Optoelectronics, Inc. X Sweeper**Ô** Serial Interface Specification

Interface Version 1.1

October 28, 2003

INTRODUCTION

This document describes the serial interface of the X Sweeper[™], a hand-held test receiver with a graphical spectrum display capable of sweeping and locking on to near-field FM VHF and UHF transmissions. The X Sweeper[™] is capable of capturing and storing up to 100 frequencies in each of 10 memory banks, along with the number of occurrences, or hits, of each frequency, the signal strength, the lockout status, the time and date the frequency was last detected, and the latitude and longitude of the X Sweeper[™] can log over 1900 events, each containing frequency, signal strength, time and date, and latitude and longitude. This data can then be downloaded to a personal computer for storage and analysis. The X Sweeper[™] can be remotely controlled by a host computer via the serial interface.

This document was written to assist the programmer in developing software applications for the X Sweeper^M. Optoelectronics, Inc. assumes no responsibility for the accuracy of the information contained in this document, and is under no obligation to provide technical support on matters pertaining to this document, or to provide notification of changes or corrections to this document. To inquire about possible revisions, or to order copies of this document, contact the factory. A nominal fee may be charged to cover printing and shipping costs.

OPTOELECTRONICS, INC. 5821 N.E. 14th Avenue Fort Lauderdale, FL 33334 Phone: (954) 771-2050 FAX: (954) 771-2052 www.optoelectronics.com

ABOUT THE INTERFACE

Unlike previous Optoelectronics products, the command structure of the X SweeperTM serial interface is not based on the Icom CI-V standard. Instead, a new ASCII command set was developed to provide full control of the instrument, as well as the ability to download data stored in memory. A primary advantage of this new command scheme is that the X SweeperTM can be tested under remote control using a personal computer running a common terminal emulator program, such as HyperTerminalTM.

The X Sweeper[™] serial interface is full-duplex with RS-232C compatible voltage levels. The communications parameters for the serial interface are listed in Table 1 below.

Table 1. Communications Farameters.	
DATA RATE	19,200 bps
START BITS	1
DATA BITS	8
PARITY	NONE
STOP BITS	1

 Table 1. Communications Parameters.

To connect the X SweeperTM to a personal computer, a miniature (3.5 mm) stereo phone jack is provided on the top panel. The X SweeperTM receives commands on the RING terminal and transmits responses on the TIP terminal of the stereo phone jack. Signal ground is provided on the SHIELD terminal of the phone jack. Since the X SweeperTM serial interface is compatible with RS-232C voltage levels, no external interface converter box is required to connect the X SweeperTM to a standard personal computer COM port. An interface cable for connecting the X SweeperTM to a PC is available.

For ReactionTune[™] applications, a subminiature (2.5 mm) phone jack is provided on the top panel. The TIP terminal provides the TTL equivalent of the RS-232 transmit data signal to drive ReactionTune[™]-capable receivers. Signal ground is provided on the SHIELD terminal of the phone jack.

COMMAND REFERENCE

The X Sweeper[™] accepts commands over the serial interface when the INTERFACE TYPE is set to REMOTE CONTROL from the front panel. In this section, all command and response bytes are expressed as ASCII characters. The X Sweeper[™] recognizes 35 different commands, which are summarized in Table 2 below.

The X Sweeper[™] processes commands one at a time. After a command is issued, the host computer must wait for the complete response before transmitting a new command. Any further command characters transmitted while a previous command is being processed will be discarded.

Following the command summary table is a detailed description of each of the commands, including examples illustrating their use.

COMMAND	DESCRIPTION
AF	Active Frequency
AH	Auto-Hold
AS	Auto-Skip
BK	Bank
СВ	Clear Bank
CF	Center Frequency
CL	Clear Log Memory
DB	Display Backlight
DC	Display Contrast
DP	Display Polarity
FD	Frequency Display
FS	Frequency Span
HD	Hold
ID	Identification
LC	Log Memory Coordinates
LF	Log Memory Frequency
LM	Log Memory
LO	Lockout
LS	Log Memory Signal Strength
LT	Log Memory Time/Date
MC	Memory Coordinates
MD	Mode
MF	Memory Frequency
MH	Memory Hits
ML	Memory Lockout Status
MS	Memory Signal Strength
MT	Memory Time/Date
MY	Memory
SG	Signal Strength
SH	Signal/Hits Display
SK	Skip
SP	Setup Parameter
SQ	Squelch Status
TD	Time/Date
VF	VFO Frequency

Table 2. X Sweeper **Ô** Remote Control Command Summary.

ACTIVE FREQUENCY

Format:

COMMAND	RESPONSE
AF? <cr></cr>	AFffff.fffff <cr></cr>

Examples:

COMMAND	RESPONSE
Read Active Frequency	162.475 MHz
AF? <cr></cr>	AF0162.475000 <cr></cr>

Description:

This command reads the current ACTIVE FREQUENCY.

The FREQUENCY data (**ffff.fffff**) is in the form of 11 characters, including decimal point, and represents the frequency in megahertz. The specified FREQUENCY must be in the range 30 MHz to 3 GHz.

If the command length is incorrect, then the command is ignored, and the ERROR response is returned. See the examples shown above.

