
Remote video eavesdropping using a
software-defined radio platform

Martin Marinov
St Edmund’s College

A dissertation submitted to the University of Cambridge
in partial fulfilment of the requirements for the degree of

Master of Philosophy in Advanced Computer Science

University of Cambridge
Computer Laboratory

William Gates Building
15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

Email: mtm46@cam.ac.uk

June 11, 2014

Declaration

I Martin Marinov of St Edmund’s College, being a candidate for the M.Phil

in Advanced Computer Science, hereby declare that this report and the work

described in it are my own work, unaided except as may be specified below,

and that the report does not contain material that has already been used to

any substantial extent for a comparable purpose.

Total word count:

14,736

Signed:

Date:

This dissertation is copyright c©2014 Martin Marinov.

All trademarks used in this dissertation are hereby acknowledged.

Abstract

This dissertation presents a software toolkit for remotely eavesdropping video
monitors using a Software Defined Radio (SDR) receiver. It exploits com-
promising emanations from cables carrying video signals.

Raster video is usually transmitted one line of pixels at a time, encoded as a
varying current. This generates an electromagnetic wave that can be picked
up by an SDR receiver. The software maps the received field strength of a
pixel to a gray-scale shade in real-time. This forms a false colour estimate of
the original video signal.

The toolkit uses unmodified off-the-shelf hardware which lowers the costs
and increases mobility compared to existing solutions. It allows for addi-
tional post-processing which improves the signal-to-noise ratio. The attacker
does not need to have prior knowledge about the target video display. All
parameters such as resolution and refresh rate are estimated with the aid of
the software.

The software consists of a library written in C, a collection of plug-ins for
various Software Define Radio (SDR) front-ends and a Java based Graphi-
cal User Interface (GUI). It is a multi-platform application, with all native
libraries pre-compiled and packed into a single Java jar file.

Acknowledgements

I would like to thank my supervisor, Dr Markus Kuhn, for providing me with
the inspiration for the project. He also lent me his USRP 2 software-defined
radio device to start my research with, before I acquired my own USRP B200.
His help with shaping my understanding of the emanated signals and their
nature allowed me to come up with the algorithms and implementations that
are described in this project. He also tested the early iterations of the system
giving me feedback about its performance and user friendliness. He was also
able to come up with an analogue preconditioning procedure to improve the
signal-to-noise ratio of the USRP B200 hardware.

Contents

1 Introduction 1
1.1 History . 2
1.2 Related work . 3

1.2.1 Work of Wim van Eck 3
1.2.2 Work of Markus Kuhn 4
1.2.3 Work of Elibol et al. 5

1.3 Achieved goals and motivation 6

2 Background 9
2.1 Signal processing . 9
2.2 IQ sampling . 12

3 Methodology 17
3.1 Analogue video signals . 17
3.2 Generated radio wave . 19

3.2.1 Analogue video signal equation 19
3.2.2 Sampling . 19
3.2.3 Spectrum repetitions 20
3.2.4 Digital video signal equation 22

3.3 Reception . 23
3.3.1 Theory . 23
3.3.2 Practice . 24

3.4 Resolution and frame rate detection 25
3.4.1 Introduction to autocorrelation 27
3.4.2 Aliasing . 28
3.4.3 Number of lines in a frame 30
3.4.4 Errors . 31

4 Practical attack 33
4.1 Set-up . 33

i

4.2 Attack . 34
4.3 Conclusion . 39

5 Implementation 41
5.1 Hardware . 41

5.1.1 Ettus Research USRP 42
5.1.2 Mirics FlexiTVTMMSi3101 42
5.1.3 Windows ExtIO . 43
5.1.4 Antennas and preconditioning 43

5.2 Architecture . 44
5.2.1 The library . 45
5.2.2 Data flow . 46

5.3 Digital signal processing . 49
5.3.1 Synchronization detection 52
5.3.2 Tracking the frame rate 55
5.3.3 Autocorrelation . 56
5.3.4 Multithreading . 59

5.4 Experimental results . 60

6 Outlook and conclusions 63
6.1 Further research . 63
6.2 Conclusion . 65

ii

Chapter 1

Introduction

Interference is usually regarded as a simple annoyance. It is not difficult to

experience TV signal or radio station getting distorted because of a device op-

erating in the vicinity. Manufacturers have to meet certain requirements1 so

that their products do not cause interference with other systems. The truth

is that the emanation is linked to the way the emitting device works inter-

nally. The interference is generated by alternating currents due to switches,

oscillators and other electronic and mechanical components operating inside

the device. Therefore it carries some information about the internal state of

the device.

This means that a simple annoyance could potentially turn into a security

leak, broadcasting sensitive data into the wild. A clever attacker could dis-

tinguish different modes of operation or even, as shown in this report, recover

raw data that is being processed. The industry standards that manufacturers

follow to minimise interference say nothing about the data it may carry. A

very sensitive detector can pick up such signals at levels several magnitudes

lower than what standards specify as radiation limits.

In the case of video displays the issue is particularly important. Having a

secure, encrypted computer system that unintentionally broadcasts its dis-

1For the EU this would be EN 55022 [1].

1

play in clear text does not sound secure at all. The attacker could be fully

passive and the breach could never be detected. The repeating nature of the

signal, combined with the long video wires that act as antennas, mean that

such signals can travel very long distances, allowing practical attacks from

vans across the street [2].

However little research has been published into the open literature on the

topic. The main reason is possibly the expensive specialised equipment re-

quired to conduct experiments with compromising emanations. One of the

goals of this project is to address this issue and demonstrate that a prac-

tical attack could be undertaken using an affordable software-defined radio

receiver.

1.1 History

A compass needle points north when put next to a wire that has current

flowing in it. Turning off the current makes the needle twitch i.e. temporary

deflecting from the north direction. The same effect could be seen if the cur-

rent is turned back on. This phenomenon was noticed by the Danish physicist

Hans Christian Ørsted in April 1820 [3]. It shows that a changing electric

current creates a magnetic field and vice versa. Later this phenomenon was

utilised to create the electrical telegraph and allow for long distance commu-

nications.

However, the undesired effects of this phenomenon received almost no atten-

tion for a couple of decades. British army noticed crosstalk between telephone

wires during the Nile and Suakin expedition in 1884-85 [4]. The first reported

exploitation of the phenomenon was in 1914 when earth leakage from tele-

phone wires caused a lot of crosstalk. Listening posts were established in

order to intercept enemy messages. Next year valve amplifiers were utilised

which allowed for extended listening range [5].

The US National Security Agency conducted classified research with code-

name TEMPEST in 1972 [6]. The document was later partially declassified

2

in 2007. It describes unwanted emanations coming from a Bell-telephone

mixing device that was used for encryption. The signal allowed an attacker

to reconstruct the original plain text. Researchers at Bell Lab demonstrated

a practical attack from about 80 feet away that allowed reconstructing about

75% of the plain text being processed by the machine.

1.2 Related work

Computer monitors started to become widespread in the end of the 20th

century. Wim van Eck published the first unclassified technical analysis of

the security risks of emanations from computer monitors in 1985 [2]. The

next important publication regarding video emanations came from Markus

Kuhn nearly 20 years later in 2003 [7]. Later in 2013, Elibol, Sarac and Erer

demonstrated that emanations could be picked up from considerable distance

with a mobile and lower cost equipment [8].

1.2.1 Work of Wim van Eck

Electromagnetic Radiation from Video Display Units: An Eavesdropping

Risk? [2] was the first publicised research on the topic of emanations from

video monitors. Wim van Eck describes the similarities between contempo-

rary monitors and black and white TV sets. He explains that these could be

exploited to build a cheap eavesdropping device.

The document describes conducting a practical attack with a modified black

and white commercial television receiver. A demonstration is even done

in real world conditions outside the laboratory. Van Eck proves that the

attack is a viable security thread. He continues discussing possible sources

of emissions and ways of defending against such attacks.

However, there are some problems with his implementation:

3

• The modification of the TV receiver, although inexpensive, requires

advanced specialised knowledge to undertake.

• The fact that the device needs constant manual adjustments to keep

the oscillators in the receiver and transmitter in sync makes it difficult

to use in practice.

• Technology has changed dramatically since the publishing of the paper.

The attack will no longer work on modern monitors due to the variety

of video modes available which now differ significantly from broadcast

television.

• No room for further automated signal processing.

We can only speculate why there was no further research on this topic for

decades to come. Possibly the main reason was that a modified TV receiver

will no longer work with modern day video modes and commercial off-the-

shelf narrowband receivers can’t be used for that purpose either. As Kuhn

outlines, a researcher needed to have their hands on a very special military

grade wideband receivers that are expensive and have export restrictions [7].

1.2.2 Work of Markus Kuhn

Markus Kuhn was able to improve on the results achieved by van Eck with

his Compromising emanations: eavesdropping risks of computer displays [7].

In the technical report, Kuhn analyses the properties of the emitted waves

and the possible emitting circuitry. He describes equipment an attacker may

need in order to intercept and process the signal. He conducts experiments

and constructs a system for real time monitoring using an FPGA board,

a specialised wideband AM radio receiver and an off-the shelf VGA video

monitor.

However, there are some limitations of Kuhn’s real-time monitoring system:

• A researcher will need access to very expensive, export restricted equip-

ment in order to repeat his experiments. This equipment also often

4

lacks the mobility required for a practical attack.

• As with van Eck system, Kuhn’s solution still requires manual synchro-

nisation.

• Digital signal processing for improving reception of weak signals (like

time averaging) was not attempted in real time.

• An attacker will need to know the exact video parameters of the target

or will need to guess them.

The report also mentions possible ways of modulating hidden messages into

the signal. Kuhn discusses ways of defending against such attacks using hard-

ware and software solutions. He demonstrates automatic character recogni-

tion. The report includes experiments with optical eavesdropping of CRT

displays.

Overall his real-time monitoring system improves on van Eck one by sup-

porting a variety of modern video modes. Kuhn was able to prove that the

threads outlined almost two centuries ago are still valid. This sparked fresh

interest in the topic, resulting in a couple of additional related works to be

published afterwards. In a later paper [9], Kuhn focuses on digital displays

and explains that the same attack vector could also be used in that con-

text. In [10] he analyses high frequency emissions from flat-panel LCD TV

displays.

1.2.3 Work of Elibol et al.

In [8], Elibol, Sarac and Erer improve on the existing solution in that they

demonstrate a cheaper and more mobile system that could be used to real-

istically eavesdrop a target. They demonstrate an attack from the consid-

erable distance of 50 meters in real-time. They also mention an algorithm

that uses autocorrelation to allow for interactively determining the horizon-

tal synchronization frequency of the target display. Their implementation is

the first that do not rely on synchronisation pulses to deconstruct the video

5

image.

However:

• They did not attempt to reconstruct the vertical synchronisation fre-

quency. This requires the attacker to have some prior knowledge of the

target system.

• Their system is still not affordable, costing tens of thousands of pounds

[11].

A research that followed by Ghani et al. [12] later focused on emissions from

LCD touch screen displays of hand-held devices.

