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Abstract. Laser Doppler Vibrometers (LDVs) are exceptionally well suited to non-contact 

vibration sensing applications in various environments. This work focuses on diarisation of 

conversations that might be recorded via a drone-mounted LDV by reducing the effect of 

external noise, extracting useful features from frames of audio and clustering them into 

homogenous segments based on speaker identity. The two-step noise reduction (TSNR) 

technique was introduced to these vibroacoustic data for the first time and tested against 

Gaussian bandpass filtering for noise reduction from sources such as laser speckle and additional 

broadband 'white' noise. Feature extraction was then performed using a time-delay neural 

network, with the grouping of frames to a particular speaker tested with various clustering 

methods. Each noise reduction and clustering technique combination were tested on a 

twospeaker conversation recorded via the LDV. In the case of no added noise, the most effective 

combination was found to be the TSNR/Agglomerative Hierarchical Clustering (AHC) 

combination with a diarisation error rate of 6.13%. In the case of additional broadband noise, the 

most effective combination was found to be TSNR followed by Gaussian bandpass filtering then 

clustering via AHC with a diarisation error rate of 11.9%. With this work, another aspect of the 

challenge of covertly obtaining and interpreting vibroacoustic intelligence in remote and hostile 

environments using LDVs has been addressed. 

1.  Introduction 

Laser Doppler Vibrometry originates from the 1964 alternative to examining flow streamlines of 

injected dyes to measure fluid flow velocity [1]. This now well-established non-contact surface vibration 

measurement technique can be extended to the situation in which pressure waves produced by human 

speech cause nearby objects to vibrate. Using a laser Doppler vibrometer (LDV), the object's vibrations 

can be measured, and the original speech signal acquired [2],[3]. This speech acquisition can be 

performed remotely and unobtrusively by mounting the LDV to a drone [4]. The synthesis of these two 

technologies will potentially enable highly sensitive, non-invasive and discrete vibroacoustic 

intelligence-gathering activities in hostile environments without risk to human life. Once collected and 

processed, such intelligence can be used to create a transcript of the acquired conversation. An example 

of this process is shown in Figure 1 (a). Furthermore, the actual experimental setup used to collect the 

data tested throughout this paper is described in Figure 1 (b). 
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Figure 1 – (a) Example vibroacoustic intelligence-gathering schematic. An LDV-

equipped drone measures the vibrations of a nearby drinks can caused by the pressure 

waves that propagate during a conversation. (b) Actual experimental setup using a Polytec 

NLV-2500-5 Compact Laser Vibrometer directed towards an aluminium can positioned 

nearby two male, English first language speakers, each speaking one sentence in turn from 

a pre-determined transcript. 

Speaker diarisation – the process of partitioning an input audio stream into homogeneous segments 

according to the speaker identity – is a key part of the transcription process that has seldom been studied 

in the context of vibroacoustic data of the type considered here. In order to achieve effective diarisation 

of vibroacoustic intelligence acquired from a drone-mounted LDV, several engineering challenges must 

be overcome. Such an unconventional measurement scenario involves several sources of noise that are 

not easily controlled, quantified or characterised outside of the lab environment. These include but may 

not be limited to background acoustic noise, noise due to the laser speckle effect [1], shot noise [5] and 

noise from instrument vibration [6]. Furthermore, to determine the similarity between frames of speech 

and group these by speaker, features must be extracted from the audio signal that readily allows for 

discrimination between these different speakers. Finally, an appropriate clustering technique must then 

be utilised to group the speech frames. Figure 2 shows the methodology proposed. 

