Ņ

MASSACHUSETTS INSTITUTE OF TECHNOLOGY RADIATION LABORATORY SERIES

Board of Editors

LOUIS N. RIDENOUR, Editor-in-Chief GEORGE B. COLLINS, Deputy Editor-in-Chief

BRITTON CHANCE, S. A. GOUDSMIT, R. G. HERB, HUBERT M. JAMES, JULIAN K. KNIPP, JAMES L. LAWSON, LEON B. LINFORD, CAROL G. MONTGOMERY, C. NEWTON, ALBERT M. STONE, LOUIS A. TURNER, GEORGE E. VALLEY, JR., HERBERT H. WHEATON

- 1. RADAR SYSTEM ENGINEERING-Ridenour
- 2. RADAR AIDS TO NAVIGATION-Hall
- 3. RADAR BEACONS-Roberts
- 4. LORAN-Pierce, McKenzie, and Woodward
- 5. Pulse Generators-Glasse and Lebacqz
- 6. MICROWAVE MAGNETRONS-Collins
- 7. KLYSTRONS AND MICROWAVE TRIODES-Hamilton, Knipp, and Kuper
- 8. PRINCIPLES OF MICROWAVE CIRCUITS-Montgomery, Dicke, and Purcell
- 9. MICROWAVE TRANSMISSION CIRCUITS-Ragan
- 10. WAVEGUIDE HANDBOOK-Marcuvitz
- 11. TECHNIQUE OF MICROWAVE MEASUREMENTS-Montgomery
- 12. MICROWAVE ANTENNA THEORY AND DESIGN-Silver
- 13. PROPAGATION OF SHORT RADIO WAVES-Kerr
- 14. MICROWAVE DUPLEXERS-Smullin and Montgomery
- 15. CRYSTAL RECTIFIERS-Torrey and Whitmer
- 16. MICROWAVE MIXERS-Pound
- 17. COMPONENTS HANDBOOK-Blackburn
- 18. VACUUM TUBE AMPLIFIERS-Valley and Wallman
- 19. WAVEFORMS-Chance, Hughes, MacNichol, Sayre, and Williams
- 20. ELECTRONIC TIME MEASUREMENTS—Chance, Hulsizer, MacNichol, and Williams
- 21. ELECTRONIC INSTRUMENTS-Greenwood, Holdam, and MacRae
- 22. CATHODE RAY TUBE DISPLAYS-Soller, Starr, and Valley
- 23. MICROWAVE RECEIVERS-Van Voorhis
- 24. THRESHOLD SIGNALS-Lawson and Uhlenbeck
- 25. THEORY OF SERVOMECHANISMS-James, Nichols, and Phillips
- 26. RADAR SCANNERS AND RADOMES-Cady, Karelitz, and Turner
- 27. COMPUTING MECHANISMS AND LINKAGES-Svoboda
- 28. INDEX-Henney

Edited by

GEORGE E. VALLEY, JR. ASSISTANT PROFESSOR OF PHYSICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY

HENRY WALLMAN

ASSOCIATE PROFESSOR OF MATHEMATICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY

OFFICE OF SCIENTIFIC RESEARCH AND DEVELOPMENT NATIONAL DEFENSE RESEARCH COMMITTEE

NEW YORK · TORONTO · LONDON MCGRAW-HILL BOOK COMPANY, INC. 1948

 $I^+ l$ 1. V.18 C.7

Copyright, 1948, by the McGraw-Hill Book Company, Inc. printed in the united states of america

> All rights reserved. This book, or parts thereof, may not be reproduced in any form without permission of the publishers.

> > х

28

SS. INST.

JUN

THE MAPLE PRESS COMPANY, YORK, PA.

1957

EDITORIAL STAFF

George E. Valley, Jr. Henry Wallman Helen Wenetsky

CONTRIBUTING AUTHORS

YARDLEY BEERS ERIC DURAND HAROLD FLEISCHER JOHN W. GRAY HARRY J. LIPKIN DUNCAN MACRAE, JR. E. JAY SCHREMP RICHARD Q. TWISS ROBERT M. WALKER HENRY WALLMAN

V

.

vi

THE tremendous research and development effort that went into the development of radar and related techniques during World War II resulted not only in hundreds of radar sets for military (and some for possible peacetime) use but also in a great body of information and new techniques in the electronics and high-frequency fields. Because this basic material may be of great value to science and engineering, it seemed most important to publish it as soon as security permitted.

