
APE � The ANSI/PΧSIX Environment

Howard Trickey

howard@plan9.bell-labs.com

Introduction

When a large or frequently-updated program must be ported to or from Plan 9, the
ANSI/POSIX environment known as APE can be useful. APE combines the set of headers
and object code libraries specified by the ANSI C standard (ANSI X3.159-1989) with the
POSIX operating system interface standard (IEEE 1003.1-1990, ISO 9945-1), the part of
POSIX defining the basic operating system functions. Using APE will cause slower com
pilation and marginally slower execution speeds, so if the importing or exporting hap
pens only infrequently, due consideration should be given to using the usual Plan 9
compilation environment instead. Another factor to consider is that the Plan 9 header
organization is much simpler to remember and use.

There are some aspects of required POSIX behavior that are impossible or very hard
to simulate in Plan 9. They are described below. Experience has shown, however, that
the simulation is adequate for the vast majority of programs. A much more common
problem is that many programs use functions or headers not defined by POSIX. APE has
some extensions to POSIX to help in this regard. Extensions must be explicitly enabled
with an appropriate #define, in order that the APE environment be a good aid for test
ing ANSI/POSIX compliance of programs.

Pcc

The pcc command acts as a front end to the Plan 9 C compilers and loaders. It
runs an ANSI C preprocessor over source files, using the APE headers to satisfy
#include <file> directives; then it runs a Plan 9 C compiler; finally, it may load with
APE libraries to produce an executable program. The document How to Use the Plan 9 C
Compiler explains how environment variables are used by convention to handle compila
tion for differing architectures. The environment variable $objtype controls which
Plan 9 compiler and loader are used by pcc, as well as the location of header and
library files. For example, if $objtype is mips, then pcc has cpp look for headers
in /mips/include/ape followed by /sys/include/ape; then pcc uses vc to
create .v object files; finally, vl is used to create an executable using libraries in
/mips/lib/ape.

Psh and Cc

The pcc command is intended for uses where the source code is ANSI/POSIX, but
the programs are built in the usual Plan 9 manner � with mk and producing object files
with names ending in .v, etc. Sometimes it is best to use the standard POSIX make
and cc (which produces object files with names ending in .o, and automatically calls
the loader unless -c is specified). Under these circumstances, execute the command:

ape/psh

This starts a POSIX shell, with an environment that includes the POSIX commands ar89,
c89, cc, basename, dirname, expr, false, grep, kill, make, rmdir, sed,

 2

sh, stty, true, uname, and yacc. There are also a few placeholders for commands
that cannot be implemented in Plan 9: chown, ln, and umask.

The cc command accepts the options mandated for the POSIX command c89, as
specified in the C-Language Development Utilities Option annex of the POSIX Shell and
Utilities standard. It also accepts the following nonstandard options: -v for echoing the
commands for each pass to stdout; -A to turn on ANSI prototype warnings; -S to leave
assembly language in file.s; -Wp,args to pass args to the cpp; -W0,args to pass args
to 2c, etc.; and -Wl,args to pass args to 2l, etc.

The sh command is pdksh, a mostly POSIX-compliant public domain Korn Shell.
The Plan 9 implementation does not include the emacs and vi editing modes.

The stty command only has effect if the ape/ptyfs command has been started
to interpose a pseudo-tty interface between /dev/cons and the running command.
None of the distributed commands do this automatically.

Symbols

The C and POSIX standards require that certain symbols be defined in headers.
They also require that certain other classes of symbols not be defined in the headers,
and specify certain other symbols that may be defined in headers at the discretion of the
implementation. POSIX defines feature test macros, which are preprocessor symbols
beginning with an underscore and then a capital letter; if the program #defines a
feature test macro before the inclusion of any headers, then it is requesting that certain
symbols be visible in the headers. The most important feature test macro is
_PΧSIX_SΧURCE: when it is defined, exactly the symbols required by POSIX are visible
in the appropriate headers. Consider <signal.h> for example: ANSI defines some
names that must be defined in <signal.h>, but POSIX defines others, such as
sigset_t, which are not allowed according to ANSI. The solution is to make the addi
tional symbols visible only when _PΧSIX_SΧURCE is defined.

To export a program, it helps to know whether it fits in one of the following cate
gories:

1. Strictly conforming ANSI C program. It only uses features of the language, libraries,
and headers explicitly required by the C standard. It does not depend on unspeci
fied, undefined, or implementation-dependent behavior, and does not exceed any
minimum implementation limit.

2. Strictly conforming POSIX program. Similar, but for the POSIX standard as well.

3. Some superset of POSIX, with extensions. Each extension is selected by a feature
test macro, so it is clear which extensions are being used.

With APE, if headers are always included to declare any library functions used, then
the set of feature test macros defined by a program will show which of the above cate
gories the program is in. To accomplish this, no symbol is defined in a header if it is
not required by the C or POSIX standard, and those required by the POSIX standard are
protected by #ifdef _PΧSIX_SΧURCE. For example, <errno.h> defines EDΧM,
ERANGE, and errno, as required by the C standard. The C standard allows more
names beginning with E, but our header defines only those unless _PΧSIX_SΧURCE is
defined, in which case the symbols required by POSIX are also defined. This means that
a program that uses ENAMETΧΧLΧNG cannot masquerade as a strictly conforming ANSI
C program.