1.3 Achieved goals and motivation

The project aims to raise awareness of the potential security implications

of the compromising emanations from video monitors. It implements the

principles outlined in the related work section 1.2 using a completely new

approach: utilising a software-defined radio receiver. It also combines them

into a single portable software library. In its basic form, it allows tuning

to a video signal by manually controlling the video parameters, similar to

the implementation that van Eck, Kuhn and Elibol et al. have used in their

practical demonstrations.

The system builds on top of the existing research by having achieved the

following additional goals that were never done before:

• Uses an affordable 2, unmodified, off-the-shelf equipment portable enough

to simplify practical attacks.

• Almost no specialised experience is necessary to operate the system.

• No prior knowledge of the target machine video parameters is required.

The system can automatically estimate them remotely in real time.

2Costing only several hundred pounds [13].

6

• Reception of weaker signals is possible due to additional digital signal

processing.

• Eliminates the need for constant manual adjustments in order to keep

the picture steady on the screen.

• Open source license aiding further research on the topic.

The source code and the latest pre-compiled binaries could be obtained from

github.com/martinmarinov/TempestSDR. If user’s computer is running OS

X, Windows or Linux, a multi-platform statically pre-compiled Java jar file

is available for starting up the system in a couple of clicks 3.

The system supports a plug-in architecture that allows simplified develop-

ment of device drivers for any software-defined radio front-end. Currently

supported plug-ins:

• Pre-recorded file with raw IQ samples (multi-platform support)

• Mirics SDR (Windows support)

• UHD (Linux and OS X support)

• ExtIO (Windows support)

The system comes with a Java GUI but the underlying library could be used

independently by any other system as a shared or a statically linked library.

Furthermore the core is written in C and has no additional dependencies

making it portable and easy to compile.

Chapter 2 provides some background information on the physics behind the

radio wave generation process. It describes the basics of an SDR radio re-

ceiver. Chapter 3 explains the properties of the emanated signal and how

to reconstruct it. It goes on describing the automatic remote estimation of

video parameters. Chapter 4 demonstrates a practical attack, showing that

an attacker, with no prior knowledge of the target video display, can use the

3Some device drivers might not be available on all operating systems. At time of
writing the OS X binaries need to be compiled manually. Refer to the README for more
information.

7

https://github.com/martinmarinov/TempestSDR

system to receive the compromising emanations from a distance. Chapter 5

outlines the architecture of the library and the implementation details. Fi-

nally, in chapter 6, a conclusion is done with some suggestions on further

research.

However, the report does not discuss ways of limiting the amount of infor-

mation leaked via such compromising emanations. This is beyond the scope

of the project. The system could assist further research on the topic serving

as a rapid prototyping tool.

The report also does not claim that the experimental results presented are ex-

haustive. This is due to the fact that there is a wide range of software-defined

radio front-ends that are supported, each of them having different character-

istics. Therefore, the particular receiver used throughout the project will not

give a representative indication on the quality of the reconstructed signal.

This is why measurements are not provided as absolute value (i.e. voltages)

but rather as relative (i.e decibels). The results will very much depend on

the target video display as well.

There are also some inherent notes about the system:

• The performance of the system depends on the particular computer

hardware running the software.

• Difficult to compare to existing implementations due to the fundamen-

tal differences of the underlying architectures.

• Software-defined radio receivers have a higher noise figure due to lack

of high quality analogue filters compared to specialised wideband re-

ceivers. There is also interference caused by their internal IC circuits

or the USB/Ethernet/Power cables that connect them to the PC. How-

ever, Kuhn showed that in practice this could be greatly improved using

suitable analogue preconditioning.

8

Chapter 2

Background

A reader should have knowledge of undergraduate level mathematics includ-

ing calculus. Some equations and theorems are simply stated and then used.

If the reader wants to learn more about their derivations, they need to look at

a relevant textbook. Furthermore, it is assumed that the reader has a com-

puter science background and understands the basic concepts behind object

oriented programming and procedural programming. Familiarity with the C

programming language and some basic knowledge of Java would be helpful

as well. Understanding the basics of signal processing and Fourier theory is

also desirable but not strictly required.

2.1 Signal processing

The fact that changing currents in a wire induce currents in another nearby

wire comes straight from Maxwell’s equations [14]. A signal is just changing

current and/or voltage in the time domain. Let’s imagine we have a wire

that we call wire A. We want to transmit a signal over it. We connect it

to a signal generator that modulates some data I(t), so that current across

the wire at time t could be written as x(t) = I(t) sin(2πfct), where fc is

the carrier frequency. The argument of the sin, namely 2πfct, is called the

9

phase of the wave. Because of Maxwell’s equations, the changing current in

wire A will also generate a circular changing magnetic field around itself.

Let’s imagine that an adversary puts a wire B lying parallel to wire A. The

changing magnetic field from wire A will generate a changing current in wire

B. The adversary can measure the current in wire B as a function of time

x̂(t). They will end up with x̂(t) = Î(fc) · I · sin(2πfct + ϕ(fc)) where Î(fc)

is the attenuation of the peak amplitude and ϕ(fc) is the phase difference of

the signal in wire B. Those particular values would depend on the physical

properties of the system such as capacitance between the wires and their

resistance. Having measured the carrier frequency fc and by having some as-

sumptions about the signal, an adversary could potentially make an estimate

about I(t). This is the source of the compromising emissions we observe –

signals in wires unintentionally inducing currents in nearby wires, broadcast-

ing some information about the original signal. In practice signals are more

complex than just a single sin term, however Fourier analysis can help us.

The Fourier transform [15] allows us to see how the signal spectrum looks

like in the frequency domain. This will decompose the function into a sum

of sin and cos terms in the complex plane. The Fourier transform of g(t) is

defined as

G(f) = F {g(t)} (f) =

∫ ∞
−∞

g(t) · e−2πjftdt

and the inverse Fourier transform

g(t) = F−1 {G(f)} (t) =

∫ ∞
−∞

G(f) · e2πjftdf.

A sine wave of the form x(t) = sin(2πfct) will result in spikes X(f) =
1
2i

[δ(f − fc) − δ(f + fc)] at X(−fc) and X(fc) since X(f) = 0 everywhere

else. Therefore we can see that the Fourier transform basically gives an

indication of the frequency of the source signal. Note that the Dirac delta

function is defined as

δ(t) =

+∞, x = 0

0, x 6= 0
.

10

The Dirac delta functions have the so-called “sifting” property so that if

multiplied with a function g(t), it will sample out only a single value, namely∫ ∞
−∞

g(t)δ(t− T)dt = g(T).

We will also encounter the “Dirac comb” defined as:

XT (t) =
∞∑

k=−∞

δ(t− kT) =
1

T
X
(
t

T

)

which is basically an infinite number of Dirac delta functions repeating at

regular intervals of T . We can therefore “sample” a function x(t) at times

T by multiplying it with a Dirac comb. This will result in discrete sam-

ples being obtained from x(t) at regular intervals of T i.e. we will obtain

. . . , x(−2T), x(−T), x(0), x(T), x(2T),

We also need to mention convolution, denoted by the operator ∗. The

convolution of two functions x(t) and g(t) is defined as

(f ∗ g)(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ.

To illustrate how convolution works, consider convolving a function x(t) with

a Dirac delta

(
{x(t)} ∗ {δ(t− T)}

)
(t) =

∫ ∞
−∞

x(τ)δ(t− τ − T)dτ =∫ ∞
−∞

x(τ)δ(τ − (t− T))dτ = x(t− T) (2.1)

where we used the fact that the Dirac delta function has an even symmetry

δ(t) = δ(−t). This results in a new function x(t− T) which is a time shifted

copy of x(t) with a shift of T . Convolving with a Dirac comb could be shown

to produce infinite copies of x(t) at regular intervals T which are basically

summed together.

The term low-pass means a low-pass filter. This is a filter that acts on a

11

signal, and that allows components of the signal with frequencies f ≤ fmax to

pass through, attenuating the rest to 0. A high-pass filter allows frequencies

f ≥ fmin to pass through intact, attenuating the rest to 0. A band-pass

filter is a combination of a low-pass and a high-pass filter, allowing only

frequencies fmin ≤ f ≤ fmax, attenuating the rest to 0. A band-limited

signal is a signal which doesn’t have any frequency components f > fmax or

f < fmin. Such a signal would remain unchanged after applying a band-pass

filter to it with limits fmin and fmax. This is used for filtering out useful

signals from other interferences that are not part of the band-limited signal.

2.2 IQ sampling

A simple analogue to digital converter will measure the voltage in a wire by

producing fs samples per second (called sampling rate). This means that

it will produce a new sample every ts = 1
fs

seconds. It converts an analogue

signal a.k.a. continuous function x(t) into a series of samples. This could be

written mathematically as a multiplication with a Dirac comb

x̂(t) =
∞∑

k=−∞

x(t)δ(t− kT) = x(t) ·XT (t). (2.2)

If we want to detect a signal containing frequency components from 0 up to

fmax, then according to the Nyquist sampling theorem, we need to sample

with a sample rate fs > 2fmax. This usually gets impractical when fmax gets

large.

However, if we are only interested in a band-limited signal that lies from

fmin up to fmax, there is another solution. We can have a local oscillator

that runs at a frequency fLO = fmin+fmax

2
. The oscillator generates a signal

ALO ·cos(2πfLOt). The output from the local oscillator is multiplied with the

incoming RF (radio frequency) baseband signal (a.k.a. mixing). Say the RF

signal is x(t) = A(t) cos(2πfct). It has a frequency of fc and phase of 2πfct.

For simplicity, let’s put ALO = 2. After the mixing stage, our resulting signal

12

will be

x(t) · ALO cos(2πfLOt) = A(t) cos(2πfct) · 2 cos(2πfLOt) =

= A(t) cos
(
2π(fc + fLO

)
t
)

+ A(t) cos
(
2π(fc − fLO)t

)
. (2.3)

This results in a linear combination of two signals with frequencies called

heterodyne frequencies – the sum and the difference between the local oscil-

lator and the incoming frequency. A band-pass filter could be set up at an

IF (intermediate frequency) fIF. If any of these heterodyne frequencies falls

within the band-pass of the filter, the signal can go for further processing.

However, we encounter a problem: cos is an even function. Imagine we

now have another RF baseband signal, namely x̂(t) = A(t) cos
(
2π(2fLO −

fc)t
)
. After mixing with the local oscillator, the resulting signal would be

A(t) cos
(
2π(fLO − fc)t

)
which is equivalent to what we obtained for x(t) in

(2.3) for the difference fLO − fc signal. So we can’t distinguish x̂(t) from

x(t) if we decide to only filter out the difference part. This is called signal

imaging. It could be shown that a signal x̃(t) = A(t) cos
(
2π(−fc − 2fLO)t

)
will in turn generate a sum A(t) cos

(
2π(−fLO − fc)t

)
which again results in

imaging if we decide to keep the summation term fLO + fc from (2.3).