AUTO-HOLD

Format:

COMMAND	RESPONSE
AH? <cr></cr>	AHa <cr></cr>
AHa <cr></cr>	OK <cr></cr>

Examples:	
COMMAND	RESPONSE
Read Auto-Hold Setting	Auto-Hold Disabled
AH? <cr></cr>	AH0 <cr></cr>
Select Auto-Hold Enabled	Command Accepted
AH1 <cr></cr>	OK <cr></cr>
Select Invalid Auto-Hold Setting	Command Error
AH2 <cr></cr>	ERROR <cr></cr>

Description:

This command either reads or selects the AUTO-HOLD setting.

The AUTO-HOLD data (a) is in the form of 1 character in the range 0 to 1. The AUTO-HOLD values are as follows:

0 = Auto-Hold Disabled **1** = Auto-Hold Enabled

AUTO-SKIP

Format:

COMMAND	RESPONSE
AS? <cr></cr>	ASa <cr></cr>
ASa <cr></cr>	OK <cr></cr>

Examples:		
COMMAND	RESPONSE	
Read Auto-Skip Setting	Auto-Skip Disabled	
AS? <cr></cr>	AS0 <cr></cr>	
Select Auto-Skip Enabled	Command Accepted	
AS1 <cr></cr>	OK <cr></cr>	
Select Invalid Auto-Skip Setting	Command Error	
AS2 <cr></cr>	ERROR <cr></cr>	

Description:

This command either reads or selects the AUTO-SKIP setting.

The AUTO-SKIP data (a) is in the form of 1 character in the range 0 to 1. The AUTO-SKIP values are as follows:

0 = Auto-Skip Disabled 1 = Auto-Skip Enabled

BANK

Format:

1 of mat.	
COMMAND	RESPONSE
BK? <cr></cr>	BKbb <cr></cr>
BKbb <cr></cr>	OK <cr></cr>

Examples:	
COMMAND	RESPONSE
Read Bank	Bank 7
BK? <cr></cr>	BK07 <cr></cr>
Select Bank 0	Command Accepted
BK00 <cr></cr>	OK <cr></cr>
Select Invalid Bank	Command Error
BK10 <cr></cr>	ERROR <cr></cr>

Description:

This command either reads or selects the BANK.

The BANK data (**bb**) is in the form of 2 characters in the range 00 to 09.

CLEAR BANK

COMMAND	RESPONSE
CBsssssssbb <cr></cr>	OK <cr></cr>

Examples:

COMMAND	RESPONSE
Clear Bank 5	Command Accepted
CB781593416705 <cr></cr>	OK <cr></cr>
Clear Bank 9, Security Code Invalid	Command Error
CB012345678909 <cr></cr>	ERROR <cr></cr>
Clear Invalid Bank	Command Error
CB781593416713 <cr></cr>	ERROR <cr></cr>

Description:

This command clears all MEMORY locations in the specified BANK. This command has the same effect as clearing the specified BANK from the front panel.

The SECURITY CODE (ssssssss) is in the form of 10 characters. This unique 10-digit code (**7815934167**) must be correctly specified to clear the specified BANK.

The specified BANK data (bb) is in the form of 2 characters. The specified BANK must be in the range 00 to 09.

If the command length is incorrect, or if the SECURITY CODE is not valid, or if the specified BANK is out of range, then the command is ignored, and the ERROR response is returned. See the examples shown above.

CENTER FREQUENCY

Format:

COMMAND	RESPONSE
CF? <cr></cr>	CFffff.fff <cr></cr>
CFffff.fff <cr></cr>	OK <cr></cr>

Examples:	
COMMAND	RESPONSE
Read Center Frequency	445.000 MHz
CF? <cr></cr>	CF0445.000 <cr></cr>
Write Center Frequency 824.675 MHz	Command Accepted
CF0824.675 <cr></cr>	OK <cr></cr>
Write Invalid Center Frequency 3000.001 MHz	Command Error
CF3000.001 <cr></cr>	ERROR <cr></cr>

Description:

This command either reads or selects the CENTER FREQUENCY.

The CENTER FREQUENCY data (**ffff.fff**) is in the form of 8 characters, including decimal point, in the range 0000.000 MHz to 3000.000 MHz.

CLEAR LOG MEMORY

Format:

COMMAND	RESPONSE
CLsssssssss <cr></cr>	OK <cr></cr>

Examples:

COMMAND	RESPONSE
Clear Log Memory	Command Accepted
CL8569204738 <cr></cr>	OK <cr></cr>
Clear Log Memory, Security Code Invalid	Command Error
CL0123456789 <cr></cr>	ERROR <cr></cr>

Description:

This command clears all LOG MEMORY locations. This command has the same effect as clearing the LOG MEMORY from the front panel.

The SECURITY CODE (ssssssss) is in the form of 10 characters. This unique 10-digit code (8569204738) must be correctly specified to clear the LOG MEMORY.

If the command length is incorrect, or if the SECURITY CODE is not valid, then the command is ignored, and the ERROR response is returned. See the examples shown above.

