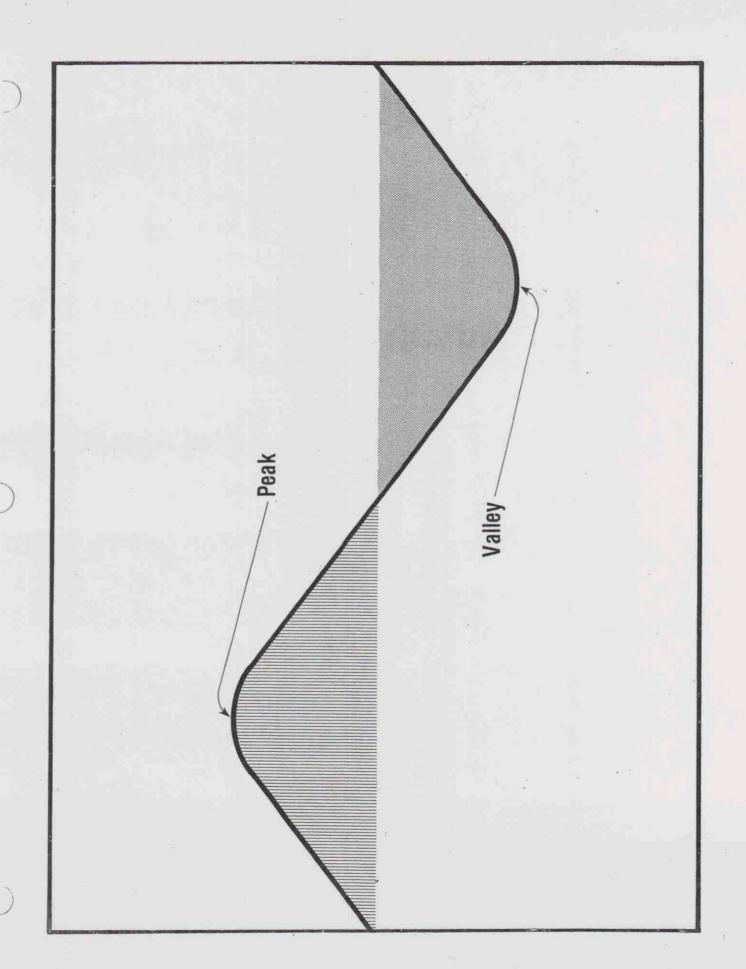
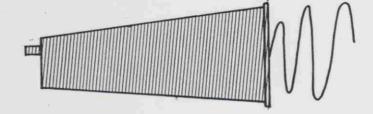
TEXAS DEPARTMENT OF PUBLIC SAFETY RADAR SHIFT LOG


Date	Start Time	Cal.	End Time	Cal.	Operator & I.D.
1-5-88	. M8-	202			
1-5-88	8:00 AM	/	5:00 P	V	DOE #3333
					SMITH # 1111
	RANGE ON RE	AR A	NTENNA 13	POOR	
	IN BOTH	MODE	. ACCURAC	Y	
	OK. ALL	ESTS	ARE OK.		
1-6-88	8:00 A	/	10:30 A	~	DOE#3333
	REAR ANT	ENNA	COMPLETELY	QUIT.	4
			OR REPAIRS		
1-10-88	REINSTALLED	IN	M8-202 A	FTER A	REPAIRS.
					DOE # 3333
1-11-88	8:00 A	/	5:00P	/	DOE #5333
1-12-88	INSTALLED S	ET IN	D8-400		*
1-12-88			5:00P		DOE #3333
				1	
11.					