This method can preserve the amplitude of the wave and is widely used in

AM radio reception (in conjunction with some image rejection techniques

as well). However, it is obvious from the problem outlined above that the

method is not sufficient for uniquely detecting the phase of the incoming

wave. A solution to this problem is to multiply the incoming RF signal with

a phase shifted version of the local oscillator at an angle of 90◦ in parallel

with the mixing from (2.3). This means multiplying by −ALO · sin(2πfLOt).

After this secondary mixing stage, we would get

− x(t) · ALO sin(2πfLOt) = −A(t) cos(2πfct) · 2 sin(2πfLOt) =

= −A(t) sin
(
2π(fc + fLO

)
t
)

+ A(t) sin
(
2π(fc − fLO)t

)
. (2.4)

Now let’s put ϕ(t) = 2π(fc− fLO)t, and we only take the terms that contain

13

ϕ in (2.3) and (2.4), namely the difference terms using a band-pass filter of

width fs
2

. Then we can define

I(t) = A(t) cos(ϕ(t)) and Q(t) = A(t) sin(ϕ(t)). (2.5)

Sampling these continuous signals with an analogue to digital converter will

result in discrete values at times tfs . Let’s put An = A(nts) and ϕn = ϕ(nts).

Then we can define our resulting discrete samples as

In = An cos(ϕn) and Qn = An sin(ϕn). (2.6)

These I and Q samples form the basic principles of software-defined radio. I

and Q stand for in-phase and quadrature phase [16]. These terms refer to

the cos and − sin oscillator phases used for mixing. After the IQ samples are

obtained, they are received by a PC with a sample rate of fs.

IQ sampling allows monitoring frequencies from −fs
2

to fs
2

. To compare,

normal sampling would only allow a maximum frequency span from 0 to
fs
2

since signals are only sampled with real values (Nyquist theorem). This

would cause the imaging we discussed before. IQ sampling improves on the

simple Nyquist sampling using complex numbers – effectively doubling the

range.

Once IQ samples are obtained by software, further analysis of their phase,

frequency and amplitude could be done. This would allow any signal that is

band-limited from−fs
2

to fs
2

to be represented without aliasing. The following

identities relate the amplitude An, frequency ωn, and phase ϕn of a sample

n

An =
√
I2n +Q2

n =
√
A2
n · (cos2(ϕn) + sin2(ϕn)) (2.7a)

ϕn = tan−1
(
Qn

In

)
= tan−1

(
sin(ϕn)

cos(ϕn)

)
(2.7b)

ωn =
dϕn
dt

= ϕn − ϕn−1. (2.7c)

Refer to Figure 2.1 for geometrical representation of the outlined properties.

14

√ I n2+Qn
2
=An

Re

Im

ϕn=tan
−1 Qn
I n

I n=An cosϕn

Qn=An sinϕn

Figure 2.1: Graphical representation of an IQ sample n in the complex plane.
All points with the same amplitude An will lie on the circle showed in gray.
The angle that the sample vector makes with the real axis is the instantaneous
phase ϕ of the sample.

15

16

Chapter 3

Methodology

3.1 Analogue video signals

Almost all contemporary video monitors are raster based. The image is

transferred from the video controller to the display in scan lines that occur

at a specific rate. Each of these scan lines contains a number of pixels which

are continuously encoded as a time varying signal. This signal is generated

internally in the video controller by an oscillator which runs at the pixel clock

rate. The analogue signal is thereafter multiplied by the pixel intensities at

the specific time.

Let’s assume that the signal started transmitting at time t = 0, and each

video frame contains yt scanlines, each of which contains xt pixels. The

frequency with which frames are being generated is fv frames per second.

The duration of transmission of each individual pixel is

tp =
1

xt · yt · fv
. (3.1)

Note that at time t, frame number n(t) started transmission where

n(t) = btfvc. (3.2)

17

We can assume that the top left corner of a frame has coordinates (0, 0), a

pixel at position (x, y) in frame n(t) will start to be transmitted at time

T(x,y) = (n(t)xtyt + yxt + x)tp (3.3)

and will finish transmission before time

T(x+1,y) = T(x,y) + tp = (n(t)xtyt + yxt + x+ 1)tp (3.4)

at which the next pixel will start transmitting.

In practice xt and yt are determined by the screen resolution and fv is sim-

ply the screen refresh rate. For a typical screen resolution of width×height,
it is true that xt ≥ width and yt ≥ height. The reason is that video sig-

nals tend to have additional blanking intervals. This means more pixels are

transmitted than what is in the active video region. This gives opportunity

for the receiving monitor to synchronise its internal oscillator, calibrate its

colour levels, or in case of CRT, allow enough time for the electron beam to

return to the beginning of the next line on the screen. The synchronisation

timings for personal computers have been standardised by Video Electronics

Standards Association (VESA) [17].

In order to decode an individual pixel, the receiving monitor has its own

internal oscillator. It locks it to the pixel rate of the incoming signal either

via an external clock source or using the blanking intervals. Once it receives

the signal for an individual pixel, its amplitude (or binary content in case of

digital signal) will correspond to the intensity. This allows the monitor to

display the video in real time. If multiple colours are desired, they can be

transmitted separately on different wires in the same fashion.

18

3.2 Generated radio wave

3.2.1 Analogue video signal equation

Let’s assume the discrete pixels in an analogue video signal have intensities

vi (i ∈ Z) and are being transmitted for duration tp = 1
xt·yt·fv from (3.1).

Let’s also assume that the shape of the pixel is p(t) where p(t) = 0 for

|t| � tp
2

. We know that pixel i starts transmitting at time ti = itp (if we

assume that that pixel 0 was transmitted at t = 0). Also the amplitude of

the signal of the transmitted pixel is linearly dependant on its intensity vi.

Then the resulting video signal in the time domain will have the form

ṽ(t) =
∞∑

i=−∞

vip(t− itp) (3.5)

which is a continuous function. (3.5) can be rewritten as a convolution with

a Dirac delta function

ṽ(t) = p(t) ∗

(
∞∑

i=−∞

vi · δ(t− itp)

)
= p(t) ∗ v̂(t) (3.6)

where

v̂(t) =
∞∑

i=−∞

vi · δ(t− itp). (3.7)

Note that this results in infinitesimally short (in time) spikes at values exact

integer multiples of tp with amplitudes weighted to the pixel intensities at

that time. We can view (3.6) as the pixel shape being repeated at intervals

of tp modulated by vi.

3.2.2 Sampling

Note that (3.7) looks like the result of a continuous signal being sampled at

discrete points in time tp apart. If we call this hypothetical continuous signal

19

v(t), then we can rewrite the equation so that it reads

v̂(t) =
∞∑

i=−∞

v(t) · δ(t− itp) = v(t)
∞∑

i=−∞

δ(t− itp) = v(t) ·Xtp(t). (3.8)

The requirement is that if v(t) is sampled at discrete intervals itp, it should be

equal to the corresponding pixel values i.e. v(0) = v0, v(tp) = v1, v(2tp) = v2,

etc. This would mean that we can precisely obtain the samples from the con-

tinuous function by applying the series of Dirac delta functions. However,

now we would also like to be able to obtain the continuous signal by only

having the sampled values vi. This means that we need a unique perfect

reconstruction i.e. to be able to obtain all vi from v(t) and v(t) from all vi.

Under the assumption that v(t) is band-limited so that F
(
v(t)

)
(f) = 0 for

|f | < tp
2

, the condition is satisfied by the Whittaker–Shannon interpolation

formula [18]. It states that the continuous signal could be uniquely recon-

structed using sinc interpolation. If we apply it to our vi samples, it yields

v(t) =
∞∑

k=−∞

vk · sinc

(
t

tp
− k
)

(3.9)

where we use the definition sinc(x) = sin(πx)
πx

.We can verify that when t = itp,

then sinc(i − k) will always yield 0 except for when i = k in which case it

will be 1. Therefore we have proved that v(itp) = vi.

3.2.3 Spectrum repetitions

Now let’s revise some mathematical identities. According to the convolution

theorem [19]

F {g · h} = F {g} ∗ F {h} (3.10)

which reads: the Fourier transform of a multiplication of two functions is

equivalent to the Fourier transforms of the individual functions convolved

20

together. And vice versa

F {g ∗ h} = F {g} · F {h} , (3.11)

the convolution of the Fourier transform of two functions is equivalent to the

individual Fourier transforms of the two functions multiplied together. It

could be also shown that

F {Xk(t)} = F

{
∞∑

n=−∞

δ(t− nk)

}
=

k−1
∞∑

n=−∞

δ
(
t− k−1n

)
= k−1Xk−1(t) (3.12)

using the last three identities, we can write the Fourier transform of (3.6) as

Ṽ (f) = F {p(t) ∗ v̂(t)} = F
{
p(t) ∗

(
v(t) ·Xtp(t)

)}
=

1

tp
P (f) ·

[
V (f) ∗Xt−1

p
(f)
]

(3.13)

where P (f) is the Fourier transform of p(t), Ṽ (f) is the Fourier transform

of ṽ(t) and V (f) is the Fourier transform of v(t). This simply means that

the signal spectrum V (f) repeats at regular intervals throughout the radio

spectrum with a frequency of 1
tp

= xt · yt · fv. The intensities of the emission

at the different frequencies is determined by the shape of the pixel p(t).

For example, for a resolution of 800×600 @ 75 fps with xt = 1056 px, yt = 628

lines and fv = 75 Hz , we would have a frequency of 1
tp

= 1056× 628× 75 '
49.74 MHz. This means that we would expect to find such a signal centred

at DC, 49.74 MHz, 99.48 MHz, 149.2 MHz, etc.

In order to obtain the full video signal, we need to know what is the minimum

rate at which we need to sample the baseband. We saw from (3.13) that

V (f) repeats at the regular intervals. As a consequence from the Whittaker–

Shannon interpolation formula that we used to construct v(t), we know that

V (f) is band limited so that V (f) = 0 for all |f | ≥ 1
2tp

. Therefore we need

21

to have a receiver with a sampling rate of at least 1
tp

.

These findings agree with the results that Markus Kuhn obtained in his

analysis of the emanated signal who used a slightly different approach to

derive them [7].

3.2.4 Digital video signal equation

The analysis above was aimed at analogue signals such as the ones trans-

mitted via VGA. However the majority of contemporary laptops and similar

devices don’t simply modulate the pixel intensities as analogue voltage am-

plitudes. Instead, they send each pixel as digital bits using FPD-Link (Flat

Panel Display Link) to transmit LVDS (Low-voltage differential signalling).

For each pixel, 7 bits are transmitted over each of the three wires that de-

termine the resulting RGB colour.

Therefore each bit is transmitted for a duration of tb = 1
xt·yt·fv·nb

= tp
nb

where

nb is the number of bits per pixel which in case of FPD-Link is nb = 7.

This represents a bit stream of values ck (k ∈ Z). We defined the k-th value

being the (k mod nb) bit of the binary number that is used to represent the

analogue pixel intensity of pixel number
∥∥∥ k
nb

∥∥∥ (remember, the intensity of

pixel number i is denoted as vi).

Therefore, we can write the resulting analogue signal as

ṽ(t) =
∞∑

k=−∞

ckb(t− ktb)

where b(t) is the shape of a digital bit where b(t) = 0 for |t| � tb
2

.

