Optoelectronics, Inc. Digital ScoutÔ Serial Interface Specification

Interface Version 1.1

February 19, 2002

INTRODUCTION

This document describes the serial interface of the Digital ScoutTM, a hand-held frequency counter capable of measuring the frequency of pulsed or continuous wave (CW) VHF and UHF transmitters and other signal sources. The Digital ScoutTM is also capable of storing up to 1000 frequencies, as well as the number of occurrences, or "hits", of each frequency. This frequency data can then be downloaded to a personal computer for logging and analysis.

This document was written to assist the programmer in developing computer software applications for the Digital Scout[™].

Optoelectronics, Inc. assumes no responsibility for the accuracy of the information contained in this document. Optoelectronics, Inc. is under no obligation to provide technical support on matters pertaining to this document, or to provide notification of changes or corrections to this document. To inquire about possible revisions, or to order copies of this document, contact the factory. A nominal fee may be charged to cover printing and shipping costs.

OPTOELECTRONICS, INC. 5821 N.E. 14th Avenue Fort Lauderdale, FL 33334 Phone: (954) 771-2050 FAX: (954) 771-2052 www.optoelectronics.com

ABOUT CI-5

The command structure of the Digital ScoutTM serial interface conforms to the Icom CI-V interface standard. However, Optoelectronics has added enhancements in the form of additional commands and features. Optoelectronics has, therefore, modified the name of this new enhanced interface to CI-5.

Also, unlike the original Icom CI-V interface, and the CI-5 interface on most Optoelectronics products, the Digital ScoutTM serial interface is full-duplex with RS-232C compatible voltage levels. The communications parameters for the serial interface are listed in Table 1 below.

DATA RATE	9600 bps				
START BITS	1				
DATA BITS	8				
PARITY	NONE				
STOP BITS	1				

Table 1. Communications Parameters.

To connect the Digital ScoutTM to a personal computer, a miniature (3.5 mm) stereo phone jack is provided on the top panel. The Digital ScoutTM receives commands on the RING terminal and transmits responses on the TIP terminal of the stereo phone jack. Signal ground is provided on the SHIELD terminal of the phone jack. Since the Digital ScoutTM serial interface is compatible with RS-232C voltage levels, no external interface converter box is required to connect the Digital ScoutTM to a standard personal computer COM port. An interface cable for connecting the Digital ScoutTM to a PC is available.

For ReactionTuneTM applications, a subminiature (2.5 mm) phone jack is provided on the top panel. The TIP terminal provides the TTL equivalent of the RS-232 transmit data signal to drive ReactionTuneTM-capable receivers. Signal ground is provided on the SHIELD terminal of the phone jack.

COMMAND REFERENCE

The Digital ScoutTM accepts commands over the CI-5 RS-232 interface when CI-5 COMMAND interface is selected from the front panel. In this section, all CI-5 command and response bytes are expressed in hexadecimal notation. The Digital ScoutTM recognizes 14 different commands, which are summarized in Table 2 below.

Following the command summary table is a detailed description of each of the commands, including examples illustrating their use. In the command descriptions, "ra" refers to the RECEIVE ADDRESS, and "ta" refers to the TRANSMIT ADDRESS.

The RECEIVE ADDRESS is the address of the Digital Scout^{TM} , which is fixed at 9E. Each CI-5 device has its own unique address. The Digital Scout^{TM} will not process any command in which the RECEIVE ADDRESS is not 9E. However, the Digital Scout^{TM} will process commands with a RECEIVE ADDRESS of 00, but all command responses will be suppressed. A RECEIVE ADDRESS of 00 has special meaning. It provides a means for a device on a CI-5 bus to transmit a command to all other devices simultaneously. However, since several simultaneous responses would cause a collision, the responses are suppressed. Because the Digital Scout^{TM} serial interface is an RS-232C interface, the Digital Scout^{TM} will be the only device connected to the host computer.