 

 

Figure 2 - Proposed speaker diarisation system. BP - Gaussian Bandpass Filter, TSNR – Two-Step 

Noise Reduction, MFCC – Mel Frequency Cepstral Coefficient Extraction, XVEC – X-Vector 

Feature Extraction, LDA – Linear Discriminant Analysis, SC – Segmentation and Clustering 

2.  Methodology 

2.1.  Noise Reduction 

The use of LDVs for the measurement of speech signals in real-world scenarios, where a variety of noise 

sources are present, necessitates using noise reduction techniques to improve the quality of the speech 

signal reconstruction. However, the application of noise reduction techniques to vibroacoustic data of 

this specific nature has received relatively little attention in the published literature. Prior work has 

utilised Gaussian bandpass filters in combination with adaptive volume control to reduce signal power 

outside the human voice frequency range (300 – 3000 Hz) and enhance the speech signal [7]. This 

technique is limited as noise within the vocal frequency range is ignored. This work instead utilises the 

two-step noise reduction (TSNR) technique [8], a process used to estimate the a priori signal-to-noise 

ratio (SNR), thereby optimising a multiplicative gain function to filter out noise while avoiding the 

(a) (b) 
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addition of artificial high-power regions in the spectrum of a signal known as 'musical noise' in 

techniques using spectral filtering [9].  

In this technique, the additive noise model is used, i.e. speech is modelled as the combination of a 

speech signal s(t) and a noise signal n(t), resulting in noisy speech y(t), 

 
𝑦(𝑡) = 𝑠(𝑡) + 𝑛(𝑡) (1) 

Consider 𝑌(𝑝, 𝜔𝑘), 𝑆(𝑝, 𝜔𝑘) and 𝑁(𝑝, 𝜔𝑘) as the 𝑤𝐾𝑡ℎ spectral component of the time frame 𝑝 of 

the noisy speech, speech, and noise signals, respectively. By applying a spectral gain 𝐺(𝑝, 𝜔𝑘) to each 

frame or sample of the noisy signal in frequency domain 𝑌(𝑝, 𝜔𝑘), the additive noise can be partially 

filtered out. In general, this spectral gain is a function of both the a priori signal-to-noise ratio (SNR) 

and a posteriori SNR given respectively as, 
 

 𝑆𝑁𝑅̂𝑝𝑜𝑠𝑡(𝑝, 𝜔𝑘 =
|𝑌(𝑝, 𝜔𝑘)|2

𝐸[|𝑁(𝑝, 𝜔𝑘|2]
 (2a) 

 𝑆𝑁𝑅̂𝑝𝑟𝑖𝑜(𝑝, 𝜔𝑘) =
𝐸[|𝑆(𝑝, 𝜔𝑘)|2]

𝐸[|𝑁(𝑝, 𝜔𝑘)|2]
 (2b) 

𝐸[] denotes expectation. Regardless of the type of filtering function used, spectral subtraction 

methods typically result in the addition of musical noise. In the TSNR process, the noisy signal is filtered 

through two Wiener filters. The effect of including the second gain function is to compensate for the 

musical noise effect introduced by the first. The first gain function is determined using the classical 

estimation of the a priori SNR, 
 

𝐺1(𝑝, 𝜔𝐾) =
 𝑆𝑁𝑅̂𝑝𝑟𝑖𝑜(𝑝, 𝜔𝑘)

1 +   𝑆𝑁𝑅̂𝑝𝑟𝑖𝑜(𝑝, 𝜔𝑘)
 (3) 

while the second uses 𝐺1(𝑝, 𝜔𝑘) to refine the a priori SNR for use in another Wiener filter, 
 

 𝑆𝑁𝑅̂𝑝𝑟𝑖𝑜(2)(𝑝, 𝜔𝑘) =
|𝐺1(𝑝, 𝜔𝐾) 𝑌(𝑝, 𝜔𝑘)|2

𝛾𝑁(𝑝, 𝜔𝑘)
 (4) 

𝐺2(𝑝, 𝜔𝐾) =
 𝑆𝑁𝑅̂𝑝𝑟𝑖𝑜(2)(𝑝, 𝜔𝑘)