Now assuming c(t) is the continuous version of ck as in the previous section,

we can do the same Fourier analysis on this signal, similar to (3.13) to obtain

F
{
b(t) ∗

(
c(t) ·Xtb(t)

)}
=

1

tb
B(f) ·

[
C(f) ∗Xt−1

b
(f)
]
. (3.14)

22

This means that we will also get repeating signal throughout the spectrum,

this time repeating with a frequency of 1
tb

= xt · yt · fv · nb. This is nb

times higher than the calculated repetition frequency for analogue signals.

For example, Markus Kuhn’s laptop was running LVDS with nb = 7 at a

video mode of 800× 600 @ 75 with xt = 1056 px, yt = 628 lines and fv = 75

Hz. He reports receiving a harmonic emanation at about 350 MHz1 [9]. We

can see that this agrees with the theoretical predictions since for his case
1
tb

= 1056 · 628 · 75 · 7 ' 348.2 MHz.

However, the signal is now wider. We would need a receiver that can pick up

|f | ≥ 1
2tb
≡ nb

2tp
in order to reconstruct individual bits. In practice, we can

still use the same approach that we used for analogue video. We can have a

receiver that can pick up |f | ≥ 1
2tp

. This is essentially equivalent to applying

a low-pass filter – we will no longer be able to distinguish individual bits.

Instead we will obtain an averaged out value for each pixel that depends on

the underlying binary data that is used to represent its intensity. The variety

of colours available with significantly different bit patterns means that we can

still extract a lot of visual information from the reconstructed image.

3.3 Reception

3.3.1 Theory

Firstly, in order to receive a copy of the video signal, we will need to apply a

band-pass filter centred at a multiple of the pixel frequency. The width of the

band-pass needs to be the same as the band limited video signal we want to

eavesdrop. Secondly, we need to generate an internal clock that runs at the

pixel rate and use that to obtain the estimated pixel intensities. Luckily the

first step can be done by an AM (Amplitude Modulation) receiver. Unfortu-

nately the signal bandwidth is much wider than what a typical off-the-shelf

1His actual hardware is transmitting two pixels at a time, resulting in a factor of 1
2

being applied to the end result. Therefore the first harmonic he could actually pick up
lies at 175 MHz.

23

AM receiver can handle.

However some software-defined radio receivers can provide the required band-

width. The Ettus Research USRP B200 can provide more than 50 MHz of

real-time bandwidth which covers what is required to eavesdrop most video

signals. Software-defined radios provide the radio samples as a quadrature

vector which angle relates to the instantaneous phase in relation to the inter-

nal hardware oscillator of the hardware. The size of the vector is proportional

to the received amplitude for each sample (refer to Section 2.2 for more in-

formation). For AM reception, we do not need the phase information since

the video signal is being transmitted with a constant frequency. Therefore

we can make a simple AM demodulator by taking the length of the vector

of each sample. When our digital sampling rate matches the pixel rate, each

sample will contain an estimate that relates to the average pixel intensity

between time ti and ti+1. For digital signals, it would be related to the bit

pattern of the binary value (although this relation may not be unique) that

represents the intensity for the current pixel.

3.3.2 Practice

The VESA standard specifies an allowed frequency tolerance for fv of 0.5%.

Therefore due to hardware limitations, we might not be able to accurately

tune the receiver sampling rate with enough accuracy to match the trans-

mitted pixel rate. This means that some re-sampling needs to be done in

software in order to create a new digital signal that matches as close as

possible the transmitted pixel rate in which each sample corresponds to a

pixel.

It is also true that we might be able to recover a lot of information from

a signal even if our receiver is not capable of sampling the full width of

the video spectrum. This means we will only receive v(f) with a band-

pass filter applied to it. In this case digital re-sampling could interpolate

the received samples to fit into multiple pixels. Therefore it is useful to

introduce a measurement κ of how accurate we can reconstruct pixels of

24

v(t). This measurement can be the number of input samples that have gone

into constructing a single output pixels. Therefore

κ = fs · tp =
fs

xt · yt · fv
(3.15)

whereas before, fs is the receiver sampling rate. If κ ≥ 1, then we can de-

construct individual pixels. If κ < 1 we are looking at a band-passed version

of the signal and consecutive reconstructed pixels will have some interdepen-

dencies. Please refer to Figure 3.1 for a visual comparison of different values

of κ.

Another possible source of distortions is the usage of multiple wires to trans-

mit colour information. These signals interfere with each other and the re-

sulting pixel intensity becomes a complicated mix of the signals generated in

these wires. Therefore colour information would be very difficult to obtain.

Nevertheless the outlined strategy allows an eavesdropper to detect changes

in colour since this would result in different signal amplitudes arriving at the

receiver for each pixel.

3.4 Resolution and frame rate detection

The outlined method for decoding the video stream relies on us having the

exact values for xt, yt and fv. This is not very practical for a real world attack.

We would require the adversary not to have any knowledge of the target

system whatsoever. Therefore we would need to infer all these parameters

remotely by exploiting some typical characteristics of a video signal. Namely

the fact that the signal is periodic.

As we have already seen, a video signal consists of video frames with width

xt and height yt. The speed at which such frames are transmitted is fv.

However most of the time any two consecutive frames would be identical.

This would be the case if the victim is looking at static text on the screen.

Therefore we can regard the transmitted signal as a repeating periodic signal

25

(a) Transmitted image (b) κ = 1.003

(c) κ = 0.753 (d) κ = 0.502

(e) κ = 0.251 (f) κ = 0.125

Figure 3.1: The transmitted image (a) is sent via a standard HDMI to VGA
converter. The emanations are coming from the digital video signal. The
resolution is 800 × 600 @ 60 with xt = 1056, yt = 628 and fv = 60.11.
Each of the following screen shots represent an eavesdropped version from a
distance of 1 m with the receiver (USRP B200) running at different sample
rates: (b) 40 MHz, (c) 30 MHz, (d) 20 MHz, (e) 10 MHz and (f) 5 MHz

26

of a single frame. Which means if we analyse the signal for repeating patterns

we should be able to spot the repeating video frames in it and use that to

estimate fv.

3.4.1 Introduction to autocorrelation

A good way of estimating fv, would be by calculating the discrete autocor-

relation [20] of the incoming signal which is defined as

Rvv(j) =
∞∑

i=−∞

viv̄i−j (3.16)

where v̄ is the complex conjugate of v and j is the samples lag. In our case

v is the set of real samples, therefore v̄ = v. Basically the autocorrelation is

a measure of the similarity of a signal with itself shifted by a lag. The higher

the value of Rvv(j) is, the more similar the function is at that lag. Therefore

by analysing Rvv(j), we would be able to spot any repeating patterns inside

vi.

Figure 3.2 shows the discrete autocorrelation Rvv(j) of a video signal that

was captured using the Mirics USB dongle at 8 MHz (i.e. 8, 000, 000 samples

per second) sampling rate. The vertical axis is logarithmic, containing the

decibels of the autocorrelation i.e. 10 log10(Rvv). The horizontal axis contains

the time lag in milliseconds. This was converted from the lag in samples j

by x = j
fs

.

The particular example consists of 524, 288 samples which is 65.536 millisec-

onds of recording. This allows us to estimate the autocorrelation up to half

of it, namely 32.768 milliseconds. The reason is that Rvv(j) = −Rvv(j) due

to symmetry. We can see a peak at 16.672 milliseconds which corresponds to

a frequency of fv = 1
0.016672

= 59.98 Hz. This is our estimate for fv. And it

makes sense, 60 Hz is a common refresh rate for contemporary video displays.

27

-40

-30

-20

-10

0

10

0 5 10 15 20 25 30

P
o

w
er

 (
d

B
)

Time (ms)

Figure 3.2: Autocorrelation of a signal

3.4.2 Aliasing

We should be able to see the peak repeating at 2×16.672 = 33.344 ms. This

is analogous to comparing every two consecutive frames with every two other

frames. However, as this falls just outside our window, 33.344 > 32.768, it

would be seen as an alias at 65.536− 33.344 = 32.192 ms. The same applies

for the third peak at 3 × 16.672 = 50.016 ms which would be comparing

each block of three consecutive frames with the next three. This will alias

at 65.536 − 50.016 = 15.52 ms. This explains the second small peak we see

on the left of the main one at 16.672 ms but we see that the difference in

its power is already several decibels lower. Therefore any further aliasing

induced would be even smaller.

It is therefore important to choose the number of samples to be used for the

autocorrelation wisely in order to avoid aliasing. We need to have enough

full frames in our data so that the autocorrelation can physically work. The

28

minimum frequency we can get from an autocorrelation is 2s
N

where N is the

total number of samples that we are doing the autocorrelation on. It could

be easily shown that the second alias is

f̂2(f) =
1

2
fmin
− 2

f

=
1

N
fs
− 2

f

(3.17)

where f is the frequency we are going to see the alias for. Therefore if we

want to be able to pick up a repeating pattern of at least fmin = 50 Hz, we

would need 2s
50

which in our case is 320, 000 samples. However having such

few samples, if we observe a signal at 85 Hz, we would discover a strong alias

at
(

320,000
8,000,000

− 2
85

)−1
= 60.714 Hz which would be very misleading and will

look like a legitimate signal at 60.714 Hz.

Let us assume flow ≤ fv ≤ fhi. In order to minimise aliasing, we can try to

keep the second alias f̂2(fsrc) outside this range. Therefore we need to pick

the number of samples so that

flow ≥ f̂2(flow) ≡ 1
N
fs
− 2

flow

or fhi ≤ f̂2(fhi) ≡
1

N
fs
− 2

fhi

which means that

N ≥ 3
fs
flow

or N ≤ 3
fs
fhi

and don’t forget that in the same time we have the condition

N ≥ 2
fs
flow

so in the end, in order to eliminate the second alias in the desired region

from flow to fhi in the autocorrelation, we would need to choose the number

of samples to be

N ≥ 3
fs
flow

. (3.18)

To paraphrase this result, we will need to do the autocorrelation on at least

3 frames worth of samples for the lowest frequency in our range flow to avoid

second order aliasing interfering with our plot.

29

3.4.3 Number of lines in a frame

We were able to estimate fv using an autocorrelation and eliminate aliased

signals in the frequency window that we are looking to detect repetitions.

However, we still have not estimated neither xt, nor yt. As a matter of fact

we might not be able to measure xt at all. The reason is that xt might

be a continuous signal and could potentially contain any number of pixels.

However, each line of xt pixels repeat yt times in a frame which includes the

blanking intervals. Therefore we can use the repeating nature of the blanking

intervals to estimate yt from the autocorrelation plot.

For this reason we need to zoom in to our plot. Refer to Figure 3.3 which is a

zoomed out version of the figure we saw in the previous subsection. If we still

have our allowed fv window between flow and fhi, then we can assume that

yt also spans between hlow and hhi. We would therefore expect to see a peak

between 1
fhi·hhi

and 1
flow·hlow

milliseconds. If we detect a peak at time tpeak,

then this would correspond to yt =
∥∥∥ 1
tpeak·fv

∥∥∥ where ‖ represents rounding to

the nearest integer. Note that we should have already estimated fv.

