MHiqlEEaedRIE
idexaRibragy

he PIC microcontrollers pack
a lot of power and speed in
a tiny, inexpensive package,
but the hobbyist is somewhat limited
when it comes to writing software for
them. The BASIC interpreter built into
the Stamps is slow, the few high-level
compilers can be expensive if you're
on your own dime, and I've always
found the assembler too weird to use.
But PIC assembly language runs
so fast, and can be so small, that | was-
n't willing to give up on using it. This
article describes an extensive library of
PIC macros that you can add to your
own assembly language projects.
Including this library with your PIC
source file gives you the power of pro-
gramming structures such as FOR-
NEXT loops and greatly simplifies your
code, all with minimal code bloat. Best
of all, the library works with the stan-
dard Microchip MPASM assembler.

Using the library

You can find the library file —
macros.asm — on my web site at
www.seanet.com/~karllunt. I've
included comments in the file to
describe how to invoke each of the
many macros. | also describe one or
two problems that you'll need to
watch for on the older PICs, such as
the PIC 16c54.

Just copy the file into your work-
ing PIC directory. Next, edit your
assembly language source file and
add the following line somewhere
near the top of the file:

include ".\macros.asm"

The best place to put this line is
immediately following the statement
where you include the equates specif-
ic to the PIC chip you're using. For
example, if your assembly source file
targets the PIC 12c508, the first few
lines of your source file might look
like:

include ".\p12c508.inc"
include ".\macros.asm"

by Karl Lunt

Note that the macro library
assumes that you are using the
Microchip equates file for your target
MCU, and relies on some common
register definitions. If you don't use
the Microchip equates file, you will
need to provide the required register
definitions yourself.

With this change made, you can
now invoke any of the supplied
macros. Let's take a look at what is
available in the macro library.

BEQ and BNE

These are simple, and | use them
virtually everywhere. As implemented
in the macro library, they check the
state of the Z bit in the status register
and branch accordingly. You use them
immediately after performing some
operation that alters the Z bit.

The BEQ macro is of the form:

- if Z is set, branch
; to foo

beq foo

where foo is a label somewhere in
your source file. If the Z bit is set when
this macro is executed, control jumps
to label foo. Otherwise, control con-
tinues with the next instruction in line.

The BNE macro is nearly identical:

. if Z is clear, branch
; to foo

where foo is a label somewhere in your
source file. If the Z bit is clear when
this macro is executed, control jumps
to label foo. Otherwise, control contin-
ues with the next instruction in line.

FOR-NEXT

The FOR-NEXT family of macros
provides an iterated looping structure.
This structure gives you a simple way
to perform a task a given number of
times. The basic form of the FOR
macro is:

bne foo

for var, begl, end|

where var is a variable you've chosen

to use as the index, begl is a literal for
the starting value of the index, and
endl is a literal for the ending value of
the index.

When the FOR macro first exe-
cutes, it writes the literal value begl to
the index variable var. At the top of
the FOR loop, the macro tests the cur-
rent value in var against the literal
value endl; if they match, control exits
the looping structure at the associated
NEXT macro. If they don't match, con-
trol continues with the next statement
in sequence. This macro makes it easy
to write counted loops. If you need to
issue a certain amount of pulses, you
could use code such as:

for n, 0, 60 : need to issue 60
; pulses

bsf portb,1 ; raise a line

bcf portb,1 ; drop a line

next n ; end of loop

Note that FOR-NEXT structures —
like all of the macro structures in this
library — can be nested as deep as you
like. This allows you to do some fancy
loops:

for x, 0,10 ; do 10 times
for y, 30, 50 ; step across y
bsf portb,3 ; raise a line
bcf portb,3 ; drop a line
next y ; end of y loop
moviw 100 ; need to delay
; now

call delay ; do the delay
next X ; end of x loop

As you can see, the macros save
you from having to muck about with
the W register and the flag bits. They
also take care of all the labels and
goto opcodes used in such opera-
tions. Thus, you get to focus more on

Note that the macro library
assumes that you are using
the Microchip equates file

for your target MCU, and
relies on some common reg-
ister definitions.

what you want the program to do,
and spend less time on how it gets
done.

The FOR macro uses a pair of lit-
erals; one for the starting value of the
index and one for the ending value.
Sometimes, however, you need to use
a variable to hold the ending value. In
such cases, you can use the FORF (for-
flag) version of this macro:

forf var, begl, endf
where var is a variable you've chosen
to use as the index, begl is a literal for
the starting value of the index, and
endf is a variable that holds the end-
ing value of the index.