The TRANSMIT ADDRESS is the address of the device which is transmitting the command to the Digital ScoutTM. In most cases, this device is a personal computer executing application software, usually referred to as the CONTROLLER. The standard address for the CONTROLLER is E0, but most any address can be used for the TRANSMIT ADDRESS. However, the TRANSMIT ADDRESS must be in the range 01 to EF. Also, the Digital ScoutTM will not process any command in which the TRANSMIT ADDRESS matches its own address, 9E.

It is important to remember that the values specified are not ASCII characters, but are bytes expressed in hexadecimal notation. For example, "FE" represents a single byte with a value of 0xFE (hexadecimal), or 254 (decimal). It does not represent the ASCII character "F" followed by the ASCII character "E", a two-byte sequence.

COMMAND	SUB-COMMAND	DESCRIPTION
03	-	Read Frequency
04	-	Read Mode
06	-	Write Mode
15	01	Read Squelch Status
15	02	Read Signal Strength
7F	09	Read Identification
7F	12	Read Squelch Setting
7F	13	Write Squelch Setting
7F	20	Read Configuration
7F	21	Write Configuration
7F	22	Read Frequency Memory
7F	23	Read Hits Memory
7F	24	Clear Memory
7F	25	Write Frequency Memory

 Table 2. Digital ScoutÔ CI-5 Interface Command Summary.

READ FREQUENCY

Command:

FE FE ra ta 03 FD

Example:

FE	FE	9E	E0	03	FD

Response:

FE FE ta ra 03 frequency FD

Examples:

162.550000 MHz										
FE	FE	E0	9E	03	00	00	55	62	01	FD

1045.725000 MHz

FE	FE E	E0 9E	03	00	50	72	45	10	FD	
----	------	-------	----	----	----	----	----	----	----	--

Error					
FE	FE	E0	9E	FA	FD

Description:

This command instructs the unit to send the current frequency measurement result. This command is only valid when FREQUENCY mode is selected.

The frequency data is in the form of 5 bytes, each consisting of 2 BCD digits. The order of the 10 BCD digits is as follows: 10 Hz digit, 1 Hz digit, 1 kHz digit, 100 Hz digit, 100 kHz digit, 10 kHz digit, 10 MHz digit, 1 MHz digit, 1 GHz digit, 100 MHz digit. See the examples shown above.

If the command length is incorrect, or if FREQUENCY mode is not selected, then the command is ignored, and the error response is returned.

READ MODE

Command:

FE FE ra ta 04 FD

Example:

FE	E	9E	E0	04	FD

Response:

FE	FE	ta	ra	04	ms	FD
----	----	----	----	----	----	----

- ms is a BCD value representing the selected operating mode. BCD values are encoded as follows:
 - 00: FREQUENCY mode
 - 01: SIGNAL STRENGTH mode
 - 02: MEMORY mode
 - 03: CLEAR MEMORY mode
 - 04: AUTO STORE mode
 - 05: RESOLUTION mode
 - 06: MIN PULSE WIDTH mode
 - 07: FILTER mode
 - 08: FREQ DISPLAY mode
 - 09: INTERFACE mode
 - 10: RECEIVER mode
 - 11: PCR1000 VOLUME mode
 - 12: PCR1000 SQUELCH mode
 - 13: APO mode
 - 14: BEEPER mode
 - 15: VIBRATOR mode

Examples:

 MEMORY mode

 FE
 FE
 E0
 9E
 04
 02
 FD

RESOLUTION mode

FE FE	E0	9E	04	05	FD
-------	----	----	----	----	----

 RECEIVER mode

 FE
 FE
 E0
 9E
 04
 10
 FD

Error FE FE E0 9E FA FD

Description:

This command instructs the unit to send the current operating mode.

The mode data is in the form of 1 byte, consisting of 2 BCD digits. See the examples shown above.