Our plot shows a peak at 0.017875 milliseconds. Since we already estimated

fv = 59.98 Hz, then yt =
∥∥ 1000
0.017875×59.98

∥∥ = 933 lines. If we look at a list of

VESA video modes, we can see that there is a conveniently close video mode

that corresponds to yt = 933 and fv = 59.98. It is the 1440× 900 @ 60 video

mode with xt = 1904 pixels, yt = 932 lines and fv = 60 Hz. Therefore we

could use the value of xt = 1904 for our estimate of the number of pixels in

a row. This will keep the aspect ratio correct.

We should not worry about aliasing since the number of samples in the

autocorrelation is much bigger than our range. We can see on the plot the

autocorrelation values repeating for each two lines, each three lines, etc. This

results in a number of peaks repeating with the rate at which individual lines

repeat in the video signal.

30

-40

-30

-20

-10

0

10

0 0.01 0.02 0.03 0.04 0.05 0.06

P
o

w
er

 (
d

B
)

Time (ms)

Figure 3.3: Zoomed in version of 3.2

3.4.4 Errors

There is a limit on how accurately one can determine fv and yt using the

outlined autocorrelation method. This depends on the sampling rate of the

device. The uncertainty in t as determined by the autocorrelation is δt = ts.

We know that f = t−1. So the uncertainty in f is

δf =

√(
∂f

∂t
δt

)2

= f 2δt = f 2ts.

Therefore we can only say that if there is a peak at tx in the autocorrelation,

then we have a repeating component in the signal with a frequency fx ± δf .

The accuracy at which we can determine yt depends both on the accuracy of

fv and tpeak and can vary. Furthermore yt should be rounded to an integer (we

can only display an integer number of lines on a PC screen) which introduces

31

further errors. Our definition for yt is

yt =

∥∥∥∥ 1

tpeak · fv

∥∥∥∥± (δyt + 0.5)

where 0.5 comes from the rounding. Also the uncertainties in tpeak and

fv are δf since both are being read from the same autocorrelation plot in

milliseconds. In order to do error propagation, we need to take the partial

derivatives with respect to fv and tpeak

∂yt
∂fv

= − 1

tpeak · f 2
v

and
∂yt
∂tpeak

= − 1

fv · t2peak
.

So for the uncertainty in yt, we have

δyt =

√(
∂yt
∂fv

δfv

)2

+

(
∂yt
∂tpeak

δtpeak

)2

=√(
∂yt
∂fv
· f 2

vδt

)2

+

(
∂yt
∂tpeak

δt

)2

=

√
1 +

1

f 2
v

× ts
t2peak

. (3.19)

We can also observe that the larger the sample rate gets, the smaller δf and

δt get.

32

Chapter 4

Practical attack

Before explaining how the software works internally, let’s present a demon-

stration of a practical video eavesdropping attack. Its main aim is to show

the ease with which such an attack could happen. In the meantime this will

give an opportunity to explain the characteristics of the received signal and

how they are exploited.

The demonstration is undertaken in controlled conditions. However, in or-

der to make it as similar to a real-world attack as possible, we will assume

the adversary has no knowledge of the victim’s system. We will estimate

the frequency at which the emission strength peaks. We will then analyse

the signal to detect the resolution and refresh rate of the screen. We will

afterwards lock onto the signal and try to recover the original video.

4.1 Set-up

The choice for a front-end for this demonstration is a USRP B2001. Depend-

ing on the particular requirements, an attacker might prefer mobility over

accuracy and choose the smaller Mirics FlexiTVTMMSi3101 USB Dongle.

1Refer to 5.1 Hardware for discussion on currently available devices.

33

However, for this demonstration we will attempt to obtain the highest possi-

ble resolution. Therefore we need a radio that is capable of obtaining a wide

bandwidth. This makes the 32 MHz of bandwidth that the USRP provides

a much better choice than the 8 MHz available from the Mirics dongle.

For an antenna, we will choose the portable MaxView active TV antenna. It

is designed for digital television reception and has a built-in amplification.

This is very useful for lifting signals above the USRP B200 noise floor. For

better reception from longer distance, a suitable log-periodic antenna, an

amplifier and a band-pass filter could be used for preconditioning. This can

make the system less portable. However, the MaxView antenna is a cheaper

choice and in the end did the required job.

You can view the equipment used by the adversary, the target and their

mutual position on Figure 4.1. We now take the place of the adversary that

has set up their system, connected the UHD to the laptop and the antenna

to the UHD and has launched the JTempest.jar executable.

4.2 Attack

We should now see the GUI as in Figure 4.2. In order to start the USRP

B200, we need to go to File and choose Load USRP (via UHD). We can enter

the command –rate=8000000 which will set the sampling rate to 8 MHz.

If no errors occur, we will see the “Start” button becoming active. Once we

press on the button, the system will start processing the data sampled by

the USRP.

If we knew the resolution, frame-rate and the frequency at which the em-

anations from the target occur, we could enter them directly into the GUI

and the story would end here. However, since we don’t, we need to estimate

them. That’s why we started with a low sampling rate (8 MHz). Such mode

will not be good for actual eavesdropping since it will not provide the full

resolution, however this will allow for improved interactivity and for faster

autocorrelation results.

34

A

T
7м

The floor plan

The hallway (triangle)

Target (T)

Adversary (A)

Figure 4.1: The figure represents the set-up of the attack. The floor plan
shows the position of the attacker and the target. The distance between them
is 7 m and the signal passes through two solid walls. The target is a standard
PC, connected to a normal VGA monitor. The adversary uses a laptop, a
USRP B200 and a MaxView TV antenna. All is inexpensive off-the-shelf
equipment. The set-up also allows for great mobility.

35

Menu bar

Video area

Framerate
detection

Video height
detection

Start / stop

Video
parameters
selection

Image panning

Device controls
Frame averaging

Autocorrelation
controls

Figure 4.2: The interface of the program. The “A” button will enable the
frame-rate tracking feature. The “Auto” button will attempt to detect syn-
chronisation regions. The “AUT” button will try to automatically detect the
resolution and line rate (video height). The scale on the right of the video
shows in real-time the grey-scale values that map to a particular sample
intensity.

First, we need to estimate the frequency at which the emanations from the

target peak. To do that we need to keep an eye on the autocorrelation plot

and keep changing the frequency until a promising signal appears. There

would be a lot of background signals so this would be challenging. However,

most video displays run at known refresh rates of 60 Hz, 75 Hz or 71 Hz. If we

spot a signal near these values, then we know we are on to something. Figure

4.3 shows that there might be a possible signal onto the current frequency of

125 MHz.

In order to set the video parameters to the frequencies in those spikes, we just

need to click with the mouse on top of them. We can inspect the frequency

at a certain position by hovering the mouse on top. Once we select the best

candidate for the refresh rate, we can now choose the best candidate for the

line rate as well. This defines the height of the video frame. Note that we can

try the “AUT” button which will simply choose the highest values of the two

plots. However, when the signal-to-noise ratio is low, other repeating signals

36

Figure 4.3: We can see two spikes in the top autocorrelation plot around 60
fps that is responsible for the target refresh rate.

on the same frequency may be more prominent so manual adjustment would

be required. The autocorrelation plots are interactive and the user can zoom

with the mouse wheel and pan around for choosing small details in the plots.

Now we click on the 60.3 fps spike on the top plot and the 628 px spike on

the bottom one.

If we turn on the “Lpass” averaging, we will get rid of most of the noise and

improve the signal-to-noise ratio bringing up the weak video signal (Figure

4.4). We can clearly see the synchronisation pulses. We are also only seeing

rapid changes in colours, so we know this is an analogue signal. Digital signals

will also show activity in regions that have constant intensities. That’s why

digital signals could be eavesdropped easier – they emit more energy because

of the sharp edges of the individual bits. However, we are apparently dealing

with a VGA signal with resolution 800 × 600 @ 60. Note that the system

37

Figure 4.4: We can see two spikes in the top autocorrelation plot around 60
fps that is responsible for the target refresh rate.

auto-detected it (it shows up in the list underneath the “Stop” button).

We see another autocorrelation peak at 61 Hz. This is aliasing due to the two

strong synchronisation lines that appear in the video (you can see them on

the left). By clicking on the other peak, we can indeed confirm our suspicion

that it is just aliasing. Now that we have a signal, we can try to improve

it. Since the signal is strongly polarized, changing the antenna angle and

position can have a dramatic effect on the end result. Now we can increase

the sampling rate of the USRP to improve the resolution of the obtained

image.

38

4.3 Conclusion

If we obtain a good enough signal, we can reconstruct text from the screen.

Compare on Figure 4.5 the actual image shown on the target screen and

the best estimate obtained from the hallway just outside the room with the

target with 32 MHz sampling rate. We can in fact clearly read the text in

the text editor.

This shows that a practical attack is possible even from an adversary on a

low budget with very little knowledge of the DSP. We also demonstrated

that we can deduce the video parameters of a screen remotely in a real-world

environment. A more sophisticated attacker, could use better equipment

with a lower noise floor and higher antenna gain to undertake such an attack

from an even further distance. This should open the discussion about what

could be done to prevent compromising emanations leaking from cables.

39

(a) Screen shot of the target monitor.

(b) Best result (blanking cropped out).

Figure 4.5

40

Chapter 5

Implementation

5.1 Hardware

Figure 5.1: From left to right: MSi3101, AverMedia antenna and USRP B200

There is a wide range of off-the-shelf hardware front-ends that could be used

with the system. An attacker can choose one depending on their require-

41

ments. A quick overview of some supported available hardware is outlined

below.

5.1.1 Ettus Research USRP

Maximum sampling rate: 56 MHz (for B200)

Frequency Range: 70 MHz - 6 GHz

Dimensions: 97 mm × 155 mm × 15 mm (for B200)

OS support: All platforms (Windows support via ExtIO)

Dropped samples detection: Yes (Except on Windows)

The maximum sampling rate varies between the different models as well as

the dimensions. I have used the USRP B200 throughout this report.

Pros:

• A variety of models available in multiple price ranges.

• High enough sampling rates for most eavesdropping scenarios.

Cons:

• Some models need external power supply. B200 in particular does not.

• May need some analogue preconditioning for good eavesdropping re-

sults.

5.1.2 Mirics FlexiTVTMMSi3101

Maximum sampling rate: 8 MHz

Frequency Range: 64 MHz - 240 MHz and 470 MHz - 960 MHz

Dimensions: 25 mm × 80 mm × 10 mm

OS support: Windows only

Dropped samples detection: Yes

It is the best low end solution but it won’t achieve the receiving distance or

the quality that one would get with a higher end device.

42

Pros:

• Portable and unsuspicious looking – just a typical USB dongle.

• Inexpensive – under £100.

Cons:

• Low sampling rate and low sensitivity. Good eavesdropping results

would be obtained if the target screen resolution is low enough so that

κ (refer to (3.15) for definition) is reasonable and the signal is strong

enough.