This macro works just like the
basic FOR macro above, with one
important difference. When this
macro tests the index variable to see if
the loop should end, it uses the value
in the variable endf. This means your
code could modify the endf variable,
resulting in a FOR-NEXT loop that runs
a variable number of iterations.

A typical use of this structure

might be:

forf n, 0, steps ; need to issue
; some pulses

bsf portb,1 ; raise a line

bcf portb,1 ; drop a line

next n ; end of loop

where the actual number of pulses to
issue isn't known when you write the
assembler source, but is held in the
variable steps when the program runs.
Both versions of the FOR macro
above end with a NEXT macro that
refers to the same variable name. The
basic NEXT macro looks like this:

next var

where var is the same index variable
used in the matching FOR or FORF
macro.

It is important that you match the
FOR or FORF index variable with the
corresponding NEXT index variable.
The NEXT macro adds one to the
index variable and loops back to the
matching FOR macro so the variable
can be tested. If the variables don't
match, the FOR index variable will
never change and the loop will never
end.

In some cases, you need to add
more than one to the index variable at
the NEXT macro. This is similar to
BASIC's FOR-NEXT-STEP structure. I've
included the NEXTL macro to provide
that capability. This macro looks like:
nextl var, incl

where var is the same index variable
used in the matching FOR or FORF
macro, and incl is a literal that is
added to the index variable. For exam-
ple, the following loop steps through
several odd integers:

for n, 1, 31 ; start of loop,
n=1
nextl n, 2 ; end of loop, add

;2 to n each time

NOTE: The NEXTL macro contains
an addlw instruction, one of the
newer PIC opcodes. Thus, older
devices — such as the 16¢54 — cannot
execute this macro. If you assemble a
source file for the 16¢54 or similar
processors, and the assembler detects
this instruction, it will issue an assem-
bler error.

To complete the package, the
NEXTF macro works just like the
NEXTL macro, but it instead adds the
value in a variable to the index vari-
able:

nextf var, incf

where var is the same index variable
used in the matching FOR or FORF
macro, and incf is a variable whose
contents are added to the index vari-
able. This lets you create loops that
execute a variable number of times:

for n, 1, 31 ; start of loop,
n=1
nextf n, steps ; end of loop, add

; steps to n each
: time

REPEAT structures

In some cases, you need to create

Reprinted from July 1999 Nuts & Volts Magazine. All rights reserved. No duplication permitted without permission from T & L Publications, Inc. 1

A High-Power PIC Macro Library

a conditional loop. That is, you need a
structure that loops until a specific
condition exists or ceases to exist. For
that, I've built the REPEAT series of
structures. The REPEAT macro marks
the beginning of the structure, and is
of the form:

repeat

Exactly what type of structure
you create depends on what macro
you use to match up with this REPEAT
macro. The simplest such structure is
the unconditional loop, built from the
REPEAT and ALWAYS macros. Here,
control endlessly executes the code
between the REPEAT and its matching
ALWAYS macro. For example:

repeat ; start an endless
; loop

psf portb,1 ; raise a line

bcf portb,1 ; drop a line

always ; do forever

You can build a conditional loop
using the UNTILEQ macro with the
REPEAT macro. This combination
yields:

repeat
untileq

Now control executes the code
between the REPEAT and UNTILEQ
macros until the Z bit in the status reg-
ister is set when the UNTILEQ macro
executes. The instructions just prior to
the UNTILEQ should perform some
operation to test for the ending con-
dition, with the ending condition sig-
naled by setting the Z bit. For exam-
ple:

repeat ; start a loop
movfw portb ; read a port
andlw 0x20 ; leave only bit 5
untileq ; loop until bit 5 is

;low

Here, the Z bit will be set when
the W register is O after executing the
AND operation; that is, when bit 5 of
portb is 0.

The macro library provides the
matching and opposite function with
the UNTILNE macro. It works just like
the UNTILEQ macro, except that con-
trol loops until the Z bit is cleared
when the UNTILNE macro executes.
The above example could be rewritten
as:

repeat ; start a loop
movfw portb ; read a port
andlw 0x20 ; leave only bit 5
untilne ; loop until bit 5 is

; high

Now the loop repeats until bit 5
of portb goes high. This condition
leaves the Z bit cleared when the
UNTILNE macro executes, and control
leaves the loop.

SELECT-CASE structures
The SELECT-CASE structure acts

as a large switch table, allowing your
code to take one of several paths,
based on the value of a selector vari-
able. The general format of a SELECT-
CASE structure looks like this:

select
case

endcase
case

endcase
endselect

This general description shows
how a SELECT statement marks the
beginning of the structure. If the
selector variable holds the value called
for in the first CASE statement, then
code between that CASE statement
and its matching ENDCASE statement
is executed. If not, then the selector
variable is tested against each succes-
sive CASE value in turn.