The Radiation Laboratory of MIT, which operated under the supervision of the National Defense Research Committee, undertook the great task of preparing these volumes. The work described herein, however, is the collective result of work done at many laboratories, Army, Navy, university, and industrial, both in this country and in England, Canada, and other Dominions.

The Radiation Laboratory, once its proposals were approved and finances provided by the Office of Scientific Research and Development, chose Louis N. Ridenour as Editor-in-Chief to lead and direct the entire project. An editorial staff was then selected of those best qualified for this type of task. Finally the authors for the various volumes or chapters or sections were chosen from among those experts who were intimately familiar with the various fields, and who were able and willing to write the summaries of them. This entire staff agreed to remain at work at MIT for six months or more after the work of the Radiation Laboratory was complete. These volumes stand as a monument to this group.

These volumes serve as a memorial to the unnamed hundreds and thousands of other scientists, engineers, and others who actually carried on the research, development, and engineering work the results of which are herein described. There were so many involved in this work and they worked so closely together even though often in widely separated laboratories that it is impossible to name or even to know those who contributed to a particular idea or development. Only certain ones who wrote reports or articles have even been mentioned. But to all those who contributed in any way to this great cooperative development enterprise, both in this country and in England, these volumes are dedicated.

L. A. DUBRIDGE.

vii

Preface

S oon after Drs. I. I. Rabi and L. A. DuBridge decided that the technical knowledge of the Radiation Laboratory staff should be preserved, it was evident that at least one complete book would be required on lumped-parameter circuits. The early planning for that book was done during a series of conferences called by L. J. Hawworth; and attended by B. Chance and G. E. Valley, Jr.

It was difficult to arrange all the subject matter in a way that would be easy to read and economical of space. It would have been possible to describe the various electrical devices in order, but to describe each instrument completely would have involved an intolerable amount of repetition concerning basic circuits, such as multivibrators and amplifiers. It would also have required an intolerable amount of crossindexing if the work were to be usable by those interested, not in the particular instruments described, but in the application of their design principles to completely different problems. It was apparent, too, that the work should not stress radar.

The material was therefore divided into two parts: the first part to include the basic principles of circuit design, the second to pertain to the assembly of basic circuits into functional instruments such as receivers and data display systems. These decisions were made in the interests of clarity and brevity. Even so, upon completion of the consequent outline, it was evident that several volumes would be required. Accordingly new outlines were prepared for each of these and were then revised separately for each volume by committees composed of the editors and authors concerned.

The first of these books, Components Handbook, discusses the physical embodiments of the lumped-parameters themselves: resistors, cables, motors, vacuum tubes, etc. Next, Vacuum Tube Amplifiers and Waveforms discuss the principles of circuit design, respectively, for circuits that are essentially linear (amplifiers) and for circuits that are essentially nonlinear (oscillators, electronic switches, and the like). The four following volumes concern themselves with the design of complex functional devices. They are Electronic Time Measurements, Electronic Instruments, Cathode Ray Tube Displays, and Microwave Receivers.

The amplifiers discussed in this volume are designed to have extreme

values in one of several of the pertinent characteristics: bandwidth, sensitivity, linearity, constancy of gain over long periods of time, etc. In most cases the design of such amplifiers, in which the ultimate performance is obtained from available types of components, cannot be carried out by simple rules of thumb.

The volume therefore begins with a chapter on "Linear Analysis and Transient Response" which lays the theoretical basis for the high-fidelity reproduction of transient signals, such as rectangular pulses. Although the chapter is rather theoretical, a summary is contained in Sec. 1.10 of the precise steps needed to determine the transient response of a given network. The practical application of these principles is examined in the next chapter, "High-fidelity Pulse Amplifiers," for direct, or "video," The resemblance of this material to that contained in Chap. 3 pulses. is only superficial; "Pulse Amplifiers of Large Dynamic Range" is about the design of amplifiers intended to deal with pulses of widely varying magnitude, all other characteristics being secondary. Chapters 4 through 7 deal with the theoretical and practical aspects of several methods of amplifying, with varying degrees of fidelity, pulse-modulated carrier frequencies as high as 200 Mc/sec. Although the design principles are examined in these chapters chiefly from the standpoint of relatively high frequencies, they are perfectly general in their application. That this is true is exemplified by Chap. 10, "Low-frequency Feedback Amplifiers," wherein some of the results of Chap. 4 are applied to filter amplifiers operating at frequencies as low as 50 cps.