1 +   𝑆𝑁𝑅̂𝑝𝑟𝑖𝑜(2)(𝑝, 𝜔𝑘)
 (5) 

Where 𝛾𝑁(𝑝, 𝜔𝑘) is the estimated noise power spectral density. The clean speech signal can then be 

estimated as, 

𝑆̂(𝑝, 𝜔𝑘) = 𝐺2(𝑝, 𝜔𝑘) 𝑌(𝑝, 𝜔𝑘) (6) 

By combining TSNR with a Gaussian bandpass filter to restrict the signals to the human vocal 

frequency range, the input signal can be cleaned of noise artefacts produced from various background 

vibroacoustic sources. The TSNR method was tested on samples of two different types: i) no extra noise, 

i.e. only inherent, typically low-level background noise, and ii) where broadband white noise was added 

using a simple smartphone app positioned near the speakers. The Gaussian bandpass filter was also 

tested both independently and in combination with the TSNR method. Figure 3 shows the results of 

these various noise suppression options in both time and frequency domains. The original (A) time-

domain signal quite clearly shows the two distinct speaker voices. While this distinction appears to be 

largely lost after bandpass filtering only (B), these differences are preserved and enhanced after TSNR 

processing only (C). There appears to be little to choose between the combined scenarios, (D) and (E), 
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in either time or frequency domain, with neither apparently being better than TSNR alone. A window 

length of 25 ms was used for the TSNR technique resulting in approximately 440 frames or samples 

from the 11 second recording.    

 

 

Figure 3 - Results of noise reduction techniques in time and frequency domain for signal with no 

added white noise. Row (A) shows the original signal with processing. Subsequent rows (B-E) show 

results of Gaussian bandpass filtering, TSNR filtering and combined filtering respectively. Portions 

of signal originating from each speaker roughly indicated in row (A).   

2.2.  Feature Extraction 

Given that speech is a complex information transfer, conveying multiple modalities highly dependent 

on tone, language, and the speaker, a representation of a frame of audio containing speech unique to a 

specific speaker, is needed. For example, many systems utilise Mel Frequency Cepstral Coefficients 

(MFCC) – coefficients that relate a short-term power spectrum to the human auditory system response 

– as features. The Mel frequency cepstrum, from which the MFCCs are extracted, differs from a typical 

cepstrum in that the frequency bands are based on the Mel scale, a perceptual scale of pitches designed 

to account for the nonlinear sensitivity of the human auditory system to different frequencies. However, 

the work presented by Kinnunen et al. [10] indicates that MFCCs do not cluster in feature space, 

suggesting that it can be expected that they are not an optimal way of performing speaker diarisation.  

An alternate feature extraction method maps MFCCs to fixed-dimensional embeddings known as x-

vectors using a time-delay neural network (TDNN) [11] with architecture as outlined in Table 1. The 

network was trained for speaker recognition using a downloaded database of approximately 2000 

sentences spoken by ten male and ten female speakers captured via microphone [13]. With the network 

trained, the first six layers extract features from the neighbouring audio frames that readily discriminate 

between different voices. These features are pooled in layer 7 and extracted from the network to be 

subsequently used for clustering, which is subsequently described in section 2.3. 
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Table 1. TDNN architecture for classifying N speakers for T framed audio input. Layer 

context refers to the range of speech frames operated over by a layer centred at the current 

frame t, i.e. each frame is operated on with the neighbouring 4 frames from t – 2 to t + 2 in 

the first layer, giving a group size or total context of 5 frames. TDNN architecture is further 

discussed in [9]. 
 

Layer Layer Context Total Context Input x Output 
1 {t - 2, t + 2} 5 120 x 512 
2 {t – 2, t, t + 2} 9 1536 x 512 
3 {t – 3, t, t + 3} 15 1536 x 512 
4 {t} 15 512 x 512 
5 {t} 15 512 x 1500 
6 [0, T) T 1500 T x 3000 
7 {0} T 3000 x 512 
8a {0} T 512 x 512 
9a {0} T 512 x N  
a Layer not used in the final feature extraction process.  