DISPLAY BACKLIGHT

Format:

COMMAND	RESPONSE
DB? <cr></cr>	DBb <cr></cr>
DBb <cr></cr>	OK <cr></cr>

Examples:	
COMMAND	RESPONSE
Read Display Backlight Setting	Display Backlight On
DB? <cr></cr>	DB1 <cr></cr>
Select Display Backlight Off	Command Accepted
DB0 <cr></cr>	OK <cr></cr>
Select Invalid Display Backlight Setting	Command Error
DB2 <cr></cr>	ERROR <cr></cr>

Description:

This command either reads or selects the DISPLAY BACKLIGHT setting.

The DISPLAY BACKLIGHT data (**b**) is in the form of 1 character in the range 0 to 1. The DISPLAY BACKLIGHT values are as follows:

0 = Display Backlight Off

1 = Display Backlight On

DISPLAY CONTRAST

Format:

COMMAND	RESPONSE
DC? <cr></cr>	DCcc <cr></cr>
DCcc <cr></cr>	OK <cr></cr>

Examples:	
COMMAND	RESPONSE
Read Display Contrast Setting	Display Contrast 35
DC? <cr></cr>	DC35 <cr></cr>
Select Display Contrast 41	Command Accepted
DC41 <cr></cr>	OK <cr></cr>
Select Invalid Display Contrast Setting	Command Error
DC64 <cr></cr>	ERROR <cr></cr>

Description:

This command either reads or selects the DISPLAY CONTRAST setting.

The DISPLAY CONTRAST data (cc) is in the form of 2 characters in the range 00 to 63.

DISPLAY POLARITY

Format:

COMMAND	RESPONSE
DP? <cr></cr>	DPp <cr></cr>
DPp <cr></cr>	OK <cr></cr>

Examples:		
COMMAND	RESPONSE	
Read Display Polarity Setting	Display Polarity Normal	
DP? <cr></cr>	DP0 <cr></cr>	
Select Reverse Display Polarity	Command Accepted	
DP1 <cr></cr>	OK <cr></cr>	
Select Invalid Display Polarity Setting	Command Error	
DP2 <cr></cr>	ERROR <cr></cr>	

Description:

This command either reads or selects the DISPLAY POLARITY setting.

The DISPLAY POLARITY data (\mathbf{p}) is in the form of 1 character in the range 0 to 1. The DISPLAY POLARITY values are as follows:

0 = Display Polarity Normal

1 = Display Polarity Reverse

FREQUENCY DISPLAY

Format:

COMMAND	RESPONSE
FD? <cr></cr>	FDd <cr></cr>
FDd <cr></cr>	OK <cr></cr>

Examples:	
COMMAND	RESPONSE
Read Frequency Display Setting	Channel Frequency Display
FD? <cr></cr>	FD0 <cr></cr>
Select Measured Frequency Display	Command Accepted
FD1 <cr></cr>	OK <cr></cr>
Select Invalid Frequency Display Setting	Command Error
FD2 <cr></cr>	ERROR <cr></cr>

Description:

This command either reads or selects the FREQUENCY DISPLAY setting.

The FREQUENCY DISPLAY data (**d**) is in the form of 1 character in the range 0 to 1. The FREQUENCY DISPLAY values are as follows:

- **0** = Channel Frequency Display
- **1** = Measured Frequency Display

FREQUENCY SPAN

Format:

COMMAND	RESPONSE
FS? <cr></cr>	FSs <cr></cr>
FSs <cr></cr>	OK <cr></cr>

Examples:		
COMMAND	RESPONSE	
Read Frequency Span	300 KHz Span	
FS? <cr></cr>	FS1 <cr></cr>	
Select 100 MHz Span	Command Accepted	
FS6 <cr></cr>	OK <cr></cr>	
Select Invalid Span	Command Error	
FSA <cr></cr>	ERROR <cr></cr>	

Description:

This command either reads or selects the FREQUENCY SPAN.

The FREQUENCY SPAN data (s) is in the form of 1 character in the range 0 to 9. The FREQUENCY SPAN values are as follows:

0 = 100 KHz Span 1 = 300 KHz Span 2 = 1 MHz Span 3 = 3 MHz Span 4 = 10 MHz Span 5 = 30 MHz Span 6 = 100 MHz Span 7 = 300 MHz Span 8 = 1000 MHz Span 9 = 3000 MHz Span

HOLD

Format:

Tormat.	
COMMAND	RESPONSE
HD? <cr></cr>	HDh <cr></cr>
HD <cr></cr>	OK <cr></cr>

Examples:	
COMMAND	RESPONSE
Read HOLD function	HOLD function enabled
HD? <cr></cr>	HD1 <cr></cr>
Enable HOLD function (SWEEP mode)	Command Accepted
HD <cr></cr>	OK <cr></cr>
Toggle HOLD function (SCAN mode)	Command Accepted
HD <cr></cr>	OK <cr></cr>
Invalid HOLD function (other mode)	Command Error
HD <cr></cr>	ERROR <cr></cr>

Description:

This command reads, enables, or toggles the HOLD function, depending on the current operating MODE. *This command is only valid in either SWEEP or SCAN mode*.