• Tuning gap between 240 MHz and 470 MHz. If the emanations fall

within this range, the Mirics dongle will fail to pick them up.

5.1.3 Windows ExtIO

The plug-in supports variety of devices. It is a standard plug-in that is used

in a number of software-defined radio solutions. However, it does not take

into account for dropped samples. This means that if sample loss did occur,

this would be very visible on the screen rendering eavesdropping practically

difficult. It also only runs on Windows.

5.1.4 Antennas and preconditioning

For the experiments in this report, I have either used a small, dual-pole

antenna by AverMedia, or an active antenna by MaxView, both designed

for digital TV reception. This showed to be enough for eavesdropping from

an adjacent room to the one containing the target device. However, for

impressive demos that could potentially operate from several tens of meters,

some additional analogue preconditioning and professional antennas need to

be used.

Kuhn experimented with a tunable band pass filter and a 30 dB antenna

amplifier before the B200 to improve the noise level. He comments that the

43

set-up delivers comparable quality to the highly specialised Dynamic Sciences

R1250 receiver that he used in his experiments [7]. He also used a professional

log-periodic antenna for improved reception.

5.2 Architecture

The whole system consists of two parts - a library (called TSDRLibrary)

and a host program. The library is the main deliverable of the project. It

is responsible for decoding the emanated signal – from obtaining the data

from the hardware to processing it. However it can’t run as a stand-alone

application. It needs a host program to control it via an API (defined in

TSDRLibrary.h) and to receive the decoded video frames. The host program

could be written in any programming language that can use native libraries.

However, the package also comes with a pre-built Java based host program.

The provided implementation allows for full manual control over the library

via a graphical user interface (GUI). It is very useful for real-time monitoring

and interacting asynchronously with the library while the processing is taking

place. In practice it is a single executable that has TSDRLibrary built in.

This is what the report has been referring to as “the system” so far – the

Java GUI combined with TSDRLibrary. An end user would never notice that

there is another layer underneath the GUI. All the examples and screen-shots

given here have been obtained via the provided Java based GUI while it is

controlling TSDRLibrary.

The whole system was designed and developed from scratch entirely by me.

It does not rely on or include any third party libraries 1. Having no depen-

dencies makes it extremely lightweight, portable and easy to compile.

1Some IQ source plug-ins may depend on a driver library for the particular device they
serve. However, the file input plug-in has no external dependencies, so the system can in
fact decode pre-recorded signals without needing any additional software.

44

5.2.1 The library

The library relies on plug-ins (called TSDRPlugin) to provide a stream

of IQ samples and means to control the hardware in real time. The data

sources are shared libraries that are dynamically loaded at runtime by the

TSDRLirbary.

The host program’s job is extremely simplified. In a nutshell, it sets up

the library and runs it. Every time there is a new video frame available, a

callback would be invoked via TSDRLibrary so that the host program could

process the frame (display it, save it, etc). An expected sequence of API

calls to get video data would be:

1. Dynamically load the library (if it is not statically compiled with the

host program) using the methods provided by the specific operating

system. This will give the host program access to the TSDRLibrary

APIs.

2. Allocate an instance of the processing pipeline with tsdr init.

3. Set target display resolution and frame rate with tsdr setresolution.

This could be called interactively while the processing is running to

dynamically change the parameters at runtime.

4. Load a pre-compiled plug-in by invoking tsdr loadplugin specifying the

location of the shared library that represents the plug-in and any pa-

rameters that the user wants to pass to the plug-in. This plug-in will

talk to the hardware and provide a steam of IQ data to the library for

processing.

5. Start the processing by running tsdr readasync. The current thread

would be used to start polling the hardware so it will block until pro-

cessing has finished.

6. The tsdr init and tsdr readasync allow for callback functions to be reg-

istered with TSDRLibrary. The callbacks are just C functions that

reside in the host program that will be called as soon as a new video

45

frames, autocorrelation data or other messages are available. Process-

ing data within those callbacks is not thread safe.

7. Call tsdr stop to stop the processing and unblock the thread that orig-

inally called tsdr readasync. Soon after calling tsdr stop, the callbacks

will stop receiving data.

If the plug-in supports it, tsdr setbasefreq can be used to set the base fre-

quency of the hardware device. A few other API commands allow the host

program to do manual position adjustment of the video frame, control the

amount of low-pass applied and set the gain of the hardware device (if sup-

ported). There are some advanced features that could be turned on using

the tsdr setparameter API call which include the automatic frame borders

detection, automatic frame rate synchronisation and a few other tweaks to

the digital signal processing pipeline. It is up to the host program to use the

autocorrelation to determine resolution and frame rate which gives enough

room for flexibility.

Each API call can return an error code in case it fails. The host ap-

plication can also read a verbose version of the error message using the

tsdr getlasterrortext API call. This allows for intuitive and simple error han-

dling.

5.2.2 Data flow

Figure 5.2 outlines the data flow and data processing paths within a typical

set-up of the system2. It goes through the following steps:

1. RF data is converted into IQ samples in the SDR Device. These sam-

ples are sent to the PC for processing.

2. The hardware driver in the OS receives the samples and possibly queues

them.

2If instead the data is read from a file or network, we can regard the “Software - defined
radio hardware” as the hard drive or the network layer.

46

Figure 5.2: Data processing in the system using the Java GUI. Bold text
represents different native threads. White background means code is written
in C. Black background means code is written in Java. Gray background is
for operating system related processes and external hardware. Arrows with
white ends represent points where data could be dropped due to performance
reasons. Arrows with black ends represent transferring full data that was
processed in the previous step. The star on the Post processing stage means
that the outlined sub-stages could be executed in different order depending
on user preferences.

3. A TSDRPlugin either continuously polls the driver or receives a call-

back from it as soon as a block of data is available. It obtains the block

of data and sends it to the TSDRLibrary via a callback.

4. The IQ data is inside TSDRLibrary. AM demodulation is done on

the data. This runs in a separate thread so that the TSDRPlugin

will have the chance to receive new data from the device as quickly

as possible. The demodulated data is provided to the Autocorrelation

thread that will calculate the autocorrelation of the incoming signal and

notify the host program. If TSDRPlugin reports any dropped samples

between calls, the autocorrelation is reset (we only want continuous

data accumulated for autocorrelation).

5. The re-sampling logic runs in a separate thread. It matches the rate of

the data from the sampling rate of the device fs to the expected rate

of xt · yt · fv.

47

6. Here some digital signal processing is done in a separate thread to

enhance the signal. The order with which the operations are applied

depends on the settings that a user will supply. By default the syn-

chronisation pulses of a video frame are detected first. If the user has

selected auto tracking, the current position of the horizontal blanking

interval is compared with the last one. This gives a rough estimate on

whether ffps is off by a couple of parts per million from the real value.

The process allows for keeping the picture steady on the screen. Then

low-pass in the time domain is done (a.k.a. motion blur) to de-noise a

weaker signal using averaging. Finally, an auto gain algorithm makes

sure that the full dynamic range of the signal is equally utilised for the

final image.

7. Here the host application receives a video frame via a callback. It is up

to the host application to determine what to do with it. It can take as

much time as it wants since this runs in a separate thread.

8. The signal leaves the library and goes into the host application. In

this example this is our Java GUI. A Java Native Interface (JNI) code

marshals the incoming data to a Java friendly format which is then

passed to the Java Virtual Machine and the particular class instance

that has invoked the whole processing.

9. Once the data arrives at the TSDRLibrary class instance, the main GUI

will receive a notification via a callback and will dispatch the bitmap

to be drawn on the screen.

The biggest problem faced was synchronising dropped samples. To illustrate

the issue, imagine we are receiving samples at a rate of 50 mega samples per

second. If each sample contains two floating point values (the I and the Q

component), each of which being 4 bytes of data, then the total data rate

coming from the hardware would be 8 × 50 = 400 megabytes per second!

This is a huge amount of data. Since the configuration is running on a non-

real-time operating system, the CPU might not be able to cope with such a

fast stream. Furthermore there could be some hardware limits enforced as

48

well, for example maximum throughput of the data bus that is being used

to transmit the data from the device to the PC.

This means that we will have a lot of dropped samples coming from the

device. At the same time, even if we don’t have any dropped samples, the

CPU can still fail to process all the desired data in real-time. This means

that, in order to have the system run interactively, some samples that can’t

be processed in real-time should be dropped. This would allow for fresh data

to be collected for processing. However having even a couple of dropped

samples is a problem. This is because video is continuous. Dropping a few

pixels means that the whole frame synchronization could be broken.

Therefore the library employs an algorithm that allows it to drop samples

only an integer multiple of xt×h at a time. This means that even if a single

sample was dropped before processing, the algorithm will enforce a whole

batch of xt × h samples to be dropped instead. This means that when the

next frame arrives, it will start processing from where the previous frame

had dropped samples. Therefore the picture will look seamless to the end

user since the dropped samples will actually result in a lower frame-rate in

the host application. This approach allows the system to run even on not so

powerful configurations and still produce some output. Such synchronization

points are denoted as white arrows on Figure 5.2.

5.3 Digital signal processing

Re-sampling

Digital re-sampling is used as the processing step that synchronises the in-

coming sample rate fs = t−1s to the desired pixel rate fp = t−1p . Let’s imagine

each incoming sample contains information about a fraction a−1 of a pixel.

Each output sample will then contain the information from a incoming sam-

ples so that it will form a single pixel. Alternatively if b pixels are contained

in an incoming sample, the re-sampling will generate output of b samples for

49

each incoming sample.

The re-sampler sees a stream of samples coming at a rate fs, interpolating

their rate with fp and then decimating the resulting stream (that now has

sampling rate fs · fp) by a factor of fs. This results in an output stream of

rate fp = t−1p . Each sample then will relate to a pixel value at that time. In

mathematical terms,

v[n] = x

[
fs ·

n

fp

]
,

where (n ∈ Z) and v[n] are the output pixel intensities 3 and

x[n] =
√
In · In +Qn ·Qn

are the incoming sample intensities. If this algorithm is implemented straight

away, it would be called nearest neighbour re-sampling. Unless x[n] is

band limited to min(fp, fs), v[n] will contain aliasing artefacts. Therefore,

as a pre-processing step, we can apply a low-pass filter to x[n] with a cut-off

frequency min(fp, fs) as an anti-aliasing filter.

A perfect low-pass filter uses sinc interpolation. However, in practice, it is

not achievable since sinc is an infinite function in the time domain. There are

some good approximations using windowed sinc functions. However, apply-

ing these is expensive since the related algorithms are based on convolution.

Luckily, there is a computationally cheap approximation of a low-pass filter

that could be done during re-sampling. It uses linear interpolation between

two consecutive samples to reduce the aliasing artefacts. The actual imple-

mented re-sampling algorithm in the project utilises the Brasenham’s line

algorithm[21] to achieve non-integer re-sampling.

There is another trick that is done to improve the anti-aliasing quality and

possibly performance. Since the xt of an image is only used to maintain the

aspect ratio, the library assumes that xt = x̂t = d fs
fv·yt e. This allows the

host program to use whatever algorithm they desire to re-sample the output

image to any resolution. Since the host program can use GUI acceleration for

3Note that the notation v[n] is equivalent to the previously used vn.