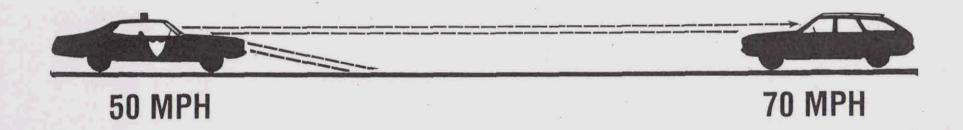
MAINTENANCE AND REPAIR LOG

Date taken out of service: /- 6 - 88 B	y. DOE #3333
Problem: REAR ANTENNA QUIT	
	*
Repair By: DPS COMM. SHOPS, Aus	STIN
Nature of Repair: INSTALLED NEW I	YTAC
* TUNED FREQ.	
Date placed back in service: /-/0-88 By:	
Internal Cal L/T External C	al
Comments: UNIT WORKS FINE.	
Date taken out of service: By:	6
Problem:	L
PROPERTY OF STREET	· ·
Repair By:	
Nature of repair:	
Date placed back in service: By:	
Internal Cal L/T External Ca	l
Comments:	


TUNING FORK CERTIFICATION LOG

Serial #	Date Checked	O.K.	Checked By
123456	1-15-88	/	LT. SNOW #0001
456789	1-15-88	V	LT. SNOW #0001
	TI RE		
	*		
- T			

BASIC METHOD OF


RADAR

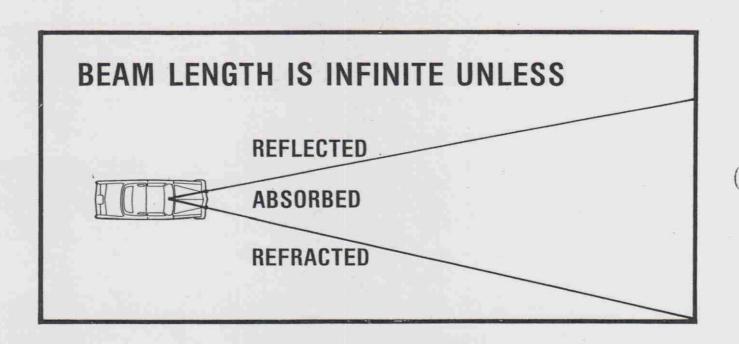
SPEED MEASUREMENT

- Radar device sends out radio signal.
- Signal strikes a solid object (car) and is reflected (bounced) back toward radar receiver.
- If there is relative motion between the object and the radar, reflecting signal will be different from the transmitted signal.
- Amount of difference indicates the speed of the relative motion.

PRINCIPALS OF MOVING RADAR

1 CONTINUOUS BEAM OF ENERGY IS SENT OUT 2 DOPPLER SIGNALS ARE RETURNED 50 MPH SIGNAL "GROUND" SPEED 120 MPH SIGNAL "TARGET" SPEED

THE COUNTING UNIT PROCESSES BOTH AND SUBTRACTS


COMBINED SPEED 120

MINUS

GROUND SPEED **50**

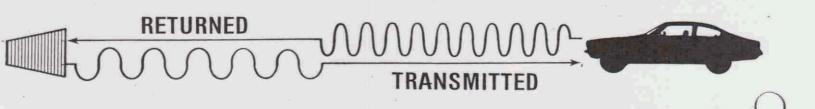
EQUALS

TARGET SPEED 70

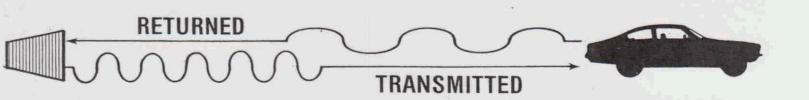
FREQUENCY = The number of waves (cycles or hertz) transmitted in one second.