The HOLD data (**h**) is in the form of 1 character in the range 0 to 1. The HOLD values are as follows:

0 = Hold Disabled **1** = Hold Enabled

If SWEEP mode is selected, then HOLD is enabled. If SCAN mode is selected, then HOLD is toggled.

If the command length is incorrect, or if neither SWEEP nor SCAN mode is selected, then the command is ignored, and the ERROR response is returned. See the examples shown above.

IDENTIFICATION

Format:

COMMAND	RESPONSE
ID? <cr></cr>	IDpppddrrii <cr></cr>

Examples:

COMMAND	RESPONSE
Read Identification Information	X Sweeper [™] , Digital Board version 1.8, RF Board
ID? <cr></cr>	version 1.3, Interface version 1.1
	IDXSW181311 <cr></cr>

Description:

This command reads the IDENTIFICATION information.

The PRODUCT data (**ppp**) is in the form of 3 characters, which uniquely identify the product as follows:

 $\mathbf{XSW} = \mathbf{X} \ \mathbf{Sweeper^{TM}}$

The DIGITAL BOARD VERSION data (**dd**) is in the form of 2 characters in the range 00 to 99, which indicate the current Digital Board software version.

The RF BOARD VERSION data (**rr**) is in the form of 2 characters in the range 00 to 99, which indicate the current RF Board software version.

The INTERFACE VERSION data (ii) is in the form of 2 characters in the range 00 to 99, which indicate the current Serial Interface version.

If the command length is incorrect, then the command is ignored, and the ERROR response is returned. See the examples shown above.

LOG MEMORY COORDINATES

Format:	
COMMAND	RESPONSE
LCmmmmm? <cr></cr>	LCaa:bb.bbc,ddd:ee.eef <cr></cr>

 Examples:
 RESPONSE

 COMMAND
 RESPONSE

 Read Coordinates from Log Memory 0
 27 Deg., 48.92 Min. N., 86 Deg., 12.45 Min., W.

 LC00000?<CR>
 LC27:48.92N,086:12.45W

 Read Coordinates from Log Memory 1378
 10 Deg., 31.05 Min. S., 143 Deg., 58.22 Min., E.

 LC01378?<CR>
 LC10:31.05S,143:58.22E

 Read Coordinates from Invalid Log Memory
 Command Error

 LC22459?<CR>
 ERROR<<CR>

Description:

This command reads the COORDINATES stored in the specified LOG MEMORY location.

The specified LOG MEMORY data (**mmmmm**) is in the form of 5 characters. The specified LOG MEMORY must be in the range 00000 to 01918.

The LATITUDE DEGREES data (aa) is in the form of 2 characters in the range 00 to 90.

The LATITUDE MINUTES data (**bb.bb**) is in the form of 5 characters, including decimal point, in the range 00.00 to 59.99.

The LATITUDE HEMISPHERE data (c) is in the form of 1 character, where 'N' represents North Latitude, and 'S' represents South Latitude.

The LONGITUDE DEGREES data (ddd) is in the form of 3 characters in the range 000 to 180.

The LONGITUDE MINUTES data (ee.ee) is in the form of 5 characters, including decimal point, in the range 00.00 to 59.99.

The LONGITUDE HEMISPHERE data (f) is in the form of 1 character, where 'E' represents East Longitude, and 'W' represents West Longitude.

LOG MEMORY FREQUENCY

Format:	
COMMAND	RESPONSE
LFmmmmm? <cr></cr>	LFffff.fffff <cr></cr>

Examples:	
COMMAND	RESPONSE
Read Frequency from Log Memory 37	162.475 MHz
LF00037? <cr></cr>	LF0162.475000 <cr></cr>
Read Frequency from Log Memory 1918	445.8125 MHz
LF01918? <cr></cr>	LF0445.812500 <cr></cr>
Read Frequency from Invalid Log Memory	Command Error
LF02561? <cr></cr>	ERROR <cr></cr>

Description:

This command reads the FREQUENCY stored in the specified LOG MEMORY location.

The specified LOG MEMORY data (**mmmmm**) is in the form of 5 characters. The specified LOG MEMORY must be in the range 00000 to 01918.

The FREQUENCY data (**ffff.fffff**) is in the form of 11 characters, including decimal point, and represents the frequency in megahertz. The specified FREQUENCY must be in the range 30 MHz to 3 GHz.

LOG MEMORY

Format:

COMMAND	RESPONSE
LM? <cr></cr>	LMmmmmm <cr></cr>
LMmmmmm <cr></cr>	OK <cr></cr>

Examples:		
COMMAND	RESPONSE	
Read Log Memory	Memory 8	
LM? <cr></cr>	LM00008 <cr></cr>	
Read Log Memory	Memory 837	
LM? <cr></cr>	LM00837 <cr></cr>	
Select Log Memory 1862	Command Accepted	
LM01862 <cr></cr>	OK <cr></cr>	
Select Invalid Memory	Command Error	
LM01919 <cr></cr>	ERROR <cr></cr>	

Description:

This command either reads or selects the LOG MEMORY location.

The specified LOG MEMORY data (**mmmmm**) is in the form of 5 characters in the range 00000 to 01918, or to the highest non-empty log memory location, whichever is less.