Exactly what type of struc-
ture you create depends on

what macro you use to
match up with this REPEAT
macro.

If the selector variable does not
match any CASE value, the code
immediately following the last END-
CASE statement, if any, is executed as
a default. After executing any CASE
block of code, control passes immedi-
ately to the matching ENDSELECT
statement, skipping over any interven-
ing CASE blocks.

This creates a very powerful struc-
ture, ideally suited for many robotic
applications, where functions to be
performed depend on the value in
some global state variable. As imple-
mented in the macro library, the
SELECT macro is simply:

select var

where var is the selector variable.
When the SELECT macro executes,
the underlying code copies the value
in variable var into the PIC's W regis-
ter.

The CASE macro actually tests
the contents of the W register; the
macro looks like this:

case lit

where lit is a literal value used for test-
ing. When the CASE macro executes,
it compares the literal value lit against
the contents of the W register. If they
match, the code immediately follow-
ing the CASE statement is executed.
If, however, they don't match, control
passes to just below the matching
ENDCASE statement.

Note that regardless of whether
the test passes or not, the contents of
the W register are preserved. Thus,

code following the CASE statement
may rely on the W register containing
the literal value called out in the CASE
statement.

The ENDCASE macro marks the
end of a CASE-ENDCASE structure.
This macro looks like:

endcase

There must be a matching END-
CASE macro for each and every CASE
macro. When code inside a CASE-
ENDCASE block hits the ENDCASE
macro, control passes immediately to
the ENDSELECT macro that closes out
the current SELECT-ENDSELECT struc-
ture. The ENDSELECT macro marks
the end of a SELECT-ENDSELECT struc-
ture. This macro looks like:

endselect

There must be a matching ENDS-
ELECT macro for each and every
SELECT macro. If any code exists
between the final ENDCASE macro
and an ENDSELECT macro, that code
is treated as a default case. This
means that any time a selector value
fails all CASE tests, the code after the
final ENDCASE is executed.

An example should make all of
this clearer:

select foo : use foo as the

; selector variable
case 5 ; if foo =5...
bsf portb, 1 ; raise a line
endcase ; all done
case 8 ; if foo = 8...

bcf portb, 1 ; drop the line

endcase : all done
incf count ; default, not 5 or
8, count it
endselect : end of select
; structure

Here, I've used the variable foo as
the selector value. The SELECT macro
copies foo into the W register. The
first CASE statement compares W to
the literal 5. If they match, the code
sets bit 1 of portb, then jumps to the
ENDSELECT macro. If they don't
match, the second CASE statement
compares W to the literal 8. If they
match, the code clears bit 1 of portb,
then jumps to the ENDSELECT macro.
If they don't match, then foo con-
tained neither 5 nor 8.

In this case, the default code fol-
lowing the last ENDCASE is executed,
incrementing the variable count.
Finally, control falls through to the
ENDSELECT macro.

The macro library contains an
alternate form of the CASE macro,
useful when you need to test the
selector value against another vari-
able, rather than a literal. The CASEF
macro looks like:

casef var

where var is a variable whose contents
are compared against the W register.
This means you can write CASE struc-
tures such that the test values aren't

known at assembly time, but are cre-
ated in the code at run time.

WAITWHILE
and WAITUNTIL

These macros create very small,
very fast loops that block, or wait,
until a specific condition exists or ceas-
es to exist. They are ideal for monitor-
ing one or more 1/0 lines for an input
condition. The WAITWHILE macro
looks like:
waitwhile addr, andl, xorl
where addr is the port register to
monitor, andl is a literal value used as
an AND mask, and xorl is a literal
value used as an exclusive-or (XOR)
mask.

This macro creates a small loop
that reads the value in the port regis-
ter at address addr, ANDs that value
with the literal andl, then XORs the
result with the literal xorl. This
sequence of operations repeats for so
long as the final result is non-zero.
Control does not leave the WAIT-
WHILE macro until the final result is
zero. At that time, control passes to
the statement following the WAIT-
WHILE macro.

The use of the andl as an AND
mask should seem obvious. It isolates
only those bits in the port register
value that match bits in the andl liter-
al. A mask value of $0f, for example,
lets your code test the lower four bits
of an address without caring what
happens to the upper four bits.