RADAR = Radio Detection And Ranging

FREQUENCIES —

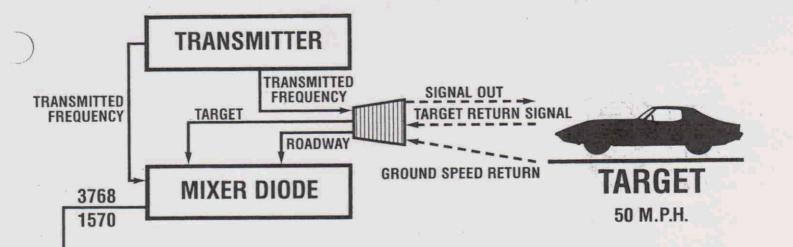

- 1. X-Band = 10,525,000,000 cycles (waves, hertz) per second or 10.525 GIGA hertz 1 GIGA = 1 Billion
- 2. K-Band = 24,150,000,000 cycles per second or 24.150 GIGA hertz

Travels at the speed of light 186,000 miles per second

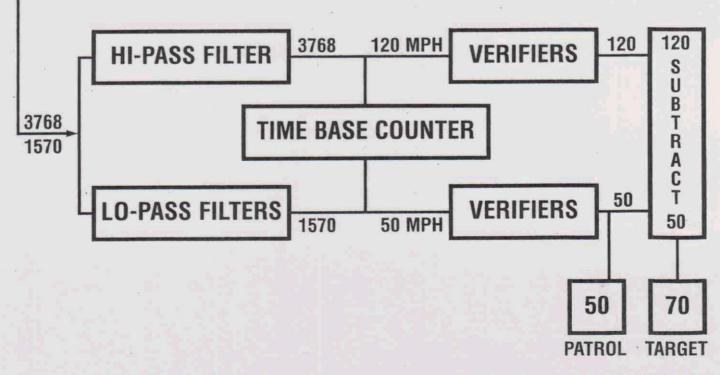

THE DOPPLER FREQUENCY OR DOPPLER SHIFT

The difference between the transmitted frequency and the returned frequency

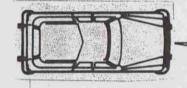
VEHICLE APPROACHING RADAR:



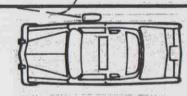
VEHICLE GOING AWAY FROM RADAR:


X-Band Shift - 1mph = 31.4 c.p.s.

K-Band Shift - 1mph = 72.0 c.p.s.


PATROL VEHICLE SPEED - 50 M.P.H

TARGET RETURN - COMBINED SPEED - 120 M.P.H. GROUND SPEED RETURN - PATROL SPEED - 50 M.P.H.


ANGLE BETWEEN RADAR ANTENNA AND VEHICLE MUST BE AS SMALL AS POSSIBLE TO AVOID ERROR READING.

LINE OF VEHICLE TRAVEL

ANGLE ERROR

LINE OF RADAR ANTENNA AIM

TRACKING HISTORY CHECKLIST STATIONARY MODE

1. VISUAL OBSERVATION.

- a. Identify target.
- b. Estimate speed.
- c. Confirm target is in range.
- d. Check environment.

2. AUDIO CONFIRMATION.

- a. Pitch Indicates speed.
- b. Amplitude Indicates motion.

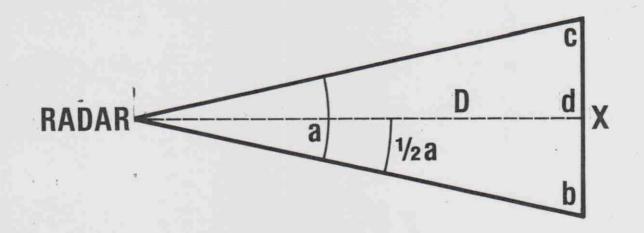
3. RADAR SPEED VERIFICATION.

- a. Stable readout for three-five seconds.
- b. Readout must agree with visual and audio.
- c. Manual lock. (optional)

TRACKING HISTORY CHECKLIST OMOBILE MODE

1. VISUAL OBSERVATION.

- a. Identify target.
- b. Estimate speed.
- c. Confirm target is in range.
- d. Check environment.


2. AUDIO CONFIRMATION.

- a. Pitch Indicates speed.
- b. Amplitude Indicates motion.