LOCKOUT

Format:

COMMAND	RESPONSE
LO <cr></cr>	OK <cr></cr>

Examples:	
COMMAND	RESPONSE
Initiate LOCKOUT function (SWEEP, SCAN, or	Command Accepted
MEMORY mode)	OK <cr></cr>
LO <cr></cr>	
Invalid LOCKOUT function (other mode)	Command Error
LO <cr></cr>	ERROR <cr></cr>

Description:

This command initiates the LOCKOUT function. *This command is only valid in SWEEP, SCAN, or MEMORY mode.*

In SWEEP mode, a LOCKOUT locks out the active frequency, clears the HOLD function, and resumes sweeping. In SCAN mode, a LOCKOUT locks out the active frequency, and resumes scanning. In MEMORY mode, a LOCKOUT toggles the LOCKOUT status of the currently selected MEMORY in the currently selected BANK.

If the command length is incorrect, or if SWEEP, SCAN, or MEMORY mode is not selected, then the command is ignored, and the ERROR response is returned. See the examples shown above.

LOG MEMORY SIGNAL STRENGTH

Format:	
COMMAND	RESPONSE
LSmmmmm? <cr></cr>	LSss <cr></cr>

Examples:	
COMMAND	RESPONSE
Read Signal Strength from Log Memory 185	38 Bargraph Segments
LS00185? <cr></cr>	LS38 <cr></cr>
Read Signal Strength from Log Memory 614	43 Bargraph Segments
LS00614? <cr></cr>	LS43 <cr></cr>
Read Signal Strength from Invalid Log Memory	Command Error
LS95637? <cr></cr>	ERROR <cr></cr>

Description:

This command reads the SIGNAL STRENGTH stored in the specified LOG MEMORY location.

The specified LOG MEMORY data (**mmmmm**) is in the form of 5 characters. The specified LOG MEMORY must be in the range 00000 to 01918.

The SIGNAL STRENGTH data (ss) is in the form of 2 characters in the range 00 to 50, and represents the number of bargraph segments displayed.

LOG MEMORY TIME / DATE

Format:	
COMMAND	RESPONSE
LTmmmmm? <cr></cr>	LThh:mm:ss,w,nn-dd-yyyy <cr></cr>

Examples:	
COMMAND	RESPONSE
Read Time/Date from Log Memory 16	16:50:14, Thursday ,June 26, 2003
LT00016? <cr></cr>	LT16:50:14,4,06-26-2003 <cr></cr>
Read Time/Date from Log Memory 1506	8:13:58, Sunday ,May 4, 2003
LT01506? <cr></cr>	LT08:13:58,0,05-04-2003 <cr></cr>
Read Time/Date from Invalid Log Memory	Command Error
LT32589? <cr></cr>	ERROR <cr></cr>

Description:

-

This command reads the TIME/DATE stored in the specified LOG MEMORY location.

The specified LOG MEMORY data (**mmmmm**) is in the form of 5 characters. The specified LOG MEMORY must be in the range 00000 to 01918.

The HOURS data (**hh**) is in the form of 2 characters in 24-hour time format in the range 00 to 23.

The MINUTES data (mm) is in the form of 2 characters in the range 00 to 59.

The SECONDS data (ss) is in the form of 2 characters in the range 00 to 59.

The WEEKDAY data (w) is in the form of 1 character in the range 0 to 6, where 0 represents Sunday.

The MONTH data (**nn**) is in the form of 2 characters in the range 01 to 12.

The DAY data (dd) is in the form of 2 characters in the range 01 to 31.

The YEAR data (yyyy) is in the form of 4 characters in the range 2000 to 2099.

MEMORY COORDINATES

Format:	
COMMAND	RESPONSE
MCbbmmm? <cr></cr>	MCaa:bb.bbc,ddd:ee.eef <cr></cr>

Examples:	
COMMAND	RESPONSE
Read Coordinates from Bank 0, Memory 0	27 Deg., 48.92 Min. N., 86 Deg., 12.45 Min., W.
MC00000? <cr></cr>	MC27:48.92N,086:12.45W <cr></cr>
Read Coordinates from Bank 9, Memory 78	10 Deg., 31.05 Min. S., 143 Deg., 58.22 Min., E.
MC09078? <cr></cr>	MC10:31.05S,143:58.22E <cr></cr>
Read Coordinates from Invalid Bank	Command Error
MC31085? <cr></cr>	ERROR <cr></cr>

Description:

This command reads the COORDINATES stored in the specified BANK and MEMORY.

The specified BANK data (bb) is in the form of 2 characters. The specified BANK must be in the range 00 to 09.

The specified MEMORY data (**mmm**) is in the form of 3 characters. The specified MEMORY must be in the range 000 to 099.

The LATITUDE DEGREES data (aa) is in the form of 2 characters in the range 00 to 90.

The LATITUDE MINUTES data (**bb.bb**) is in the form of 5 characters, including decimal point, in the range 00.00 to 59.99.

The LATITUDE HEMISPHERE data (c) is in the form of 1 character, where 'N' represents North Latitude, and 'S' represents South Latitude.