WRITE MODE

Command:

FE FE ra ta 06 ms FD

ms is a BCD value representing the selected operating mode. BCD values are encoded as follows:

- 00: FREQUENCY mode
- 01: SIGNAL STRENGTH mode
- 02: MEMORY mode
- 03: CLEAR MEMORY mode
- 04: AUTO STORE mode
- 05: RESOLUTION mode
- 06: MIN PULSE WIDTH mode
- 07: FILTER mode
- 08: FREQ DISPLAY mode
- 09: INTERFACE mode
- 10: RECEIVER mode
- 11: PCR1000 VOLUME mode
- 12: PCR1000 SQUELCH mode
- 13: APO mode
- 14: BEEPER mode
- 15: VIBRATOR mode

Examples:

FREQUENCY mode

FE FE 9E E0 06 00 FD

SIGNAL STRENGTH mode

FE FE 9E	E0 (06 01	FD
----------	------	-------	----

APO mode

 FE
 FE
 9E
 E0
 06
 13
 FD

Response:

FE FE ta ra FB or FA FD

Examples:

OK

FE FE	E0	9E	FB	FD
-------	----	----	----	----

Error FE | FE | E0 | 9E | FA | FD |

Description:

This command selects the operating mode.

The mode select data is in the form of 1 byte, consisting of 2 BCD digits. See the examples shown above.

If the command length is incorrect, or if the mode select code is not valid, then the command is ignored, and the error response is returned.

READ SQUELCH STATUS

Command:

FE FE ra ta 15 01 FD

Example:

	1	2	50	4 5	0.4	
FE	FE	9E	E0	15	01	FD

Response:

FE FE ta ra 15 01 sd FD

sd is a BCD value representing the current squelch status. BCD values are encoded as follows:

00: Squelch CLOSED

01: Squelch OPEN

02: Squelch PULSED

Examples:

 Squelch closed

 FE
 FE
 E0
 9E
 15
 01
 00
 FD

Squelch open

FE FE E0 9E	15	01	01	FD
-------------	----	----	----	----

Error

FE FE E0 9E FA FD

Description:

This command instructs the unit to send the current squelch status. This command is only valid when FREQUENCY mode is selected.

The squelch status data is in the form of 1 byte, consisting of 2 BCD digits. See the examples shown above.

If the command length is incorrect, or if FREQUENCY mode is not selected, then the command is ignored, and the error response is returned.

READ SIGNAL STRENGTH

Command:

FE FE ra ta 15 02 FD

Example:

FE	FE	9E	E0	15	02	FD

Response:

FE	FE ta	ra	15	02	SS	FD
----	-------	----	----	----	----	----

Examples:

-6.2 d	Bm							
FE	FE	E0	9E	15	02	00	62	FD
-21.7	dBm							
FE	FE	E0	9E	15	02	02	17	FD

-53.4	dBm							
FE	FE	E0	9E	15	02	05	34	FD

Error

FE FE E0 9E FA FD

Description:

This command instructs the unit to send the current signal strength. This command is only valid when SIGNAL STRENGTH mode is selected.

The signal strength data is in the form of 2 bytes, each consisting of 2 BCD digits. The signal strength is reported in units of absolute dBm at 0.1 dB resolution, as measured at the antenna connector. The reported signal strength ranges from a maximum signal level of 0.0 dBm to a minimum signal level of -70.0 dBm. A minus sign is implied. See the examples shown above.

If the command length is incorrect, or if SIGNAL STRENGTH mode is not selected, then the command is ignored, and the error response is returned.

READ IDENTIFICATION

Command:

FE FE ra ta 7F 09 FD

Example:

FE	FE	9E	E0	7F	09	FD

Response:

FE	FE	ta	ra	7F	09	id	SV	iv	FD	
----	----	----	----	----	----	----	----	----	----	--

Example:

]	Digita	al Sco	ut™, s	softwa	are ve	rsion	2.6, i	nterfa	ice ve	rsion	1.1	
	FE	FE	E0	9E	7F	09	44	53	43	26	11	FD

Error						_
FE	FE	E0	9E	FA	FD	

Description:

This command instructs the unit to send the identification information.

The identification data is in the form of 5 bytes, each consisting of 2 digits. The first 6 digits uniquely identify the device. The next 2 BCD digits indicate the current software version. The last 2 BCD digits indicate the current interface version.