3. RADAR SPEED VERIFICATION.

- a. Stable readout for three-five seconds.
- b. Verify patrol speed.
- c. Readout must agree with visual and audio.
- d. Manual lock. (optional)

BEAM WIDTH FORMULA

X = Width of signal (unknown)

D = Distance

 \underline{a} = Known angle

 $d = 90^{\circ}$ (right angle)

 $X = 2 \times D \times \tan \frac{1/2}{2}$

 $X = 2(\tan \frac{1}{2}) \times D$

(CONSTANT)

TEXAS DEPARTMENT OF PUBLIC SAFETY RADAR CERTIFICATION PROGRAM PRACTICAL EXAMINATION AND DEMONSTRATION

A.	Unit S () () ()	et Up Power Supply Cable Connections Stable Mounting				() () () ()	tion Check Digital Light Test Internal Circuitry Test Single Tuning Fork, Stationary Mode Dual Tuning Forks, Moving Mode Single Tuning Fork, Stationary Mode Dual Tuning Forks, Moving Mode Speedometer Comparison
C.	()	nary Operation Location Selection Antenna Positionir Target Identificatio () Visual Obse () Audio Confi () Radar Spee	ng n - Tracking Histo ervation	ory			
					Stationary Radar	Runs	
		1. 1	2	3	4	5	
							Radar Indicated Speed
				,			Test Car Indicated Speed
				1	Must be within ±1	MPH	
		Antenna Positionin Target Identificatio () Visual Obse () Audio Confi () Radar Spee	n - Tracking Histo ervation	ory	Moving Test Ru	ıns	
		1	2	3	4	5	
		1 1 3			,		Radar Indicated Speed
						, ,	Test Car Indicated Speed
					Must be within ±1	MPH	
E.	()	Lane Operation Location Selection Antenna Positionin Target Identification () Visual Obse () Audio Confii () Radar Spee	n - Tracking Histo rvation	ry			
				Sam	e Lane Moving T	est Runs	
		1	2	3	4	5	_
					n *		Radar Indicated Speed
							Test Car Indicated Speed
				N	Aust be within ±1	MPH	

	NOTE	Operational Consid Cosine Effect (Targ Cosine Effect (Patr Range Control (if e R.F. Interference Internal Interference Planning Effect Shadowing Effect Batching Effect Look Past Effect Beam Dropout	et) ol car ground sp quipped) e (wiper, fan mo	otor, etc.)	t to produce. If t	he desired effect	is not demonstrable it will be suffic	client for the
G.		d Estimations	he technique fo	r producing the	effect and expla	aining to the instru	uctor his knowledge about the effect	ot.
	1.	Stationary 1		3	4	5		
			2		<u> </u>		Estimate	
							Actual	
							_	
	2.	Moving						
		1	2	3	4	5	_	
							Estimate	
							Actual	
	3.	Same Lane	2	3	4	5		C
							Estimate	
				4			Actual	
co	MMENT	TS:	(Op			within ±5 MPH) prect for certifical	tion)	
				1 03	, , , ,	N. A.		
Fie	ld Instru	uctor:					Date:	

TEXAS DEPARTMENT OF PUBLIC SAFETY CERTIFICATION OF ACCURACY - TUNING FORKS

TUNING FORK, serial #		has been tested and found to oscillate at
су	cles per second. It wi	Il cause a calibration signal of
miles per hour when used wit	th a Doppler traffic ra	dar operating on the manufacturer's assigned radar
frequency of	GHz.	
TUNING FORK, serial #		has been tested and found to oscillate at
cyc	cles per second. It wi	Il cause a calibration signal of
miles per hour when used wit	th a Doppler traffic ra	dar operating on the manufacturer's assigned radar
frequency of	GHz.	
	C	ertified By
Subscribed and sworn to before	ore me, the undersign	ed authority, on this the day of
*	, A	.D. 20
	_	
My commission expires		1 5 60

OPERATOR'S INSTRUCTIONS MODEL TB-1 TUNING FORK CALIBRATION

The TB-1 Tuning Fork Calibrator allows you to test your radar external tuning forks to the exact hertz to National Bureau of Standards accuracy.