The LONGITUDE DEGREES data (ddd) is in the form of 3 characters in the range 000 to 180.

The LONGITUDE MINUTES data (ee.ee) is in the form of 5 characters, including decimal point, in the range 00.00 to 59.99.

The LONGITUDE HEMISPHERE data (f) is in the form of 1 character, where 'E' represents East Longitude, and 'W' represents West Longitude.

MODE

Format:

1 Vi mut.	
COMMAND	RESPONSE
MD? <cr></cr>	MDm <cr></cr>
MDm <cr></cr>	OK <cr></cr>

Examples:		
COMMAND	RESPONSE	
Read Mode	SWEEP Mode	
MD? <cr></cr>	MD0 <cr></cr>	
Read Mode	MEMORY Mode	
MD? <cr></cr>	MD2 <cr></cr>	
Select VFO Mode	Command Accepted	
MD3 <cr></cr>	OK <cr></cr>	
Select Invalid Mode	Command Error	
MD7 <cr></cr>	ERROR <cr></cr>	

Description:

This command either reads or selects the MODE.

The MODE data (m) is in the form of 1 character in the range 0 to 6. The MODE values are as follows:

0 = SWEEP Mode 1 = SCAN Mode 2 = MEMORY Mode 3 = VFO Mode 4 = GPS Mode 5 = LOG MEMORY Mode 6 = SETUP Mode

MEMORY FREQUENCY

Format:	
COMMAND	RESPONSE
MFbbmmm? <cr></cr>	MFffff.fffff <cr></cr>
MFbbffff.ffffff <cr></cr>	OK <cr></cr>

Examples:	
COMMAND	RESPONSE
Read Frequency from Bank 2, Memory 37	162.475 MHz
MF02037? <cr></cr>	MF0162.475000 <cr></cr>
Read Frequency from Invalid Bank	Command Error
MF23076? <cr></cr>	ERROR <cr></cr>
Write Frequency 442.6875 MHz to Bank 8	Command Accepted
MF080442.687500 <cr></cr>	OK <cr></cr>
Write Invalid Frequency 26.450 MHz to Bank 5	Command Error
MF050026.450000 <cr></cr>	ERROR <cr></cr>

Description:

This command either reads the FREQUENCY stored in the specified BANK and MEMORY, or writes the specified FREQUENCY to the next available MEMORY in the specified BANK.

The specified BANK data (bb) is in the form of 2 characters. The specified BANK must be in the range 00 to 09.

The specified MEMORY data (**mmm**) is in the form of 3 characters. The specified MEMORY must be in the range 000 to 099.

The FREQUENCY data (**ffff.fffff**) is in the form of 11 characters, including decimal point, and represents the frequency in megahertz. The specified FREQUENCY must be in the range 30 MHz to 3 GHz.

If the command length is incorrect, or if the specified BANK is out of range, or if the specified MEMORY is out of range, or if the specified FREQUENCY is out of range, or if the specified BANK is full, then the command is ignored, and the ERROR response is returned. See the examples shown above.

MEMORY HITS

Format:	
COMMAND	RESPONSE
MHbbmmm? <cr></cr>	MHhhhhh <cr></cr>

Examples: COMMAND RESPONSE Read Hits from Bank 6, Memory 42 6,158 Hits MH06042?<CR> MH06158<CR> Read Hits from Invalid Bank Command Error MH26081?<CR> ERROR<CR>

Description:

This command reads the HITS stored in the specified BANK and MEMORY.

The specified BANK data (bb) is in the form of 2 characters. The specified BANK must be in the range 00 to 09.

The specified MEMORY data (mmm) is in the form of 3 characters. The specified MEMORY must be in the range 000 to 099.

The HITS data (hhhhh) is in the form of 5 characters, and represents the number of HITS in the range 0 to 65,535.

MEMORY LOCKOUT STATUS

Format:	
COMMAND	RESPONSE
MLbbmmm? <cr></cr>	MLs <cr></cr>

Examples:	
COMMAND	RESPONSE
Read Lockout Status from Bank 4, Memory 0	Not Locked Out
ML04000? <cr></cr>	ML0 <cr></cr>
Read Lockout Status from Bank 7, Memory 99	Locked Out
ML07099? <cr></cr>	ML1 <cr></cr>
Read Lockout Status from Invalid Bank	Command Error
ML21032? <cr></cr>	ERROR <cr></cr>

Description:

This command reads the LOCKOUT STATUS stored in the specified BANK and MEMORY.

The specified BANK data (bb) is in the form of 2 characters. The specified BANK must be in the range 00 to 09.

The specified MEMORY data (**mmm**) is in the form of 3 characters. The specified MEMORY must be in the range 000 to 099.

The LOCKOUT STATUS data (s) is in the form of 1 character, where '0' indicates that the associated frequency is not locked out, and '1' indicates that the associated frequency is locked out.

MEMORY SIGNAL STRENGTH

Format:	
COMMAND	RESPONSE
MSbbmmm? <cr></cr>	MSss <cr></cr>

Examples:	
COMMAND	RESPONSE
Read Signal Strength from Bank 1, Memory 5	38 Bargraph Segments
MS01005? <cr></cr>	MS38 <cr></cr>
Read Signal Strength from Invalid Bank	Command Error
MS20013? <cr></cr>	ERROR <cr></cr>

Description:

This command reads the SIGNAL STRENGTH stored in the specified BANK and MEMORY.