Chapter 8 deals with the examination and adjustment of the amplifiers previously described, especially when they are employed as intermediate frequency amplifiers in superheterodyne receivers. Chapter 9 discusses some of the innumerable ways in which inverse feedback can be employed to stabilize the gain of an amplifier. The well-known principles of Nyquist, Bode, and others are applied particularly to circuits in which inductances do not appear, and use is made of this fact to simplify the analysis; in addition the chapter describes the successively less approximate phases through which the design of such an amplifier can proceed. Chapter 11 recounts the experience at the Radiation Laboratory concerning the design of rugged and reliable direct-coupled amplifiers, no particular emphasis being placed upon extreme sensitivity.

Chapter 12, "Amplifier Sensitivity," examines the subject of noise in a rigorous and very theoretical manner. The design of amplifiers for best signal-to-noise ratio is discussed in Chap. 13, "Minimal-noise Input Circuits," and in Chap. 14 the experimental measurement of amplifier sensitivity is explained.

Appendix A contains an existence theorem on the physical realizability of filter amplitude characteristics.

In addition to the material contained in this volume, information concerning the application of amplifiers to specific purposes will be found in other volumes. In particular the use of amplifiers in computers and servomechanisms is discussed in *Electronic Instruments*. In *Cathode Ray Tube Displays* is included a chapter devoted to amplifiers specifically designed to drive inductive loads (i.e., cathode-ray tube deflection coils). *Microwave Receivers* contains a good deal of information on the use in microwave receivers of the types of amplifier described in Chaps. 3 through 7. It also contains a discussion of the noise problem as it affects superheterodyne receiving systems.

The editors wish to acknowledge the inspiration and guidance of the Editor-in-Chief, L. N. Ridenour, and of his editorial board. This book is the product of a large organization, much of the credit for whose successful operation goes to Charles Newton and his able assistants Dr. V. Josephson, M. Dolbeare, and M. Phillips. Whatever uniformity of style and format the book may present is largely due to the Technical Coordination Group operating under the direction of Drs. L. B. Linford and A. M. Stone. To the authors, the editors extend their thanks for a task conscientiously performed and their congratulations upon its completion. The assistance of Mr. J. H. Irving in furnishing important background material for Chap. 1 is gratefully acknowledged. It is due to the generosity of the British Air Commission that Mr. R. Q. Twiss was able to work on the several important chapters that bear his name.

The preparation of the illustrations for the volume was ably supervised by Martha Murrell. The timely assistance of Margot Cheney and Beka Hepner resulted in the volume's being prepared within the allotted time. It was the task of Doris Williams to type over the most illegible of the original manuscript.

THE EDITORS.

CAMBRIDGE, MASS., July, 1946. •

Contents

FOREWORD BY L. A. DUBRIDGE					
PREFA	CE	ix			
Снар. 1.	LI	NEAR-CIRCUIT ANALYSIS AND TRANSIENT RESPONSE. 1			
	1.1.	Introduction			
	1·2.	The Basic Properties of Linear Networks			
	1.3.	The Integro-differential Equations of the Linear Network 10			
	1.4.	The Theory of the Laplace Transform			
	1.5.	The Use of the L-transform in the Solution of Network Problems 42			
	1.6.	General Solution of the Network Equations			
	1·7. 1·8.	The Transform Network			
	1·8. 1·9.	The Steady-state Response of the General Linear Network			
		Summary of the Use of <i>L</i> -transform Theory in Network Problems 63			
		Examples of Use of L-transform Theory to Solve Practical Net-			
	1	work Problems			
Снар. 2.	HI	GH-FIDELITY PULSE AMPLIFIERS			
	2 ·1.	Introduction			
	2.2.	Leading Edge of Pulse; Rise Time and Overshoot			
	2.3.	Flat Top of Pulse			
	2.4.	Inverse Feedback			
	2.5.	Gain Control of Pulse Amplifiers			
	2 ·6.	D-c Restoration			
	2.7.	Limiting Amplifiers			
	2.8.	The Mixing of Multiple Input Signals			
	2 ·9.	Electronic Switching of Pulse Amplifiers			
		Output Stages			
	2 ·11.	Examples			
Снар. 3.	PU	LSE AMPLIFIERS OF LARGE DYNAMIC RANGE 113			
	3.1.	Introduction			
	3·2.	Theory of Overshoots			
	3.3.	Circuit Design for Minimum Overshoot			
	3 ∙4.	Design Considerations			
	3.5.	Small Amplifiers			
	3 ∙6.	Examples			