 

Linear discriminant analysis (LDA) [13] was then applied to reduce the dimensionality of the 

extracted x-vectors, ideally allowing more efficient clustering while still conveying the information 

necessary to distinguish between the different speakers. For an approximately 11-second recording with 

a sampling frequency of 81.92 kHz, 2135, 30-dimensional MFCC features were extracted using a hop 

distance (time between centre of neighbouring frames) of 5 ms and a frame duration of 40. Using the 

trained neural network, 525, 120-dimensional x-vectors were then extracted from these MFCCs using a 

hop distance of 0.1 s and a frame duration of 2 s. Each of these x-vectors then had its dimensionality 

reduced to 32 dimensions through LDA. The plots in Figure 4 show each stage of this feature extraction 

process, which converts the time domain signal recorded by the LDV into a set of feature vectors which 

should enable segmentation of homogenous regions according to the specific speaker. 
 

Figure 4 – Feature 

extraction from an input 

set of MFCCs. (A) – 

Normalised MFCCs 

extracted from the original 

signal in the frequency 

domain. (B) – X-vectors 

extracted from 

neighbouring groups of 

MFCCs. Number of 

segments reduced due to 

use of multiple 

neighbouring MFCC 

frames to extract a single 

X-vector. (C) - LDA 

dimensionality reduced x-

vectors.  
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2.3.  Clustering 

The speaker diarisation process consists of two phases: segmentation and clustering. The former 

involves determining when a speaker change has occurred in the signal, while the latter involves 

grouping segments corresponding to the same speaker. Segmentation is addressed in this work by 

splitting the input audio into windowed and overlapped segments. Once extracted and reduced, the x-

vectors for each frame can then be clustered by various methods such as k-means, agglomerative 

hierarchical clustering (AHC) and Gaussian mixture modelling [12]. Each of the three clustering 

methods was tested in combination with each of the five processed signals described in section 2.1, 

resulting in a total of 15 test cases for each of the no added noise cases and the case where broadband 

noise was added. Figure 5 presents the results of a diarisation on the no added noise signal using the 

TSNR filtering and AHC processes, i.e., the features extracted from windowed segments of the original 

signal have been clustered into three groups, with group zero corresponding to frames in which neither 

person was speaking.    

 
 

Figure 5 - Diarisation results of the original signal with no added noise filtered by 

TSNR and clustered via AHC. The orange line indicates the approximate ground 

truth, with values of zero indicating silence. Blue crosses indicate the results of the 

clustering process, i.e. the estimation of who is speaking in each frame. 

3.  Results and Discussion 

In order to assess the effectiveness of the various noise reduction / diarisation process combinations, the 

diarisation error 𝑑, calculated according to the number of frames assigned to the incorrect cluster e and 

the total number of frames N, was defined,  

𝑑 =
𝑒

𝑁
 (7) 

The diarisation errors for each process combination in both the no noise and added white noise 

cases are presented in Table 2.  
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Table 2 - Noise reduction / clustering diarisation error, d. The most effective methods for each 

noise case are shaded and shown in bold, while the least effective are shown in italics. 
 

Noise Treatment Method 
No added noise Added white noise 

k-means AHC GMM k-means AHC GMM 

No Noise Reduction (1) 0.102 0.118 0.105 0.340 0.347 0.301 

Gaussian Filtering (2) 0.131 0.100 0.187 0.295 0.275 0.281 

TSNR (3) 0.0642 0.0613 0.0737 0.223 0.149 0.244 

Gaussian then TSNR (4) 0.112 0.100 0.113 0.293 0.286 0.239 

TSNR then Gaussian (5) 0.104 0.0945 0.134 0.128 0.119 0.155 
 

In the case of no added noise, the combination of TSNR only and AHC resulted in the most effective 