50

the re-sampling process, it can afford more expensive algorithms that result

in less aliasing artefacts. Furthermore, when fp > fs as in most real-world

eavesdropping scenarios, the CPU will have to handle less data resulting in

improved performance.

Auto gain

The auto gain step ensures that the image uses the full dynamic output range.

For example, if demodulated pixels v[n] have the property vmin ≤ v[n] ≤ vmax

then we can construct a new stream of pixels v′[n] such that

v′[n] =
v[n]− vmin

vmax − vmin

which now means that 0 ≤ v′[n] ≤ 1. This is then handed over to the host

program which can show interactively the relationship between v′[n] and v[n].

This is used by the Java GUI to show the relationship between the displayed

gray-scale values and the incoming samples intensity.

Frame averaging

The time averaging applies an infinite impulse response (IIR) low-pass filter

to a stream of input pixels v[n] to produce a stream of output pixels v′[n]

such that

v′[n] = α · v[n] + (1− α) · v′[n].

This does inter-frame averaging sometimes known as motion blur. It atten-

uates random noise between consecutive frames and amplifies the constant

signal, thus increasing the signal-to-noise ratio. The weight of the filter could

be adjusted by changing α from 0 to 1.

51

5.3.1 Synchronization detection

In order to detect the blanking intervals in a frame, a few assumptions need

to be done. What is characteristic about the intervals is that they do not

contain any activity compared to the video region. This means that usually

they are seen as a band of solid colour (see Figure 5.3). They either contain

more energy than the video region or contain less energy. Therefore we can

assume that the average intensity of the blanking interval is very different

from the intensity energy in the video region.

Figure 5.3: Compare the blanking interval of the same digital signal, centred
at two different frequencies of the spectrum. One of them looks dark, while
the other one is lighter and has some bands. The similarity is that they are
very smooth and do not contain high frequency intensity changes.

In order to detect the intervals, for performance reasons, we can decouple

them into two 1 dimensional strips. We produce two strips – a vertical one,

containing the average of all the lines and a horizontal one, containing the

average of all the columns in an image. Then we can do a circular low-pass

filter in order to get rid of any high frequency noise (such as text lines).

52

Figure 5.4 shows how the averaged vertical and horizontal bands are derived

and how they look after the low-pass filter.

Figure 5.4: In order to detect blanking regions, first an average of the vertical
and the horizontal pixels is taken. Then this average is blurred using a low-
pass filter with a Gaussian kernel.

Now we can use the assumed property that the blanking regions have the

most different average intensity compared to video regions. Let’s say a band

has n elements b[n]. We now need to partition the two bands into two regions

with width 2w and n − 2w, centred at c and n − c. Then the value of the

average per pixel difference would be

β(w, c) =

 c+w∑
k=c−w

b[k mod n]

2w
−

2(n−w)−c∑
k=2w−c

b[k mod n]

2n− 4w

2

.

We need to choose 2w and c so to maximise β. Since the constraint is

0 ≤ 2w < n and 0 ≤ c < n, we can in fact calculate β for each possible input

and find the parameters that maximise it. This is an algorithm complexity

of O(n2) which explains why we decided to do that on two 1D arrays rather

than on the whole 2D image.

However that algorithm won’t always do the job. Imagine the video signal

has a strong component with a very short size. This can easily be a value that

53

maximises β. But we know that synchronisation regions are not that small,

therefore we need some lower bound constraints for the size of a blanking

region. By observing various video signals, I came up with some arbitrary

numbers of 5% × xt for horizontal blanking and 1% × yt for vertical blank-

ing. These number can be adjusted (in the source code) depending on the

judgement of the eavesdropper, but so far they have shown to perform well.

We can’t easily change the asymptotical growth of the algorithm. However,

we can reduce its execution time by putting some additional constraints.

Let’s assume that the blanking region is always smaller than the video region

and we use 2w to denote the width of the blanking region. This will put an

upper bound for the value of 2w < n
2
. Having a lower and upper bound for

2w means that now the algorithm can run faster, in real time, for both strips.

Figure 5.5 shows how the value of c, the position of the synchronisation region

in a frame, looks like in practice for a given set of data. This value is used

to center the frame in the GUI video window in the vertical and horizontal

position (Figure 5.6).

ww
c

n

Figure 5.5: Visualising the relationship between c, w and n. The figure shows
the values for w and c that give the maximum value of β for the frame.

54

Figure 5.6: Given the value for c for the vertical and the horizontal strips,
we can dynamically align the frame in the real-time video display.

5.3.2 Tracking the frame rate

The drift between the local oscillator and the pixel clock of the target will

cause the image to accelerate slowly over time. This could be automatically

compensated. It only works once we have a stable video image and we can

reliably estimate c. If we say that the value of c for frame number n is c[n],

then we can take the speed with which the synchronisation frame is moving

across the screen which is simply

dc[n]

dn
= vc[n] = c[n]− c[n− 1].

If vc[n] > 0 then we know that our estimate f̂v for fv is f̂v > fv and if

vc[n] > 0, then f̂v < fv. Since we don’t know the true value fv, we can try to

approximate it by adjusting our estimate f̂v with a function a[vc]. Therefore

at each frame we can change our estimate to be

f̂v = f̂v − sgn(vc) · a[vc]

where sgn(x) is the sign function, that returns +1 if x ≥ 0 and −1 if x < 0.

We should note that a[vc] will depend on the particular heuristics used. My

implementation uses two-speed modes, having a low speed for slow moving

drift for accuracy and a high speed for fast moving frames. The output of my

implementation of a[vc] is also proportional to the magnitude of the speed

itself.

This generates a self-correcting feedback loop. Any perturbation will cause

55

the system to adjust itself and lock. However, a[vc] needs to be chosen care-

fully to avoid oscillations. The latency of the processing also increases the

chances of obtaining oscillations since the change in f̂v will not be propa-

gated immediately to the next frame. The exact values I have used do cause

oscillations in some scenarios so it would be a nice research attempt to find a

good value for them. This was a minor issue that was left outside the scope

of the project.

5.3.3 Autocorrelation

We can remind ourselves that the autocorrelation was defined in (3.16). How-

ever, in practice we only have a finite number of samples n, so we can rewrite

the formula so that it reads

Rvv(τ) =
n−1∑
i=0

viv̄i−τ .

We need to recalculate Rvv(τ) for every value of τ from 0 to n− 1 and this

will give us our autocorrelation plot. If we naively implement this, we would

see that the performance of the algorithm is O(n2). This means that the

real-time performance will be problematic.

The Wiener-Khintchine theorem [22] allows for another definition of Rvv(τ)

using Fourier transforms

Vk = F {vi}

Sk = VkV̄k

Rvv(τ) = F−1 {Sk}

(5.1)

where V̄k is the complex conjugate of Vk and F {vi} is the discrete Fourier

transform that is equal to

F {vi} (k) =
n−1∑
i=0

vi · e−j2πk
i
n

56

and F−1 {Sk} is the inverse discrete Fourier transform defined as

F−1 {Sk} (τ) =
1

n

n−1∑
k=0

Sk · ej2πτ
k
n .

Since the discrete Fourier transform could be computed in O(n log(n)) using

an algorithm called Fast Fourier Transform, then we have a way of computing

the autocorrelation with complexity O(n log(n)).

When we compute the autocorrelation, we will have a lot of data to visualise.

It is safe to assume that refresh rates and line rates of modern displays fall

within a bounded range of frequencies. We can use that to limit the amount of

data shown interactively on the screen. This not only improves performance,

but also simplifies the user’s task of understanding the autocorrelation plot

since now, rather than showing the plot in terms of milliseconds or frequency,

we can display it in “frames per second” and “pixels”. Refer to Figure 5.7 to

how the actual value of Rvv(τ) is displayed in a user friendly way onto the

GUI.

In order to display the data user-friendly, we need to make some assumptions

about the possible values of fv and yt. The assumption is that videos displays

frame rates are constraint to being between fmin fps and fmin fps, therefore

we can safely choose fmin ≤ fv ≤ fmax. There also constraints about the

maximum and minimum height of the image yt, so we can choose ymin ≤
yt ≤ ymax.

The autocorrelation τ has units of milliseconds and τ−1 has units of Hz. This

will match the units of fv exactly, so for displaying the information about

the refresh rate, we can use values of τ for which f−1max ≤ τ ≤ f−1min (the green

region in Figure 5.7). For a line rate of yt, the corresponding τ value would

be

τ =
1

yt · fv
.

However, since we don’t know what the value of fv is, we can safely say

that for displaying the line rate on the GUI we can use values of τ for which

57

-40

-30

-20

-10

0

10

0 5 10 15 20 25 30

P
o

w
er

 (
d

B
)

Time (ms)

-40

-30

-20

-10

0

10

0 0.01 0.02 0.03 0.04 0.05 0.06

P
o

w
e

r
(d

B
)

Time (ms)

Figure 5.7: We can see how the autocorrelation is plotted on the screen. The
green part is used to determine the frame rate fv and is displayed to the user
in units of frames per second. The red part is a zoomed-in version around
τ = 0 and it describes the repeating nature of the lines so it can be used for
showing the line rate yt or the height of the image in units of pixels.

(fmaxymax)
−1 ≤ τ ≤ (fminymin)−1 (the red region in Figure 5.7).

Now when the user clicks on a point in the plot, the system calculates the

value of the frame rate or the line rate and uses that to update the video

parameters interactively. The user can also “zoom” into the plots with the

mouse wheel. Moving the mouse over the plot will show the value of Rvv(τ)

at that position in dB and τ expressed either as frames per second or pixels

depending on the plot that the user is currently interacting with.

The value of xt, as discussed before, cannot be easily deduced from the

autocorrelation plot. However, given yt and fv, we can find the closest mode

that matches those values in a list of potential video modes (such as the one

provided by VESA [17]). The xt value for that particular mode can be used

58

to provide the aspect ratio of a video frame. The estimation of the three

parameters yt, fv and xt allows for the fully automatic video mode detection

implemented in the project.

5.3.4 Multithreading

The multi-threading itself relies on a multi-platform library that I have writ-

ten to work on Linux, Windows and OS X. It provides abstractions about

thread synchronisation primitives and allows starting and controlling threads

on all the platforms. However, the most interesting aspect is the way the

threads share the data they are processing. This is handled by a thread

safe circular buffer which has been unit tested. Each pair of interconnected

threads share a different instance of the circular buffer structure.

A thread requests some input data for processing by asking the circular buffer

structure that connects it with the previous thread. The call will block until

data is available or a time-out has occurred. This ensures that threads are

not constantly polling, rather they are using OS level thread synchronisation

techniques to sleep when they are processing data faster than real time.

When the thread finishes processing the data it received, it needs to pass the

output to the next thread. This is done via the circular buffer that connects

the current thread with the next one. The difference here is that this call

may fail if the circular buffer is full. This indicates that the output data

was actually dropped. The circular buffer can be used to drop additional

samples so a full frame containing xt × yt will end up being dropped. This

allows taking into account dropped samples that occur in the hardware level

as well as dropped samples due to CPU not being able to handle the data in

real-time.