The specified BANK data (bb) is in the form of 2 characters. The specified BANK must be in the range 00 to 09.

The specified MEMORY data (**mmm**) is in the form of 3 characters. The specified MEMORY must be in the range 000 to 099.

The SIGNAL STRENGTH data (ss) is in the form of 2 characters in the range 00 to 50, and represents the number of bargraph segments displayed.

MEMORY TIME / DATE

Format:	
COMMAND	RESPONSE
MTbbmmm? <cr></cr>	MThh:mm:ss,w,nn-dd-yyyy <cr></cr>

Examples:	
COMMAND	RESPONSE
Read Time/Date from Bank 2, Memory 6	16:50:14, Thursday ,June 26, 2003
MT02006? <cr></cr>	MT16:50:14,4,06-26-2003 <cr></cr>
Read Time/Date from Bank 9, Memory 30	8:13:58, Sunday ,May 4, 2003
MT09030? <cr></cr>	MT08:13:58,0,05-04-2003 <cr></cr>
Read Time/Date from Invalid Bank	Command Error
MT25001? <cr></cr>	ERROR <cr></cr>

Description:

This command reads the TIME/DATE stored in the specified BANK and MEMORY.

The specified BANK data (bb) is in the form of 2 characters. The specified BANK must be in the range 00 to 09.

The specified MEMORY data (**mmm**) is in the form of 3 characters. The specified MEMORY must be in the range 000 to 099.

The HOURS data (hh) is in the form of 2 characters in 24-hour time format in the range 00 to 23.

The MINUTES data (mm) is in the form of 2 characters in the range 00 to 59.

The SECONDS data (ss) is in the form of 2 characters in the range 00 to 59.

The WEEKDAY data (w) is in the form of 1 character in the range 0 to 6, where 0 represents Sunday.

The MONTH data (nn) is in the form of 2 characters in the range 01 to 12.

The DAY data (**dd**) is in the form of 2 characters in the range 01 to 31.

The YEAR data (yyyy) is in the form of 4 characters in the range 2000 to 2099.

MEMORY

Format:

COMMAND	RESPONSE
MY? <cr></cr>	MYmmm <cr></cr>
MYmmm <cr></cr>	OK <cr></cr>

Examples:	
COMMAND	RESPONSE
Read Memory	Memory 8
MY? <cr></cr>	MY008 <cr></cr>
Read Memory	Memory 37
MY? <cr></cr>	MY037 <cr></cr>
Select Memory 62	Command Accepted
MY062 <cr></cr>	OK <cr></cr>
Select Invalid Memory	Command Error
MY09B <cr></cr>	ERROR <cr></cr>

Description:

This command either reads or selects the MEMORY.

The specified MEMORY data (mmm) is in the form of 3 characters in the range 000 to 099.

SIGNAL STRENGTH

Format:

COMMAND	RESPONSE
SG? <cr></cr>	SGss <cr></cr>

Examples:

COMMAND	RESPONSE
Read Signal Strength	8 Bargraph Segments
SG? <cr></cr>	SG08 <cr></cr>
Read Signal Strength	37 Bargraph Segments
SG? <cr></cr>	SG37 <cr></cr>

Description:

This command reads the current SIGNAL STRENGTH.

The SIGNAL STRENGTH data (ss) is in the form of 2 characters in the range 00 to 50, and represents the number of bargraph segments displayed.

If the command length is incorrect, then the command is ignored, and the ERROR response is returned. See the examples shown above.

SIGNAL / HITS DISPLAY

Format:

COMMAND	RESPONSE
SH? <cr></cr>	SHs <cr></cr>
SHs <cr></cr>	OK <cr></cr>

Examples:		
COMMAND	RESPONSE	
Read Signal/Hits Display	Signal Display	
SH? <cr></cr>	SH0 <cr></cr>	
Select Signal Display	Command Accepted	
SH0 <cr></cr>	OK <cr></cr>	
Select Hits Display	Command Accepted	
SH1 <cr></cr>	OK <cr></cr>	
Select Invalid Signal / Hits Display	Command Error	
SH2 <cr></cr>	ERROR <cr></cr>	

Description:

This command either reads or selects the SIGNAL / HITS DISPLAY.

The SIGNAL / HITS DISPLAY data (s) is in the form of 1 character in the range 0 to 1. The SIGNAL / HITS DISPLAY values are as follows:

0 = Signal Display

1 = Hits Display

SKIP

Format:

COMMAND	RESPONSE
SK <cr></cr>	OK <cr></cr>

Examples:	
COMMAND	RESPONSE
Initiate SKIP function (SWEEP or SCAN mode)	Command Accepted
SK <cr></cr>	OK <cr></cr>
Invalid SKIP function (other mode)	Command Error
SK <cr></cr>	ERROR <cr></cr>

Description:

This command initiates the SKIP function. This command is only valid in either SWEEP or SCAN mode.