The XOR mask may not seem so
obvious. This effectively inverts the
state of selected bits, allowing your
code to test for active-low inputs. For
example, suppose bit 2 of the port is
active-low, and your code needs to
wait while that bit is 0. Using an XOR
mask with bit 2 set ($04) inverts that
bit, yielding a logic 1 when the input
is a logic 0. An example might help:
waitwhile portb, 0x02, 0x02

This WAITWHILE macro reads the
value in register portb, ANDs that
value with $02 to leave only bit 1
intact, then XORs that value with $02

This macro library makes
heavy use of the powerful
macro operators built into

the Microchip MPASM
assembler.

to invert the state of bit 1. If the
resulting value is non-zero, control
repeats the WAITWHILE macro.
Otherwise, control falls through to the
statement following the WAITWHILE.

The opposite of WAITWHILE is
WAITUNTIL, which loops until a cer-
tain condition is non-zero. The WAIT-
UNTIL macro looks like:

waituntil addr, andl, xorl

Reprinted from July 1999 Nuts & Volts Magazine. All rights reserved. No duplication permitted without permission from T & L Publications, Inc. 2

A High-Power PIC Macro Library

This macro creates a small loop
that reads the value in the port regis-
ter at address addr, ANDs that value
with the literal andl, then XORs the
result with the literal xorl. This
sequence of operations repeats until
the final result is non-zero. Control
does not leave the WAITUNTIL macro
until the final result is non-zero. At
that time, control passes to the state-
ment following the WAITUNTIL
macro.

Note that if you use a value of 0
for the xorl literal in either of the
above macros, the macro does not
generate any PIC code for the XOR
operation. XORing a value with 0
leaves that value unchanged, so there
is no point in generating code for that
operation.

POLL and ENDPOLL

The WAITWHILE and WAITUNTIL
macros create fast blocking loops, but
your code cannot perform any opera-
tions inside the loops. The POLL-END-
POLL structure lets you perform func-
tions inside an I/O polling loop. The
POLL macro looks like:

poll port, andl, xorl

where port is the address of a port
register to monitor, andl is a literal
value used as an AND mask, and xorl
is a literal value used as an XOR mask.

This macro acts just like the front
end of the WAITWHILE or WAITUNTIL
macros. It reads the value at the
address port, ANDs that value with
the literal andl, then XORs the result
with the literal xorl. If the resulting
value is true (non-zero), control falls
through to the next instruction in
sequence. If, however, the resulting
value is false (zero), control jumps to
just below the matching ENDPOLL
macro.

Each POLL macro must be paired
with an ENDPOLL macro. The END-
POLL macro looks like:

endpoll
When control reaches the END-

POLL macro, it returns automatically
to the previous matching POLL macro.

The use of the andl as an
AND mask should seem

obvious.

Thus, the POLL-ENDPOLL struc-
ture lets your code monitor, or poll, a
set of I/O lines for a specific condition.
If that condition occurs, your code can
take appropriate action, as defined
inside the POLL-ENDPOLL structure.
For example:

poll portb, 0x80, 0x80
incf count
endpoll

Here, the POLL macro tests for a
low on bit 7 of portb. If that bit is low,

Reprinted from July 1999 Nuts & Volts Magazine. All rights reserved. No duplication permitted without permission from T & L Publications, Inc.

then the variable count is increment-
ed. If, however, that bit is high, con-
trol passes directly to the ENDPOLL
macro and count is not incremented.

Under the hood

This macro library makes heavy
use of the powerful macro operators
built into the Microchip MPASM
assembler. The following paragraphs
will walk you through the design of
one of the macros, so you can see
how | built it. You can then apply
these techniques to create your own
macros.

Here is the code specific to the
FOR macro. | have added line num-
bers for reference only; they do not
appear in the macro source file:

1. variable _forknt=0

2 variable _nxtknt=0

3. for macro varbeglendl

4. movlw begl

5. movwf var

6. _for#v(_forknt)

7. moviw end|

8. subwf var,w

9. beq _nextitv(_forknt)

10. _forknt set _forknt+1
11. _nxtknt set _forknt
12. endm

Lines 1 and 2 define two assem-
bler variables that will be used by both
the FOR and NEXT macros. Note that
these are NOT variables used by your
PIC program when it runs. These vari-
ables exist only while MPASM assem-
bles your source, and they will only be
used by MPASM. | intentionally use a
leading underscore on all of my
MPASM variable names, to avoid con-
flicts with PIC variables that you might
declare in your program.

Line 3 declares the format of the
FOR macro, as required by MPASM.
Here you can see that the FOR macro
requires three arguments, and you
can see the names that they will be
given throughout the FOR macro.
MPASM is smart enough to know that
a macro argument, such as begl, is dif-
ferent from a variable or equate that
you have declared elsewhere in your
source file.