There are a few other performance tweaks. The circular buffer can grow if

it sees that such drops occur. There is a limit that the buffer can grow to

in order to ensure that only near real-time data is being processed. The size

of the circular buffer correlates to the latency in the system – the longer

59

the buffer is, the more latency the system will see. However if the system

is fast enough, this mechanism ensures as little latency as possible (and as

little memory being used). If the system is slower and can’t handle real-

time, the latency is increased to allow for additional stages to have more

time to process the data. This will result in dropped frames but ensure an

interactive system. This is basically a method to relieve the “back pressure”

on the system.

5.4 Experimental results

For performance benchmark, the system was tested on an Intel Core i5 laptop

running in real-time, with more than 40 fps with a sampling rate of 25 MHz

and RAM usage of less than 256 MB (including the Java runtime). A frame-

rate of more than 20 fps can be achieved on a standard desktop Intel Core

2 CPU. This ensures the performance on any modern hardware provides

sufficient interactivity.

During my experiments with real life devices, I made some interesting obser-

vations I think are worth sharing. The results are not representative since

they are related to the particular equipment I used, but since no screen-

shots of some signals are available in the open literature, they can serve as a

reference for further research.

VGA signals can be eavesdropped as we saw in Figure 4.5. However, the

smooth nature of the analogue signal does not radiate enough power in low

contrast regions, leaving only rapid colour transitions visible. This means

that the signal carries less energy and is more difficult to detect and eaves-

drop. We can see the contrast changing in the horizontal direction but no

change could be observed in the vertical. This is due to the fact that pixels

are transmitted from left to right.

Digital signals are a bigger thread since individual bits contain sharper edges.

Even solid colours will show up because they contain a bit pattern. This could

be seen in Figure 3.1 and Figure 5.9 where the signal is very likely the HDMI

60

cable of the HDMI to VGA converter that is being eavesdropped. Here the

relationship between transmitted pixel colour and observed pixel intensity

is highly non-linear. However, there are some colours that maximise the

contrast.

While experimenting, it turned out the LCD monitor I was using emitted its

own signal in addition to the VGA it was receiving. It is very likely an LVDS

signal. This could be seen in Figure 5.8. The phenomenon was described by

Markus Kuhn [10]. He noted that the vertical blanking interval may not be

an integer multiple of the line rate, causing a horizontal “jump” after each

frame. The emissions, however are only receivable at very close distances

to the monitor (within about a meter). Kuhn has also shown that LVDS

emissions from some laptops could be much stronger and are receivable up

to tens of meters away [7].

Font aliasing plays an important role in the sharpness of the eavesdropped

signal. Kuhn has discussed the issue in detail and even proposed font smooth-

ing as a way to protect from eavesdropping attacks [7]. In Figure 5.9 we can

see a comparison of the HDMI signal from 3.1 with font anti-aliasing turned

on and off. We can see that it is considerably more difficult to read the text

if the font is anti-aliased.

61

Figure 5.8: LVDS emanation from a monitor. Vertical blanking not con-
straint to be an integer multiple of the line rate [10]. We need to capture
two frames at a time to get a stable picture.

(a) Font anti-aliasing enabled. (b) Font anti-aliasing disabled.

Figure 5.9

62

Chapter 6

Outlook and conclusions

6.1 Further research

An idea that proved promising was to try to “extend” the available band-

width of the software-defined radio front-end. My best attempts in Figure

6.1 show that there is slight improvement. We can take n Fourier transforms

of the signal, containing at least one frame in several consecutive bands of

width fs and “merge” the recordings together, creating a new signal that

has a bandwidth of n · fs. The requirement is that the signals need to be

taken at the exact same time. This is impossible with a single receiver of

bandwidth fs. If we, however, assume that the n recordings we have contain

the same exact frames, we can align them using cross correlation. However,

my experiments show that the aligning is very difficult. Since this was out

of the scope of the project, I did abandon the idea. Further research in the

area can mean that eavesdropping could be done even with ultra-cheap SDR

devices like the RTL2832U based TV dongles that usually only provide up to

3 MHz of bandwidth. This is highly insufficient for real-time eavesdropping.

There were no attempts to compare the quality of the obtained results with

existing implementations such as the FPGA based implementation of Markus

Kuhn. The reason was the existence of range of different hardware front-ends

63

(a) Transmitted test im-
age.

(b) 5 MHz sampling
rate.

(c) 5 MHz sampling rate
with extended resolution
enabled.

Figure 6.1

available for software-defined radio. It is difficult to get hold of some more

expensive models that provide a better noise figure and higher signal-to-noise

ratio than the USRP B200. The obtained results could be entirely different

with one of these receivers. Some research into how to use the system to

characterise emanations and possibly measure the exact strengths would be

very useful.

Additionally, research into the GUI design suitable for such a system, could

be undertaken. This can potentially improve the user friendliness and make

the interface more intuitive. There could be, for example, two modes – an

advanced mode for professionals, and a simplified mode for end users. A

use case for the simplified mode would be users that want to estimate the

amount of information their own devices leak into the air.

However, the main aim of the project is to raise the awareness of the issue and

demonstrate that it is practically possible. It also serves as a tool for quick

prototyping and significantly lowers the costs and efforts related to further

research in the area. This would hopefully allow more efforts to be put in

discovering methods for reducing the amount of useful information that is

emanated from video screens. A nice research topic would be to extend the

font smoothing methods that Markus Kuhn proposes [7] as a measure against

eavesdropping.

64

6.2 Conclusion

It is surprising that very little research has been done on the topic of com-

promising emanations from video displays. This is a real thread that has

been around ever since video monitors were first used. Almost every video

system has been continuously broadcasting data over the air in clear text.

A sophisticated attacker could have already used the vulnerability to steal

information without being detected, circumventing traditional cryptographic

and physical security. Such an attack could have serious consequences: imag-

ine an adversary eavesdropping a monitor of a bank employee or a voter that

is using an electronic voting machine.

The current project has demonstrated that a practical attack is viable from

a considerable distance, without the adversary having any prior knowledge

about the target. The discussion on how to limit the amount of data leaked

started quite late and is currently in its infancy. No official commercially

available products exist to safeguard the privacy of users. Military research

on the topic remains classified. It is clear that video eavesdropping threads,

and threads, related to compromising emanations in general, require more

research attention.

The presented project allows research to be done without access to a spe-

cialised laboratory. Experiments now only require an affordable, off-the-shelf

equipment. The software is open source, allowing anyone to tailor it to their

needs. It could be therefore safely concluded, that the project has success-

fully reached its goal to provide a starting point, much needed for further

research on the topic.

65

66

Bibliography

[1] CENELEC. Information technology equipment - radio disturbance char-
acteristics - limits and methods of measurement.

[2] Wim Van Eck. Electromagnetic radiation from video display units: an
eavesdropping risk? Computers & Security, 4(4):269–286, 1985.

[3] Karen Jelved, Andrew D Jackson, and Ole Knudsen. Selected scientific
works of hans christian ørsted, 1998.

[4] RFH Nalder. History of the royal corps of signals. Royal Signals Insti-
tution, London, 1958.

[5] Ross Anderson. Security engineering. John Wiley & Sons, 2008.

[6] US National Security Agency. Tempest: A signal problem. 1972.

[7] Markus G Kuhn. Compromising emanations: eavesdropping risks of
computer displays. University of Cambridge Computer Laboratory,
Technical Report, UCAM-CL-TR-577, 2003.

[8] Fürkan Elibol, Uğur Sarac, and Işın Erer. Realistic eavesdropping at-
tacks on computer displays with low-cost and mobile receiver system.
In Signal Processing Conference (EUSIPCO), 2012 Proceedings of the
20th European, pages 1767–1771. IEEE, 2012.

[9] Markus G Kuhn. Electromagnetic eavesdropping risks of flat-panel dis-
plays. In Privacy Enhancing Technologies, pages 88–107. Springer, 2005.

[10] Markus G Kuhn. Compromising emanations of lcd tv sets. In Electro-
magnetic Compatibility (EMC), 2011 IEEE International Symposium
on, pages 931–936. IEEE, 2011.

[11] National Instruments. Ni pxie-5665 - high-performance vector signal
analyzer up to 14 ghz. http://sine.ni.com/nips/cds/view/p/lang/
en/nid/209379.

67

http://sine.ni.com/nips/cds/view/p/lang/en/nid/209379
http://sine.ni.com/nips/cds/view/p/lang/en/nid/209379

[12] Kamaruddin Abdul Ghani, Kaharudin Dimyati, Khadijah Ismail, and
Latifah Sarah Supian. Radiated emission from handheld devices with
touch-screen lcds. In Intelligence and Security Informatics Conference
(EISIC), 2013 European, pages 219–219. IEEE, 2013.

[13] Ettus Research. Usrp b200. https://www.ettus.com/product/

details/UB200-KIT.

[14] James Clerk Maxwell. A treatise on electricity and magnetism, volume 1.
Clarendon press, 1881.

[15] William L Briggs et al. The DFT: An Owners’ Manual for the Discrete
Fourier Transform. Siam, 1995.

[16] Johan Kirkhorn. Introduction to iq-demodulation of rf-data. EchoMAT
User Manual (FA292640), 15:4–10, 1999.

[17] Monitor Timing Specifications. Version 1.0. Revision 0.8, Video Elec-
tronics Standards Association (VESA), San Jose, California, 1998.

[18] Claude Elwood Shannon. Communication in the presence of noise. Pro-
ceedings of the IRE, 37(1):10–21, 1949.

[19] G Arfken. Convolution theorem. Mathematical Methods for Physicists,
pages 810–814.

[20] Ronald Bracewell. The autocorrelation function. The Fourier transform
and its applications, pages 40–45, 1965.

[21] Jack E Bresenham. Algorithm for computer control of a digital plotter.
IBM Systems journal, 4(1):25–30, 1965.

[22] Norbert Wiener. Time Series. M.I.T. Press, 1964.

68

https://www.ettus.com/product/details/UB200-KIT
https://www.ettus.com/product/details/UB200-KIT

	Introduction
	History
	Related work
	Work of Wim van Eck
	Work of Markus Kuhn
	Work of Elibol et al.

	Achieved goals and motivation

	Background
	Signal processing
	IQ sampling

	Methodology
	Analogue video signals
	Generated radio wave
	Analogue video signal equation
	Sampling
	Spectrum repetitions
	Digital video signal equation

	Reception
	Theory
	Practice

	Resolution and frame rate detection
	Introduction to autocorrelation
	Aliasing
	Number of lines in a frame
	Errors

	Practical attack
	Set-up
	Attack
	Conclusion

	Implementation
	Hardware
	Ettus Research USRP
	Mirics FlexiTV™MSi3101
	Windows ExtIO
	Antennas and preconditioning

	Architecture
	The library
	Data flow

	Digital signal processing
	Synchronization detection
	Tracking the frame rate
	Autocorrelation
	Multithreading

	Experimental results

	Outlook and conclusions
	Further research
	Conclusion