To Test Tuning Fork:

- 1. Turn TB-1 to "On" position.
- 2. Make sure digital reading is clear. (If not, push reset button)
- Strike Tuning Fork on nonmetallic object and place and corner of the butt end of the fork in the shown circle on TB-1.
- Compare the number displayed on TB-1 (cycles per second) with the chart below with appropriate miles per hour stamped on the tuning fork.
- 5. If the display falls within the tuning fork frequency acceptance range on the chart, then your tuning fork is correct.
- 6. Push "Reset" button to clear TB-1 and check next tuning fork.
- 7. Turn TB-1 to "Off" after completing all tests to protect batteries.
- 8. Note: Batteries are rechargeable type and a recharger is furnished in the package. Keep batteries fully charged for optimum operation. When batteries are weak green pilot light will extinguish. Recommended charge is 18 hours.

To Test with National Bureau of Standards:

- 1. Turn TB-1 switch to "NBS".
- 2. Plug telephone pickup coil in bottom of TB-1. Place coil around the Receiver end on telephone.
- 3. Dial the National Bureau of Standards at 1-(303)-499-7111, Boulder, Colorado.
- 4. The NBS will transmit either 500, 600, or 1,000 cycles (1 cps) depending on time of minute called. A continuous 600 Hz tone is broadcast during every odd minute from 0 seconds to 45 seconds except for a 0.04 second hole where the second's tick occurs, and except for minutes 9, 45, 57, 49, and 51 of every hour. If your TB-1 displays any of these readings then it insures you of it's accuracy to the NBS.