READ SQUELCH SETTING

Command:

FE FE ra ta 7F 12 FD

Example:

FE	FE	9E	E0	7F	12	FD

Response:

FE FE ta ra	7F 12	squelch FD
-------------	-------	------------

Examples:

-	Squel	ch U							
	FE	FE	E0	9E	7F	12	00	00	FD

Squelch 37

FE	FE	E0	9E	7F	12	00	37	FD		
Squelch 100										
FE	FE	E0	9E	7F	12	01	00	FD		
_										

Error

FE FE E0 9E FA FD

Description:

This command instructs the unit to send the current squelch setting. This command is only valid when FREQUENCY mode is selected.

The squelch setting data is in the form of 2 bytes, each consisting of 2 BCD digits. The squelch setting will be in the range 0 to 100. See the examples shown above.

WRITE SQUELCH SETTING

Command:

FE FE ra ta 7F 13 squelch FD

Examples:

Squel	ch 0							
FE	FE	9E	E0	7F	13	00	00	FD

Squelch 37 FE FE 9E E0

Squelch	100

_									
	FΕ	FE	9E	E0	7F	13	01	00	FD

7F

13

00

37

FD

Response:

FE FE ta	ra	FB or FA	FD
----------	----	----------	----

Examples:

1		TZ
t.	,	n

FE	FE	E0	9E	FB	FD

Error

FE FE E0	9E	FA	FD
----------	----	----	----

Description:

This command selects the squelch setting. This command is only valid when FREQUENCY mode is selected.

The specified squelch setting data is in the form of 2 bytes, each consisting of 2 BCD digits. The specified squelch setting must be in the range 0 to 100. See the examples shown above.

If the command length is incorrect, or if the squelch setting data is not valid, then the command is ignored, and the error response is returned.

READ CONFIGURATION

Command:

FE FE ra ta 7F 20 FD

Example:

FE	FE	9E	E0	7F	20	FD

Respo	nse:													
FE	FE	ta	ra	7F	20	as	rs	pw	fm	fd	ар	bp	vb	FD
as	indi	cates	the c	urren	t AUI	ro st	ORE	settii	ng as	follow	/S:		00: 01:	Disabled Enabled
rs	indi	cates	the c	urren	t RES	SOLU	TION	l setti	ng as	follov	vs:		00: 01:	1 kHz (FAST) 100 Hz (SLOW)
pw	indi	cates	the c	urren	t MIN	I PUI	LSE V	VIDTI	4 sett	ing as	s follov	C)0:)1:)2:	500 uS (SLOW) 1300 uS (MEDIUM) 8300 uS (FAST)
fm	indi	cates	the c	urren	t FIL'	TER	MOD	E sett	ing a	s follo	ws:		00: 01:	Disabled Enabled
fd	indi	cates	the c	urren	t FRE	EQ DI	SPLA	AY set	ting a	s foll	ows:		00: 01:	Measured Channel
ар	indi	cates	the c	urren	t AU]	ГО РС	OWEF	R OFF	' setti	ng as	follow		00: 01:	Disabled Enabled
bp	indi	cates	the c	urren	t BEI	EPER	settii	ng as	follov	/s:			00: 01:	Disabled Enabled
vb	indi	cates	the c	urren	t VIB	RAT	OR se	tting	as fol	lows:)0:)1:	Disabled Enabled

Examples:

 AUTO STORE = Disabled, RESOLUTION = 1 kHz (FAST), MIN PULSE WIDTH = 500 uS (SLOW),

 FILTER MODE = Enabled, FREQ DISPLAY = Channel, AUTO POWER OFF = Disabled, BEEPER =

 Disabled, VIBRATOR = Disabled

 FE
 FE
 E0
 9E
 7F
 20
 00
 00
 01
 00
 00
 FD

AUTO STORE = Enabled, RESOLUTION = 100 Hz (SLOW), MIN PULSE WIDTH = 1300 uS(MEDIUM), FILTER MODE = Disabled, FREQ DISPLAY = Measured, AUTO POWER OFF =Enabled, BEEPER = Enabled, VIBRATOR = DisabledFEFEE09E7F20010100000101

AUTO STORE = Enabled, RESOLUTION = 100 Hz (SLOW), MIN PULSE WIDTH = 8300 uS (FAST), FILTER MODE = Disabled, FREQ DISPLAY = Measured, AUTO POWER OFF = Enabled, BEEPER = Disabled, VIBRATOR = Enabled

FE FE E0 9E 7F 20 01 01 02 00 00 01 00 01	FD	FD		01	00		01	00	00	02	01	01	20	7F	9E	E0	FE	FE	
---	----	----	--	----	----	--	----	----	----	----	----	----	----	----	----	----	----	----	--

Error	•				
FE	FE	E0	9E	FA	FD

Description:

This command instructs the unit to send the current configuration data.

