	Resisto	r Values		
Supply Voltage (Vs)	5V	7.5V	9V	12V	15V	20V
Rbias (Ohms) @ 90mA	(* E	28	44	78	111	167
Rbias (Ohms) @ 100mA	÷	24	39	69	99	149


^{*} Needs active biasing for constant current source

Mounting Instructions

The data shown was taken on a 31mil thick FR-4 board with 1 ounce of copper on both sides.

The board was mounted to a baseplate with 3 screws as shown. The screws bring the top side copper temperature to the same value as the baseplate.


- 1. Use 1 or 2 ounce copper, if possible.
- 2. Solder the copper pad on the backside of the device package to the ground plane.
- 3. Use a large ground pad area with many plated through-holes as shown.
- 4. If possible, use at least one screw no more than 0.2 inch from the device package to provide a low thermal resistance path to the baseplate of the package.
- 5. Thermal resistance from ground lead to screws is
- 2 deg. C/W.

MTTF vs. Temperature @ Id = 100mA

Lead Temperature	MTTF (hrs)
+50C	100,000
+80C	10,000

Thermal Resistance (Lead-Junction): 269° C/W

Typical Biasing Configuration

P	in Designation
1	RF in
2	GND
3	RF out and Bias
4	GND

Outline Drawing

Pin emigraments shown for reference only, not marked on par