In SWEEP mode, a SKIP clears the HOLD function and resumes sweeping. In SCAN mode, a SKIP jumps to the next captured frequency.

If the command length is incorrect, or if neither SWEEP nor SCAN mode is selected, then the command is ignored, and the ERROR response is returned. See the examples shown above.

SETUP PARAMETER

Format:

COMMAND	RESPONSE
SP? <cr></cr>	SPss <cr></cr>
SPss <cr></cr>	OK <cr></cr>

Examples:		
COMMAND	RESPONSE	
Read Setup Parameter	DISPLAY CONTRAST Setup	
SP? <cr></cr>	SP00 <cr></cr>	
Read Setup Parameter	RECEIVER TYPE Setup	
SP? <cr></cr>	SP08 <cr></cr>	
Select PCR1000 SQUELCH Setup	Command Accepted	
SP10 <cr></cr>	OK <cr></cr>	
Select Invalid Setup	Command Error	
SP14 <cr></cr>	ERROR <cr></cr>	

Description:

This command either reads or selects the SETUP PARAMETER.

The SETUP PARAMETER data (ss) is in the form of 2 characters in the range 00 to 13. The SETUP PARAMETER values are as follows:

00 = DISPLAY CONTRAST Setup
01 = DISPLAY POLARITY Setup
02 = DISPLAY BACKLIGHT Setup
03 = TIME/DATE Setup
04 = FREQUENCY DISPLAY Setup
05 = SWEEP AUTO-SKIP Setup
06 = SWEEP AUTO-HOLD Setup
07 = INTERFACE TYPE Setup
08 = RECEIVER TYPE Setup
09 = PCR1000 VOLUME Setup
10 = PCR1000 SQUELCH Setup
11 = GPS SELECT Setup
12 = LOG MODE Setup
13 = LOG TYPE Setup

SQUELCH STATUS

Format:

COMMAND	RESPONSE
SQ? <cr></cr>	SQs <cr></cr>

Examples:

COMMAND	RESPONSE
Read Squelch Status	Squelch Closed
SQ? <cr></cr>	SQ0 <cr></cr>
Read Squelch Status	Squelch Open
SQ? <cr></cr>	SQ1 <cr></cr>

Description:

This command reads the current SQUELCH STATUS.

The SQUELCH STATUS data (s) is in the form of 1 character in the range 0 to 1. The SQUELCH STATUS values are as follows:

0 = Squelch Closed **1** = Squelch Open

If the command length is incorrect, then the command is ignored, and the ERROR response is returned. See the examples shown above.

TIME / DATE

-

Format:	
COMMAND	RESPONSE
TD? <cr></cr>	TDhh:mm:ss,w,nn-dd-yyyy <cr></cr>
TDhh:mm:ss,w,nn-dd-yyyy <cr></cr>	OK <cr></cr>

Examples:	
COMMAND	RESPONSE
Read Time/Date	8:13:58, Sunday ,May 4, 2003
TD? <cr></cr>	TD08:13:58,0,05-04-2003 <cr></cr>
Set Time/Date 16:50:14, Thursday ,June 26, 2003	Command Accepted
TD16:50:14,4,06-26-2003 <cr></cr>	OK <cr></cr>
Set Invalid Time/Date	Command Error
TD25:62:14,8,06-26-2215 <cr></cr>	ERROR <cr></cr>

Description:

This command either reads or sets the TIME and DATE.

The HOURS data (hh) is in the form of 2 characters in 24-hour time format in the range 00 to 23.

The MINUTES data (mm) is in the form of 2 characters in the range 00 to 59.

The SECONDS data (ss) is in the form of 2 characters in the range 00 to 59.

The WEEKDAY data (w) is in the form of 1 character in the range 0 to 6, where 0 represents Sunday.

The MONTH data (nn) is in the form of 2 characters in the range 01 to 12.

The DAY data (**dd**) is in the form of 2 characters in the range 01 to 31.

The YEAR data (yyyy) is in the form of 4 characters in the range 2000 to 2099.

If the command length is incorrect, then the command is ignored, and the ERROR response is returned. See the examples shown above.

VFO FREQUENCY

Format:

COMMAND	RESPONSE
VF? <cr></cr>	VFffff.ffffff <cr></cr>
VFffff.ffffff <cr></cr>	OK <cr></cr>

Examples:	
COMMAND	RESPONSE
Read VFO Frequency	162.475 MHz
VF? <cr></cr>	VF0162.475000 <cr></cr>
Write VFO Frequency 442.6875 MHz	Command Accepted
VF0442.687500 <cr></cr>	OK <cr></cr>
Write Invalid VFO Frequency 26.450 MHz	Command Error
VF0026.450000 <cr></cr>	ERROR <cr></cr>

Description:

This command either reads or selects the VFO FREQUENCY.

The VFO FREQUENCY data (**ffff.ffffff**) is in the form of 11 characters, including decimal point, and represents the frequency in megahertz. The specified VFO FREQUENCY must be in the range 30 MHz to 3 GHz.

OPTOELECTRONICS, INC. 5821 N.E. 14th Avenue Fort Lauderdale, FL 33334 Phone: (954) 771-2050 FAX: (954) 771-2052 www.optoelectronics.com