diarisation with an error rate of 6.13%. This represents an error rate of approximately half that of the 

equivalent case without noise reduction treatment while still using AHC for clustering. The worst 

performing combination for the no added noise scenario was Gaussian filtering only combined with k-

means clustering; an error rate of 13.1% was observed. Irrespective of the clustering technique, 

preceding with TSNR only noise reduction offers the best performance. It is also noteworthy that 

preceding with the Gaussian bandpass filter only resulted in the worst combined performance for all 

clustering approaches; in two of the three cases, the effectiveness was in fact reduced when compared 

to the corresponding case where no noise reduction technique at all was used. 

In the case where additional white noise was played while the speakers conversed, the most effective 

combination was TSNR then Gaussian bandpass filtering for noise reduction followed by AHC for 

clustering. Here, an error rate of 11.9% was observed with the inclusion of the Gaussian filtering after 

the TSNR offering an additional 3% performance increase. Compared with the corresponding 

combination for the no added noise case, this TSNR then Gaussian followed by AHC exhibited only a 

~2.5% reduction in performance. The worst performing combination was no noise reduction followed 

by AHC with a substantial error rate of 34.7%. Irrespective of the clustering approaches, in the added 

noise case, a performance benefit was always observed by preceding with some form of noise reduction. 

4.  Conclusions 

This paper has presented the development and testing of various methods for speech diarisation of 

vibroacoustic data intended for the end goal of enabling transcription and enabling drone-mounted laser 

Doppler vibrometer (LDV) for use in remote, non-invasive and covert intelligence gathering. The means 

by which this was achieved relied primarily on established signal processing techniques that have been 

applied in this article to vibroacoustic data for the first time. To test the performances of the various 

combinations of diarisation methods, new experimental were generated with an LDV measuring the 

surface vibration from an aluminium drink can in the proximity of two male speakers. Reciting a pre-

determined transcript and talking in turn, two cases were conceived with and without the deliberate 

addition of broadband white noise from a simple smartphone app. 

As an initial step, two methods for compensating for the noise in the LDV measurement were 

investigated. A Two-Step Noise Reduction (TSNR) technique was and was shown to outperform the 

Gaussian filtering technique by inspection of time and frequency domain data. Subsequently, a trained 

deep neural network-based feature extraction technique was utilised to produce features for speech 

frames that readily correlate to the different speakers and overcome the non-clustering behaviour of Mel 

Frequency Cepstral Coefficients (MFCC). Several clustering techniques were then tested on the 

extracted features in order to diarise the speech. This process was used for both the no noise case and 

the added white noise case, with each combination of noise reduction/clustering techniques being tested. 

In the case where no noise was added, the most effective combination was TSNR/AHC with a diarisation 

error rate of 6.13%, approximately half the error rate of the corresponding case where no noise 

suppression was used. For the added white noise case, the combination of TSNR then Gaussian bandpass 

filtering followed by AHC clustering was the most effective with an error rate of 11.9%, approximately 

a third of the error rate of the corresponding no noise suppression case. This technique combination also 
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transferred particularly well compared to the others, with only a ~2.5% decrease in performance 

compared to the no noise case.  

Future research should investigate improvements in performance possible through training of the 

deep neural network with noisy speech signals, perhaps those recorded with LDVs in place of the freely 

available 2000 sentences for male and female speakers used in this study. Furthermore, the potential for 

live speaker diarisation of LDV data via techniques such as real-time exponential filter clustering to 

enable real-time noise reduction and transcription of vibroacoustic intelligence should be completed. 

This will also necessitate optimising noise reduction and feature extraction techniques to reduce lag time 

as much as possible. A cost-benefit analysis of each of these various techniques should be conducted to 

better optimise for rapid, in-field implementation of speech diarisation. With the work presented here, 

another aspect of the challenge of covertly obtaining and interpreting vibroacoustic intelligence in 

remote and hostile environments has been investigated. 
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