New Product Bulletin

<u>Ku-band 60kW Magnetron</u> M 1 9 1 0

M1910 is a mechanically tunable frequency pulsed type Ku-band magnetron; designed to operate in the frequency range of 16.1 GHz to 16.7 GHz with a peak output power of 60kW.

It is a waveguide output type and is forced air cooled. A permanent magnet is packaged as part of the magnetron.

GENERAL CHARACTERISTICS

----ELECTRICAL----

Heater voltage (note 1). 12.5 V Heater current 2.5 A Minimum preheat time 180 sec

----MECHANICAL----

Dimensions See outline drawing
Net weight 2.6 kg approximately

Mounting position Any

Cooling Forced air.

Output WR62 waveguide

Output coupling UG-541/U

All specifications are subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

These ratings cannot necessarily be used simultaneously, and no individual ratings should be exceeded.

Min	Max	Units
_	14	V
_	10	A
180	_	sec
_	18	kV
11	18	A
_	288	kW
_	300	W
_	160	$\mathrm{kV}/\mu\mathrm{s}$
_	0.001	_
0.15	2.5	μs
-65	160	
-65	175	
_	1.5:1	_
0.05	0.41	MPa(abs)
[0.5	4.2	kg/cm ² (abs)]
	- 180 - 11 - - - - 0.15 -65 -65 - 0.05	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TEST CONDITIONS AND LIMITS

The tube is tested to comply with the following electrical specification:

<u>Test conditions</u>			
Heater voltage (preheat)	12.5	V	
Heater voltage (for test)	$9.1 \pm 10\%$	V	
Anode current (average)	8.5	mA	
Duty cycle	0.0006		
Pulse duration	$0.2 \pm 20\%$	$\mu\mathrm{s}$	
V.S.W.R. at the output coupler	1.05:1		
Rate of rise of voltage pulse (note 6)	160max	kV/μ	\mathbf{s}
Pressurizing of output circuit	$0.15 \sim 0.2$	MPa	
	$[1.5 \sim 2]$	kg/cm ²]	
<u>Limits</u>	Min	Max	
Anode voltage (peak) (note 3)	15	18	kV
Output power (average) (note 3)	36	_	W
Frequency	16080	16720	MHz
R.F. bandwidth at 1/4 power (note 3,5)	_	1.9/tpc	MHz
Minor lobes (note 3,5)	9	_	dB
Stability (note 2,3,4)	_	0.25	%
Heater current Ef=12.5V, tk=180sec min	2.2	2.8	A

All specifications are subject to change without notice.

New Japan Radio Co., Ltd.

LIFE TEST

<u>Life Test conditions</u>

Under the test conditions specified above.

The tube is deemed to have reached end of life when it fails to satisfy the following:

End of Life Criteria	Min	Max	
Output power (average) (note 3)	29	_	W
R.F. bandwidth at 1/4 power (note 3,5)	_	$2.5/\mathrm{tpc}$	MHz
Stability (note 2,3,4)	_	1	%

NOTE:

1. With no anode input power.

During high voltage operation it is essential to operate the heater according to the following schedule:

Heater voltage(for test) = $12.5 - 0.0232 \times Pi \text{ volts}$

Where Pi = average input power in watts.

The magnetron heater shall be protected against arcing by use of a minimum capacitance of 4000pF shunted across the heater directly at the terminals.

- 2. Pulses are defined as missing when the r.f. energy level is less than 70% of the normal energy level in the rated frequency range of the magnetron. Missing pulses are expressed as a percentage of the number of input pulses applied during the last 3 minutes of a test interval not to exceed 6 minutes.
- 3. These tests are carried out at

```
F1=16100 \pm 20 MHz,
```

 $F2=16400 \pm 20MHz$,

 $F3=16700 \pm 20MHz$.

- 4. With the magnetron operating into a V.S.W.R. of 1.3:1 phased to give maximum instability.
- 5. With the magnetron operating into a V.S.W.R. of 1.3:1 phased to give maximum spectrum degradation.
- 6. The rate of rise of voltage is the slope of the steepest tangent to the leading edge of the voltage pulse above 70% amplitude. Any capacitance used in the viewing system must not exceed 6.0pF.

All specifications are subject to change without notice.

Outline

All specifications are subject to change without notice.

Outline Dimensions

Ref	Min	Max	Ref	Min	Max	Re	f Min	Max
A	_	150.79	$\overline{\mathbf{Q}}$	(32	.13)	AI	E 3.175	4.749
В	_	42.84	${ m R}$	31.750	32.512	A(; (30.149)
\mathbf{C}	_	107.95	\mathbf{S}	35.16	36.22	AF	H 24.181	24.384
D	_	11.4	${ m T}$	_	56.36	A_{ϵ}	J 12.091	12.192
\mathbf{E}	64.03	64.54	U	_	93.25	AŁ	7.849	7.95
\mathbf{F}	7.02	7.26	V	(2	25.4)	AI	32.538	34.112
\mathbf{G}	_	87.32	W	20.955	21.285	AN	I 15.748	15.849
H	_	92.07	X	15.317	15.875	AN	N 12.585	7 12.6873
\mathbf{J}	70.39	70.89	Y	13.513	13.843	AI	25.172	25.374
K	_	10.69	\mathbf{Z}	5.944	6.756	A(Q #6	-32NC-2
${ m L}$	8.74	10.31	AA	4.166	4.419	AF	- 3	50.8
\mathbf{M}	(3	5.33)	AB	13.107	_			
N	_	68.14	AC	_	5.080			
P	5.72	6.98	AD	2.921	3.429			

(Dimensions in millimeters)

Outline Notes

- 1. Reference plane A is defined as a plane passing along the face of the mounting plate.
- 2. Reference plane B is defined as a plane perpendicular to plane A and passing through the center of the holes shown.
- 3. Reference plane C is defined as a plane mutually perpendicular to plane A and B and passing through the center of the holes as shown.
- 4. The reference point for anode temperature measurements is located on the anode block near the output section.
- 5. These dimensions define the extremities of the cylindrical section given by the dimension Y.
- 6. The heater terminal will be concentric with the cathode terminal within 0.25mm.
- 7. Mate with UG-541/U
- 8. These dimensions define the axis of the cathode terminal.
- 9. These dimensions define the center of the output waveguide.
- 10. Warning. A minimum clearance of 6cm must be maintained between the magnet and any other magnetic materials (magnets, steel tools, plates etc.).