Lines 4 and 5 copy beg|, the liter-
al value used as a starting index, to
the index variable var. This code is exe-
cuted once, when control enters the
FOR macro at run-time.

Line 6 shows one of the powerful
features of the MPASM macro opera-
tors. This line creates an assembler
label composed of the characters
" for" followed by the characters for
the current value of the assembler
variable _forknt. Thus, if _forknt holds
the value 3, line 6 will assemble as:

_for3

Note how the #v() macro opera-
tor reads the value of an assembler
variable and adds that value to the
end of a label. For more details on
using the #v() macro operator, consult

the MPASM Assembler User's Guide
from Microchip.

Lines 7 through 9 test the current
value of var against the ending literal
value endl. If var matches endl, then
the PIC's Z-bit will be set. The beq
macro at line 9 will either pass control
outside the FOR-NEXT loop if the Z-bit
is set, or allow control to fall through
to the next line of code if the Z-bit is
clear. Note how line 9 again uses the
#v() macro operator to build up the
label used for the beq target. Here,
the label consists of the string "_next"
followed by the value in the assembler
variable _forknt. Thus, if _forknt holds
the value 4, then line 9 will assemble
as:

beq _next4

Line 10 increments the value in
assembler variable _forknt, so the
labels created at the next use of the
FOR macro will differ from those just
created. This ability to modify the val-
ues in the assembler variables is
another powerful feature in the
MPASM macro utility, and is essential
to the proper functioning of this
library.

Similarly, line 11 changes the
value in assembler variable _nxtknt.
The FOR macro doesn't use this vari-
able in creating any labels, but it must
perform the bookkeeping so the
matching NEXT macro does create the
correct label. Remember that the
NEXT macro must generate a branch
back to the top of the FOR macro, at
the label in line 6. This adjustment of
the assembler variable _nxtknt
ensures that the correct branch label
will be created.

Finally, line 12 contains the endm
psuedo-op, used to indicate the end
of a macro definition. This explanation
is still pretty theoretical. It may not be
clear yet how all of this comes togeth-
er when the assembler actually
processes a FOR macro. Let's finish up
with a specific example. Assume that
at some point in the assembly of your
program, assembler variables _forknt
and _nxtknt both hold the value 3.
Your program now contains the FOR
macro:

for foo, 4, 20
Given the above, MPASM will cre-

ate the following assembler source
lines for your macro:

I've presented a suite of
powerful PIC macros that

you can add to your own
assembler source files.

4. moviw 4

5 movwf foo

6. _for3

7. moviw 20

8. subwf foo,w

9. beq _next3
10. _forknt set _forknt+1
11. _nxtknt set _forknt

| have eliminated all the setup
lines from the above FOR macro expla-
nation, leaving only those actually
used by MPASM when it processes
your FOR macro. Note that the beq
opcode in line 9 is itself a macro, so
MPASM will expand it as well. | have
left the beq unexpanded for clarity.

This example should make clear
the power behind the MPASM macro
utilities and this macro library. You
don't need to match up the labels in
the FOR macro with the labels in the
corresponding NEXT macro. You don't
have to worry that you might have
used the ending literal in the FOR ini-
tialization, rather than the starting lit-
eral. All you have to do is write the
FOR macro and match it up with a
NEXT macro, and you're done.

That's a wrap

I've presented a suite of powerful
PIC macros that you can add to your
own assembler source files. These
macros provide most of the common
programming structures, such as FOR-
NEXT and REPEAT-ALWAYS.
Additionally, I've added structures
such as WAITWHILE and POLL-END-
POLL that simplify writing embedded
control code, where monitoring 1/O
lines occurs frequently.

| hope you'll look on these macros
as a beginning, not an end. Feel free
to expand what I've done here. By
studying my use of the assembler vari-
ables and the #v() macro operator,
you should be able to create complex
macros of your own. And, as your use
of control structure macros increases,
writing PIC assembly language pro-
grams should become simpler and less
frustrating. NV

The details are on our site.
www.nutsvolts.com

Shameless Plug

This article was reprinted from the July 1999 issue

of Nuts & Volts Magazine. If you aren’t familiar with

Nuts & Volts and are interested in electronics, we

invite you to stop by our website and see what it’s
all about. (Even if you have seen it, stop by anyway.)

Heck, we’ll even send you a sample copy for free

if you’ve never seen it before. And of course,
you can also subscribe for only $19.00.

What a deal!