xiii

CONTENTS

	NCHRONOUS AND STAGGERED SINGLE-TUNED HIGH-
FREQ	UENCY BANDPASS AMPLIFIERS
4.1.	Introduction
4 · 2 .	One Single-tuned Circuit
4 ·3.	Amplifier Figures of Merit
4.4.	Cascaded Synchronous Single-tuned Circuits
4 ·5.	Example of a Synchronous Single-tuned Amplifier
4 ·6.	Staggered n-uples. Arithmetic Symmetry
4 ·7.	Staggered n-uples. Geometric Symmetry
4 ·8.	Flat-staggered Pairs, in Detail
4 ·9.	Flat-staggered Triples, in Detail
	Gain Control of Stagger-tuned Amplifiers
4 ·11.	Examples of Stagger-tuned Amplifiers
CHAP. 5. DO	DUBLE-TUNED CIRCUITS
5 ·1.	Introduction
5.2.	The General High-Q Case
· 5·3.	The High-Q, Equal-Q Case
5.4.	The High-Q Case When One of the Q's Is Infinite
5.5.	The Transitionally Coupled Low-Q Case
5.6.	Stagger-damped Double-tuned Circuits
5.7.	Construction and Examples
0 6 III	
	GH-FREQUENCY FEEDBACK AMPLIFIERS
6.1.	Introduction
6·2.	Analysis of the General Chain
6 ∙ 3 .	The Inverse-feedback Pair
6·4.	Synthesis of a Feedback Chain
6·5.	Miscellaneous Properties of Inverse-feedback Chains and Pairs . 253
6.6.	Practical Considerations in Feedback-amplifier Design 262
6.7.	More Complicated Feedback Amplifiers
6-8.	Practical Examples
	NDPASS AMPLIFIERS: PULSE RESPONSE AND GENERAL
CONSI	DERATIONS
	SPONSE
7.1.	Response of Bandpass Amplifier to Carrier-frequency Pulse 274
7.2.	One-pole Networks
7.3.	Two-pole Networks
7.4.	Maximally Flat Three-pole Networks
7 .5.	Maximally Flat n-pole Networks
7 ⋅6.	Overstaggered Circuits
GENERAL	Considerations
7.7.	Gain-bandwidth Factor
7.8.	Gain Control
7 ·9.	Gain Variability
	Capacity Variability
	Pretuned Coils
7.12.	Comparison of Amplifier Types

CONTENTS

Снар. 8.	AM	IPLIFIER MEASUREMENT AND TESTING	301		
	8·1.	Swept-frequency Signal Generators.			
	8 ·2.	Direct and Carrier-frequency Pulse Generators			
	8 ∙3.	Miscellaneous Testing Equipment	31 3		
	8·4.	Measurement and Alignment of Bandpass Amplifiers	318		
	8.5.	Undesired Feedback Effects (Regeneration) in Bandpass Ampli- fiers	323		
	8.6.	Pulse Response	327		
	8.7.	Overload and "Blackout" Effects	329		
	8 ∙8.	Measurement of Gain and Determination of Amplifier Law 3	330		
Снар. 9.	LO	W-FREQUENCY AMPLIFIERS WITH STABILIZED GAIN .	333		
	9·1.	Problems Characteristic of Computer Amplifiers			
	9·2.	Analysis of Types of Feedback.	335		
	9·3.	The Stability Problem	339		
SAM	PLE I	Designs of Computer Amplifiers			
	9.4.	Single-stage Drivers	348		
	9 ∙5.	Driver with Push-pull Output Stage and Regeneration within the Loop.	350		
Τ π/		E DRIVER FOR INDUCTIVE LOAD WITHOUT TRANSFORMER OUTPUT.	251		
1.00	9.6.				
	9·0. 9·7.	General Considerations.	352		
	9·7. 9·8.				
	9·8. 9·9	Design of Pentode Stage			
		Stability against Oscillation.			
Тня	REE-ST	AGE AMPLIFIER FOR RESISTIVE LOAD.	366		
	9.11.	General Considerations.	366		
		Design of Individual Stages			
		Stability against Low-frequency Oscillation			
		Stabilization against High-frequency Oscillation			
		Experimental Checks and Completion of the Design			
Снар. 1(n La	OW-FREQUENCY FEEDBACK AMPLIFIERS.	384		
	10·1.	Frequency-selective Networks.			
	10.1. 10.2.	Frequency-selective Avelworks.			
	10·2. 10·3.	The Design of Frequency-selective Amplifiers			
	10.9.	The Design of Frequency-selective Ampliners	090		
Снар. 11	1. D	IRECT-COUPLED AMPLIFIERS			
INT	RODUC	TION	409		
3	11.1.	Applications of Direct-coupled Amplifiers			
1	11·2.	Problems Peculiar to Direct-coupled Amplifiers	411		
Special Aspects and Effects of Vacuum-tube Properties.					
	11.3.	Variability of Vacuum-tube Characteristics			
	11-4.	Vacuum-tube Characteristics at Low Currents.			
	11.5.	Grid Current	418		
1	11.6.	The Effect of Heater-voltage Variation	421		

