
These are the documented HEX values. Something tells me (if its anything like the squelch1

and volume) that the value ranges are between 00-99.

PCR-1000 radio for
UN*X GUI Development

and an OOP Library
Part I: Protocol

A Ghetto.Org Investigation
PolyWog and Javaman

November 16, 1999

Objective:
Create a shared object (or static) library for facilitation of the Icom PCR-1000 UN*X interface.

Create a GUI and command line interface for the Icom PCR-1000 all band, all mode receiver.

PCR-1000 Serial Protocol:
The PCR-1000 begins each command with a set of plain text codes sent across the serial

cable at 9600 baud. Each command is terminated with a CR-LF represented by the HEX codes \x0d
and \x0a.

Radio Initialization String:
 (Equivalent to sending a power on, and G300 code.)
H101\x0d\x0aG300\x0d\x0a

Basic command codes:
G3NN - Signal Update

00 - Off (program should poll status)
01 - On (radio sends status automatically when change sent)
02 - Binary Mode (Update off)
03 - Binary Mode (Update on)

H1NN - Power
00 - Off
00 - On

J40NN - Volume
00-99 - Level

J41NN - Squelch
00-99 - Level

J43NN - IF Shift
00-FF - Level1

J45NN - Automagic Gain Control
00 - Off
01 - On

J46NN - Noise Blanking
00 - Off
01 - On

J47NN - RF Attenuator
00 - Off
01 - On

J50NN - VSC
00 - Off

For the number padding etc, I have used the standard SQL formatting scheme. N = number,2

0=any number or padded with zero if blank, 9 = any number padded or not

01 - On
J51NN - Tone Squelch

00 - Off
01-33 - Standard tones [67 Hz - 254.1 Hz]

J4ANN - <UNKNOWN>
80 - <UNKNOWN>

LD82NN - Tracking Filter
00 - set to automagic

Frequency Selection Command:2

K0 - Command Initialize
0000000000 - Frequency (freq's must be padded correctly)
 0000050000 - Lower Range (0.050 MHz)
 1300000000 - Upper Range (1300 MHz)
0N - Mode

00 - Lower Side Band
01 - Upper Side Band
02 - AM
03 - CW
04 - <UNKNOWN>
05 - Narrow FM
06 - Wideband FM

0N - Filter
00 - 3 kHz
01 - 6 kHz
02 - 15 kHz
03 - 50 kHz
04 - 230 kHz

00 - Mandatory but arbitrary padding at end.

Sample Output for selecting z-100 WHTZ from NYC's Empire State Building.
-Note this was a totally random selection ;^)

To select: 100.3 FM (WFM) 230kHz filter.
Cmd Out: K00100300000060400
Break down: [K0][0100300000][06][04][00]

Radio Queries:
H1\? - Is the power on? [Reply: H1NN]
I0\? - Squelch setting?
I1\? - Signal strength?
I2\? - Frequency offset?
I3\? - DTMF Tone?
G4\? - Firmware revision?
GE\? - Country/Region?

We don't care about \x0d\x0a. Since we know that all replies will be 4 bytes in length, then we3

should chop off the CRLF by null'ing byte MAXLENGTH+1 (or five) ;^)

Use the function strpbrk() sending as the second argument “\x0d\x0a “4

Standard Radio Reply:3

G0NN - Standard Reply
00 - OK reply
01 - Bad reply

GDNN - DSP Present
00 - No
01 - Yes

GENN - Country Code(s)
09 - US
02 - Euro. /UK

I0NN - Squelch Status
04 - Closed
07 - Open

I1NN - Signal Strength
00-FF - Weak-Strong

I2NN - Signal Centering
00-7F - Low
80 - Centered
81-FF - High

I3NN - DTMF Tone
00 - None heard
1N - Heard (N= [0-F] where *=E, and #=F)

Radio functions:
G1NN - Set baud rate

00 - 300
01 - 1200
02 - 2400
03 - 9600
04 - 19200
05 - 38400

G3NN - Set autoupdate
00 - Off
01 - On

Protocol Programming Notes:
The radio will at most times reply with Ok or Bad. Should it reply with anything else, then it is

an ‘‘actual'
�

 reply string from the radio and must be parsed. First we should check to see if it was a
reply string without garbage characters. Just strip the CRLF chars and see what is left. The easiest4

way (although not the smartest way) to find out what the reply is for, is to remember what we asked it
last, and assume that the reply (if it is not Ok or Bad) is the reply to our question.

In order to understand the radio, you have to know what to expect. The radio seems to send
out

�

\n' even when it has nothing to say. So the best thing to do, when deciphering the replies is to
make sure that the length read in is greater than one. Because it will always be, at least, one.

Being patient is also something to hold dear. It may take the radio a grueling .5 seconds to
respond to a request. However, it shouldn't (on average) take it more than 3 seconds to reply to any

one request. So a timer that triggers SIGALRM may be started and set to 5 seconds. If no reply is
received within five seconds, you should assume that something is seriously wrong and attempt either
bail, or resend the request.

Kudos to: Javaman for redirecting me to the ‘‘original'
�

 pcr.c source that was able to open up the
protocol barrier. And Devi0us for use of the radio.

Next up: [Part II: The Objects]