Pcc and cc do not predefine any preprocessor symbols except those required by
the ANSI C standard: __STDC__, __LINE__, __FILE__, __DATE__, and
__TIME__. Any others must be defined in the program itself or by using -D on the
command line.

 3

Extensions

The discipline enforced by putting only required names in the headers is useful for
exporting programs, but it gets in the way when importing programs. The compromise
is to allow additional symbols in headers, additional headers, and additional library func
tions, but only under control of extension feature test macros. The following extensions
are provided; unless otherwise specified, the additional library functions are in the
default APE library.

� _LIBG_EXTENSIΧN. This allows the use of the Plan 9 graphics library. The
functions are as described in the Plan 9 manual (see graphics(2)) except that div
had to be renamed ptdiv. Include the <libg.h> header to declare the needed
types and functions.

� _LIMITS_EXTENSIΧN. POSIX does not require that names such as PATH_MAX
and ΧPEN_MAX be defined in <limits.h>, but many programs assume they are
defined there. If _LIMITS_EXTENSIΧN is defined, those names will all be
defined when <limits.h> is included.

� _BSD_EXTENSIΧN. This extension includes not only Berkeley Unix routines, but
also a grab bag of other miscellaneous routines often found in Unix implementa
tions. The extension allows the inclusion of any of: <bsd.h> for bcopy(),
bcmp(), and similar Berkeley functions; <netdb.h> for gethostbyname(),
etc., and associated structures; <select.h> for the Berkeley select function
and associated types and macros for dealing with multiple input sources;
<sys/ioctl.h> for the ioctl function (minimally implemented);
<sys/param.h> for NΧFILES_MAX; <sys/pty.h> for pseudo-tty support
via the ptsname(int) and ptmname(int) functions; <sys/resource.h>;
<sys/socket.h> for socket structures, constants, and functions;
<sys/time.h> for definitions of the timeval and timezone structures; and
<sys/uio.h> for the iovec structure and the writev and readv functions
used for scatter/gather I/O. Defining _BSD_EXTENSIΧN also enables various
extra definitions in <ctype.h>, <signal.h>, <stdio.h>, <unistd.h>,
<sys/stat.h>, and <sys/times.h>.

� _NET_EXTENSIΧN. This extension allows inclusion of <libnet.h>, which
defines the networking functions described in the Plan 9 manual page dial(2).

� _PLAN9_EXTENSIΧN. This extension allows inclusion of <u.h>, <lock.h>,
<qlock.h>, <utf.h>, <fmt.h>, and <draw.h>. These are pieces of Plan 9
source code ported into APE, mostly from <libc.h>.

� _REGEXP_EXTENSIΧN. This extension allows inclusion of <regexp.h>, which
defines the regular expression matching functions described in the Plan 9 manual
page regexp(2).

� _RESEARCH_SΧURCE. This extension enables a small library of functions from
the Tenth Edition Unix Research System (V10). These functions and the types
needed to use them are all defined in the <libv.h> header. The provided func
tions are: srand, rand, nrand, lrand, and frand (better random number
generators); getpass, tty_echoon, tty_echooff (for dealing with the com
mon needs for mucking with terminal characteristics); min and max; nap; and
setfields, getfields, and getmfields (for parsing a line into fields). See
the Research Unix System Programmer�s Manual, Tenth Edition, for a description of
these functions.

 4

Common Problems

Some large systems, including X11, have been ported successfully to Plan 9 using
APE (the X11 port is not included in the distribution, however, because supporting it
properly is too big a job). The problems encountered fall into three categories: (1)
non-ANSI C/POSIX features used; (2) inadequate simulation of POSIX functions; and (3)
compiler/loader bugs. By far the majority of problems are in the first category.

POSIX is just starting to be a target for programmers. Most existing code is written
to work with one or both of a BSD or a System V Unix. System V is fairly close to POSIX,
but there are some differences. Also, many System V systems have imported some BSD
features that are not part of POSIX. A good strategy for porting external programs is to
first try using CFLAGS=-D_PΧSIX_SΧURCE; if that doesn�t work, try adding
_D_BSD_EXTENSIΧN and perhaps include <bsd.h> in source files. Here are some
solutions to problems that might remain:

� Third (environment) argument to main. Use the environ global instead.

� ΧPEN_MAX, PATH_MAX, etc., assumed in <limits.h>. Rewrite to call
sysconf or define _LIMITS_EXTENSIΧN.

� <varargs.h>. Rewrite to use <stdarg.h>.

The second class of problems has to do with inadequacies in the Plan 9 simulation
of POSIX functions. These shortcomings have rarely gotten in the way (except, perhaps,
for the link problem).

� Functions for setting the userid, groupid, effective userid and effective groupid do
not do anything useful. The concept is impossible to simulate in Plan 9. Chown
also does nothing.

� execlp and the related functions do not look at the PATH environment variable.
They just try the current directory and /bin if the pathname is not absolute.

� Advisory locking via fcntl is not implemented.

� isatty is hard to do correctly. The approximation used is only sometimes cor
rect.

� link always fails.

� With open, the Χ_NΧCTTY option has no effect. The concept of a controlling tty
is foreign to Plan 9.

� setsid forks the name space and note group, which is only approximately the
right behavior.

� The functions dealing with stacking signals, sigpending, sigprocmask and
sigsuspend, do not work.

� umask has no effect, as there is no such concept in Plan 9.

� code that does getenv("HΧME") should be changed to getenv("home") on
Plan 9.