xv

Design Principles			424	
	11.7.	Single-ended Triode Amplifiers.	424	
	11.8.	Single-ended Pentode Amplifiers.	432	
	11.9.	Cascode and Other Series Amplifiers	436	
	11 10.	Differential Amplifiers	441	
		Output Circuits		
		Cancellation of Effect of Heater-voltage Variation		
	11-13.	The Use of Feedback in D-c Amplifiers	467	
Ex	AMPLES	s of Special-purpose Amplifiers	479	
		Current-output Amplifiers		
	11.15.	Voltage-output Amplifiers.	483	
	11.16.	A Galvanometer-photoelectric Tube Feedback Amplifier	487	
	11·1 7 .	D-c Amplifier Analysis	491	
CHAP. J	12. Al	MPLIFIER SENSITIVITY.	496	
	12.1.	Introduction.	496	
	12.2.	Thermal Noise.		
	12.3.	Shot Noise	544	
	12.4.	The Logical Distinction between Thermal Noise and Shot Noise.	584	
	12·5.	Other Types of Tube Noise	588	
	12.6.		595	
	12.	Amplifier Sensitivity: Definition and Theoretical Discussion of		
		Noise Figure, Available Power Gain, and Noise Temperature	596	
	12 ·E.	Amplifier Sensitivity: Methods of Improvement by the Suppression		
		of Tube Noise	604	
Снар. 1	3. M	INIMAL NOISE CIRCUITS	615	
	13.1.	Introduction.	615	
	13-2.	Basic Noise-figure Considerations	618	
	1 3 ·3.	The Determination of the Noise Figure, Power Gain, and Other		
		Characteristics of the First Stage.		
	13 4.	The Equivalent Noise Resistance of Practical Tubes		
	13·5.	The First-stage Noise Figure		
	13 .6.	The Optimum Source Admittance	639	
	13.7.	Variation of Noise Figure with Source Conductance and with	0.11	
		Frequency .		
	13.8.	Comparison of Alternative Tube Configurations		
	13.9.	Noise Figures of Single-triode Input Circuits		
		Double-triode Input Circuits		
		General Considerations of the Effect of Feedback on Noise Figure	000	
		Miscellaneous Types of Feedback and Their Effect on Noise Figure	672	
	13 ·13.	The Correlation between the Induced Grid-noise and the Shot- noise Currents.	677	
	13.14	Input Coupling Networks.		
	13.15.	Example of Alternative Designs of Input Coupling Network	692	
CHAP. 12. MEASUREMENT OF NOISE FIGURE				
	14.1.	Introduction		
	14·2.	Discussion of Available Power.		

xvi

14-3.	Measurement of Noise Figure with Unmodulated Signal Gener- ators. The Relation of Noise Figure to Other Quantities That Express the "Noisiness" of an Amplifier	699
Noise Ge	ENERATORS	700
14.4.	General Discussion.	700
14.5.	Theory of Noise Generators Using Temperature-limited Diodes	701
14.6.		704
14.7.	Crystal Noise Generators	708
Measure	MENT OF AMPLIFIER OUTPUT POWER	708
14.8.	Attenuator and Postamplifier	70 9
14.9.	Method Employing Gain-control or Uncalibrated Attenuator	714
14-10.	Crystal and Diode Rectifiers.	715
14.11.	Bolometers	715
i4·12.	Thermocouple Meters	717
Special 7	OPICS	717
14·13.	Effect of the Gain Control	717
14.14.	Correction for Temperature.	717
14.15.	Noise Figure of an Amplifier with Push-pull Input Connections .	7 19
14.16.	Measurement of Noise Figure of Superheterodyne Radio Receiver	
	with Image Response.	720
APPENDIX .	A. REALIZABILITY OF FILTERS.	721
A·1.	The Paley-Wiener Criterion.	721
A.2.	Examples	
A·3.	The Practical Meaning of the Paley-Wiener Criterion	
APPENDIX I	3. CALCULATION OF LOAD-TUNING CONDENSER	728
APPENDIX UNDE	C. DRIFT OF VACUUM-TUBE CHARACTERISTICS R CONSTANT APPLIED POTENTIALS	730
INDEX		735

Xvii