DECATUR RADAR FORK FREQUENCY CHART

V	-	A	AI	-
X-	D	А	N	u

FORK VALUE	1 = 31.389 Hz MPH in Hz	1 = 19.504 Hz KPH in Hz	1 = 36.122 H Knots in Hz
5	156.9	97.5	180.6
10	313.9	195.0	361.2
15	470.8	292.5	541.8
20	627.8	390.1	722.4
25	784.7	487.6	903.0
30	941.6	585.1	1083.7
35	1098.6	682.6	1264.3
40	1255.5	780.2	1444.9
45	1412.5	877.7	1625.5
50	1569.4	975.2	1806.1
55	1726.4	1072.7	1986.7
60	1883.3	1170.2	2167.3
65	2040.3	1267.8	2347.9
70	2197.2	1365.3	2528.5
75	2354.2	1462.8	2709.1
80	2511.1	1560.3	2889.8
85	2668.1	1657.8	3070.4
90	2825.0	1755.4	3251.0
95	2981.9	1852.9	3431.6
100	3138.9	1950.4	3612.2
FORK VALUE	1 = 31.389 Hz MPH in Hz	1 = 19.504 Hz KPH in Hz	1 = 36.122 H Knots in Hz
. 5	360.1	223.8	414.4
10	720.2	447.6	828.8
	720.2 1080.3	447.6 671.4	828.8 1243.3
10 15 20	720.2 1080.3 1440.5	447.6 671.4 895.2	828.8 1243.3 1657.7
10 15	720.2 1080.3 1440.5 1800.6	447.6 671.4 895.2 1119.0	828.8 1243.3 1657.7 2072.1
10 15 20 25 30	720.2 1080.3 1440.5 1800.6 2160.7	447.6 671.4 895.2 1119.0 1342.9	828.8 1243.3 1657.7 2072.1 2486.5
10 15 20 25 30 35	720.2 1080.3 1440.5 1800.6 2160.7 2520.8	447.6 671.4 895.2 1119.0 1342.9 1566.7	828.8 1243.3 1657.7 2072.1 2486.5 2900.9
10 15 20 25 30 35 40	720.2 1080.3 1440.5 1800.6 2160.7 2520.8 2880.9	447.6 671.4 895.2 1119.0 1342.9 1566.7 1790.5	828.8 1243.3 1657.7 2072.1 2486.5 2900.9 3315.4
10 15 20 25 30 35 40 45	720.2 1080.3 1440.5 1800.6 2160.7 2520.8 2880.9 3241.0	447.6 671.4 895.2 1119.0 1342.9 1566.7 1790.5 2014.3	828.8 1243.3 1657.7 2072.1 2486.5 2900.9 3315.4 3729.8
10 15 20 25 30 35 40 45 50	720.2 1080.3 1440.5 1800.6 2160.7 2520.8 2880.9 3241.0 3601.1	447.6 671.4 895.2 1119.0 1342.9 1566.7 1790.5 2014.3 2238.1	828.8 1243.3 1657.7 2072.1 2486.5 2900.9 3315.4 3729.8 4144.2
10 15 20 25 30 35 40 45 50	720.2 1080.3 1440.5 1800.6 2160.7 2520.8 2880.9 3241.0 3601.1 3961.3	447.6 671.4 895.2 1119.0 1342.9 1566.7 1790.5 2014.3 2238.1 2461.9	828.8 1243.3 1657.7 2072.1 2486.5 2900.9 3315.4 3729.8 4144.2 4558.6
10 15 20 25 30 35 40 45 50 55 60	720.2 1080.3 1440.5 1800.6 2160.7 2520.8 2880.9 3241.0 3601.1 3961.3 4321.4	447.6 671.4 895.2 1119.0 1342.9 1566.7 1790.5 2014.3 2238.1 2461.9 2685.7	828.8 1243.3 1657.7 2072.1 2486.5 2900.9 3315.4 3729.8 4144.2 4558.6 4973.0
10 15 20 25 30 35 40 45 50 55 60 65	720.2 1080.3 1440.5 1800.6 2160.7 2520.8 2880.9 3241.0 3601.1 3961.3 4321.4	447.6 671.4 895.2 1119.0 1342.9 1566.7 1790.5 2014.3 2238.1 2461.9 2685.7 2909.5	828.8 1243.3 1657.7 2072.1 2486.5 2900.9 3315.4 3729.8 4144.2 4558.6 4973.0 5387.5
10 15 20 25 30 35 40 45 50 55 60	720.2 1080.3 1440.5 1800.6 2160.7 2520.8 2880.9 3241.0 3601.1 3961.3 4321.4 4681.5 5041.6	447.6 671.4 895.2 1119.0 1342.9 1566.7 1790.5 2014.3 2238.1 2461.9 2685.7 2909.5 3133.3	828.8 1243.3 1657.7 2072.1 2486.5 2900.9 3315.4 3729.8 4144.2 4558.6 4973.0 5387.5 5801.9
10 15 20 25 30 35 40 45 50 55 60 65	720.2 1080.3 1440.5 1800.6 2160.7 2520.8 2880.9 3241.0 3601.1 3961.3 4321.4	447.6 671.4 895.2 1119.0 1342.9 1566.7 1790.5 2014.3 2238.1 2461.9 2685.7 2909.5	828.8 1243.3 1657.7 2072.1 2486.5 2900.9 3315.4 3729.8 4144.2 4558.6 4973.0 5387.5
10 15 20 25 30 35 40 45 50 55 60 65 70	720.2 1080.3 1440.5 1800.6 2160.7 2520.8 2880.9 3241.0 3601.1 3961.3 4321.4 4681.5 5041.6	447.6 671.4 895.2 1119.0 1342.9 1566.7 1790.5 2014.3 2238.1 2461.9 2685.7 2909.5 3133.3	828.8 1243.3 1657.7 2072.1 2486.5 2900.9 3315.4 3729.8 4144.2 4558.6 4973.0 5387.5 5801.9
10 15 20 25 30 35 40 45 50 55 60 65 70 75	720.2 1080.3 1440.5 1800.6 2160.7 2520.8 2880.9 3241.0 3601.1 3961.3 4321.4 4681.5 5041.6 5401.7	447.6 671.4 895.2 1119.0 1342.9 1566.7 1790.5 2014.3 2238.1 2461.9 2685.7 2909.5 3133.3 3357.1	828.8 1243.3 1657.7 2072.1 2486.5 2900.9 3315.4 3729.8 4144.2 4558.6 4973.0 5387.5 5801.9 6216.3
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	720.2 1080.3 1440.5 1800.6 2160.7 2520.8 2880.9 3241.0 3601.1 3961.3 4321.4 4681.5 5041.6 5401.7 5761.8	447.6 671.4 895.2 1119.0 1342.9 1566.7 1790.5 2014.3 2238.1 2461.9 2685.7 2909.5 3133.3 3357.1 3581.0	828.8 1243.3 1657.7 2072.1 2486.5 2900.9 3315.4 3729.8 4144.2 4558.6 4973.0 5387.5 5801.9 6216.3 6630.7
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85	720.2 1080.3 1440.5 1800.6 2160.7 2520.8 2880.9 3241.0 3601.1 3961.3 4321.4 4681.5 5041.6 5401.7 5761.8 6121.9	447.6 671.4 895.2 1119.0 1342.9 1566.7 1790.5 2014.3 2238.1 2461.9 2685.7 2909.5 3133.3 3357.1 3581.0 3804.8	828.8 1243.3 1657.7 2072.1 2486.5 2900.9 3315.4 3729.8 4144.2 4558.6 4973.0 5387.5 5801.9 6216.3 6630.7 7045.1