The configuration data is in the form of 8 bytes, each consisting of 2 BCD digits, and specifies the settings of the various configuration parameters. See the examples shown above.

WRITE CONFIGURATION

Comman	d:
Comman	u.

Comm	lanu.												
FE	FE ra	ta	7F	21	as	rs	pw	fm	fd	ар	bp	vb	FD
as	indicates	s the c	lesired	AUT	TO ST	ORE	settir	ng as f	follow	/s:		00: 01:	Disabled Enabled
rs	indicates	s the c	lesired	RES	OLU	TION	setti	ng as	follov	vs:		00: 01:	1 kHz (FAST) 100 Hz (SLOW)
pw	indicates	s the d	lesired	MIN	I PUL	.SE W	/IDTH	I setti	ing a	s follov	0)0:)1:)2:	500 uS (SLOW) 1300 uS (MEDIUM) 8300 uS (FAST)
fm	indicates	s the c	lesired	FIL	FER M	MODI	E setti	ing as	follo	ws:)0:)1:	Disabled Enabled
fd	indicates	s the c	lesired	FRE	Q DI	SPLA	Y set	ting a	s foll	ows:)0:)1:	Measured Channel
ар	indicates	s the d	lesired	AUT	'O PC	OWER	2 OFF	settii	ng as	follow		00: 01:	Disabled Enabled
bp	indicates	s the c	urrent	BEE	EPER	settii	ng as	follow	'S:			00: 01:	Disabled Enabled
vb	indicates	s the c	urrent	VIB	RATO	OR set	tting a	as foll	ows:			00: 01:	Disabled Enabled

Examples:

AUTO STORE = Disabled, RESOLUTION = 1 kHz (FAST), MIN PULSE WIDTH = 500 uS (SLOW), FILTER MODE = Enabled, FREQ DISPLAY = Channel, AUTO POWER OFF = Disabled, BEEPER = Disabled, VIBRATOR = Disabled

 FE
 FE
 9E
 E0
 7F
 21
 00
 00
 01
 01
 00
 00
 FD

AUTO STORE = Enabled, RESOLUTION = 100 Hz (SLOW), MIN PULSE WIDTH = 1300 uS(MEDIUM), FILTER MODE = Disabled, FREQ DISPLAY = Measured, AUTO POWER OFF =Enabled, BEEPER = Enabled, VIBRATOR = DisabledFEFE9EE07F21010100010101

AUTO STORE = Enabled, RESOLUTION = 100 Hz (SLOW), MIN PULSE WIDTH = 8300 uS (FAST), FILTER MODE = Disabled, FREQ DISPLAY = Measured, AUTO POWER OFF = Enabled, BEEPER = Disabled, VIBRATOR = Enabled

 FE
 FE
 9E
 E0
 7F
 21
 01
 02
 00
 01
 00
 01
 FD

Response:

FE FE ta ra FB or FA FD

Example:

OK FE FE E0 9E FB FD

Error						_
FE	FE	E0	9E	FA	FD	

Description:

This command selects the configuration data.

The configuration data is in the form of 8 bytes, each consisting of 2 BCD digits, and specifies the settings of the various configuration parameters. See the examples shown above.

If the command length is incorrect, or if any of the configuration parameters is invalid, then the command is ignored, and the error response is returned.