MPH RADAR TUNING FORK FREQUENCY CONVERSION

X-BAND TUNING FORK FREQUENCY IN M.P.H.	FREQ	G FORK UENCY D.P.S.	TUNING FORK FREQUENCY IN M.P.H.	TUNIN	SAND G FORK UENCY C.P.S
	LOW	HIGH		LOW	HIGH
10	299	329	10	685	756
15	456	486	15	1045	1116
20	613	643	20	1405	1476
25	770	800	25	1765	1836
30	927	957	30	2125	2196
33	1021	1051	33	2341	2412
35	1084	1114	35	2485	2556
40	1241	1271	40	2845	2916
45	1398	1428	45	3206	3277
50	1555	1585	50	3566	3637
55	1712	1742	55	3926	3997
60	1868	1898	60	4286	4357
65	2025	2055	65	4646	4717
70	2182	2212	70	5006	5077
75	2339	2369	75	5366	5437
80	2496	2526	80	5726	5797
85	2653	2683	85	6086	6157
88	2747	2777	88	6306	6374
90	2810	2840	90	6447	6518
95	2967	2997	. 95	6807	6878
100	3124	3154	100	7167	7238
105	3281	3311	105	7527	7598
110	3438	3468	110	7887	7958
115	3595	3625	115	8247	8318
120	3752	3782	120	8607	8678

CUSTOM SIGNAL

X-BAND	FREQUENCY IN C.P.S.	
	LOW	HIGH
35 MPH	2532	2552
50 MPH	3640	3660
65 MPH	4722	4742

Ka BAND RADAR TUNING FORK FREQUENCY CONVERSION

Ka-BAND TUNING FORK FREQUENCY	TUNING FORK FREQUENCY IN CPS*		
	LOW	HIGH	
10	983	1087	
15	1501	1605	
20	2018	2122	
25	2536	2639	
30	3053	3157	
35	3574	3678	
40	4088	4192	
45	4606	4709	
50	5123	5227	
55	5589	5693	
60	6158	6262	
65	6676	6779	
70	7193	7297	
75	7711	7814	
80	8228	8332	
85	8746	8849	
90	9263	9367	
95	9781	9884	

^{*} Computations based on traffic RADAR transmitting at 34.7GHz. 1 MPH is equal to 103.5 hertz.