READ FREQUENCY MEMORY

Examples:

Memo	ory loo	cation	000					
FE	FE	9E	E0	7F	22	00	00	FD

Mem								
FE	FE	9E	E0	7F	22	05	63	FD

	ory loo							
FE	FE	9E	E0	7F	22	09	99	FD

Response:

FE	FE	ta	ra	7F	22	frequency	FD
----	----	----	----	----	----	-----------	----

Examples:

162.5	50000) MHz	Z								
FE	FE	E0	9E	7F	22	00	00	55	62	01	FD

1045.725000 MHz

FE	FE	E0	9E	7F	22	00	50	72	45	10	FD	
----	----	----	----	----	----	----	----	----	----	----	----	--

Error FE FE E0 9E FA FD

Description:

This command instructs the unit to send the frequency stored in the specified memory location.

The specified memory location data is in the form of 2 bytes, each consisting of 2 BCD digits. The specified memory location must be in the range 0 to 999. The frequency data is in the form of 5 bytes, each consisting of 2 BCD digits. The order of the 10 BCD digits is as follows: 10 Hz digit, 1 Hz digit, 1 kHz digit, 100 Hz digit, 100 kHz digit, 10 kHz digit, 10 MHz digit, 1 MHz digit, 1 GHz digit, 100 MHz digit. See the examples shown above.

If the command length is incorrect, or if the specified memory location is not in the range 0 to 999, then the command is ignored, and the error response is returned.

READ HITS MEMORY

Command:

FE	FE	ra	ta	7F	23	memory	FD
----	----	----	----	----	----	--------	----

Examples:

Memo	ory loo	cation	000					
FE	FE	9E	E0	7F	23	00	00	FD

Mem	ory loo	ation	563					
FE	FE	9E	E0	7F	23	05	63	FD

Memo	ory loo	cation	999					
FE	FE	9E	E0	7F	23	09	99	FD

Response:

FE	FE	ta	ra	7F	23	hits	FD
----	----	----	----	----	----	------	----

Examples:

214 H	lits								
FE	FE	E0	9E	7F	23	00	02	14	FD

21,583 Hits

FE FE E0 9E 7F	23 02	15	83	FD
----------------	-------	----	----	----

Error

FE FE E0 9E	FA	FD
-------------	----	----

Description:

This command instructs the unit to send the number of hits stored in the specified memory location.

The specified memory location data is in the form of 2 bytes, each consisting of 2 BCD digits. The specified memory location must be in the range 0 to 999. The hits data is in the form of 3 bytes, each consisting of 2 BCD digits. The number of hits will be in the range 0 to 65,535. See the examples shown above.

If the command length is incorrect, or if the specified memory location is not in the range 0 to 999, then the command is ignored, and the error response is returned.

CLEAR MEMORY

Command:

FE FE ra ta 7F 24 FD

Example:

FE FE 9E E0 7F 24 FD

Response:

FE FE ta	ra	FB or FA	FD]
----------	----	----------	----	---

Example:

OR .					
FE	FE	E0	9E	FB	FD

Error					
FE	FE	E0	9E	FA	FD

Description:

This command clears all frequency and hits memory locations.

Once this command is executed, all memory locations are set to zero. This command has the same effect as clearing the memory from the front panel.

WRITE FREQUENCY MEMORY

Command:

FE FE ra ta 7F 25 frequency FD

Examples:

162.550000 MHz											
FΕ	E	9E	E0	7F	25	00	00	55	62	01	FD

1045.725000 MHz

Response:

FE FE ta	ra	FB or FA	FD	
----------	----	----------	----	--

Example:

OK	-				
FE	FE	E0	9E	FB	FD

Error						
FE	FE	E0	9E	FA	FD	1

Description:

This command writes a frequency to the next available memory location. The corresponding number of hits is set to zero, to indicate that the frequency was uploaded instead of captured.

The frequency data is in the form of 5 bytes, each consisting of 2 BCD digits. The order of the 10 BCD digits is as follows: 10 Hz digit, 1 Hz digit, 1 kHz digit, 100 Hz digit, 100 kHz digit, 10 kHz digit, 10 MHz digit, 1 MHz digit, 1 GHz digit, 100 MHz digit. See the examples shown above.

If the command length is incorrect, or if all memory locations are full, then the command is ignored, and the error response is returned.

OPTOELECTRONICS, INC. 5821 N.E. 14th Avenue Fort Lauderdale, FL 33334 Phone: (954) 771-2050 FAX: (954) 771-2052 www.optoelectronics.com