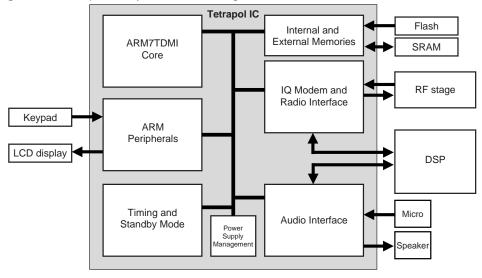
# Features


- Atmel Voice CODEC
  - Digitizes and Encodes Speech Signals from the Microphone
  - Transforms into Analog Format Speech Signals for the Speaker
  - Based on State-of-the-Art Analog-to-Digital Conversion Techniques
  - Direct Interface to Off-Chip DSP for Compression/Decompression and Treatment of the Signal Stream
- Atmel IQ Modem
  - Modulates/Demodulates Compressed Digital Speech Signal Stream for Transmission/Reception by the RF Interface
  - Interface to DSP
- ARM7TDMI<sup>™</sup> ARM<sup>®</sup> Thumb<sup>®</sup> Processor
  - High-Performance 32-bit RISC Architecture
  - High-Density 16-bit Instruction Set
  - Leader in MIPS/Watt
  - Embedded ICE (In Circuit Emulation)
- ARM7TDMI Peripherals, Including a Keypad Interface and LCD Display Driver
- Analog-to-Digital (ADC) and Digital-to-Analog (DAC) Converters as Part of the Microcontroller Interface
- State-of-the-Art Sigma-Delta DACs for Offset and Frequency Control of the RF Interface
- DACs for Ramp-up and Ramp-down Control
- On-chip RAM and ROM for Use by the ARM7TDMI Core
- Phase-Locked Loop (PLL) Cells for Stable Clock Sources
- Power Management Circuitry to Optimize Power Consumption
- Test Circuitry, Including JTAG Boundary Scan Cells

# Description

The Atmel Tetrapol baseband integrated circuit integrates, on a single chip, all the functions of the Tetrapol digital radio handset. It picks up the outgoing voice signal stream from the microphone, digitizes, compresses and modulates it, before sending it to the RF interface for transmission. The incoming radio signal stream is demodulated, uncompressed and transformed into analog format for the speaker. Control instructions are accepted from the keypad, and status information is displayed on the LCD screen. An off-chip DSP performs the compression/decompression steps.

The chip conforms to the Tetrapol standard, a European-wide standard for secure digital police mobile radio networks. It has already been adopted by a number of police forces and security agencies.

Figure 1. Tetrapol IC System Block Diagram





Tetrapol Baseband Integrated Circuit

# Preliminary

Rev. 1269A-01/99





# **Pin Configuration**

Figure 2. Tetrapol IC Pinout in BGA256 Package

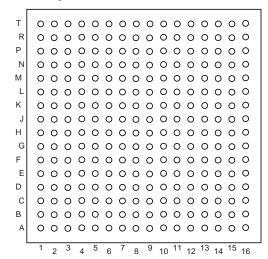
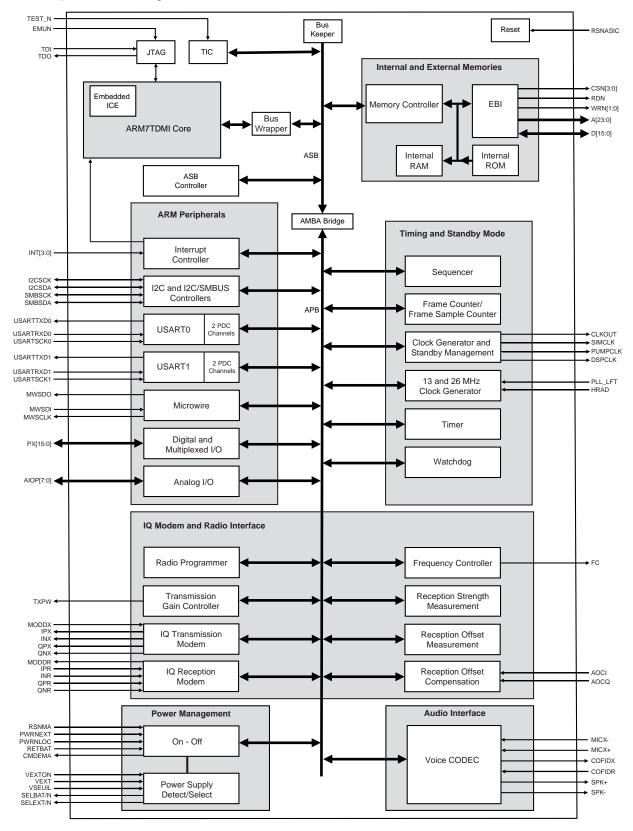



Table 1. Tetrapol IC Pin Description

| Pin | Signal | Pin | Signal  | Pin | Signal  | Pin | Signal  |
|-----|--------|-----|---------|-----|---------|-----|---------|
| A1  | VCMIN  | C1  | AIP3    | E1  | RSNASIC | G1  | RCT     |
| A2  | VCMOUT | C2  | AIP7    | E2  | RSNMA   | G2  | SELBATN |
| A3  | INX    | C3  | AIP6    | E3  | CMDEMA  | G3  | SELBAT  |
| A4  | IPX    | C4  | MODREF  | E4  | IOGNDR  | G4  | V3P     |
| A5  | IPR    | C5  | P5.6    | E5  | P4.15   | G5  | P3.2    |
| A6  | INR    | C6  | P5.1    | E6  | P4.12   | G6  | P3.0    |
| A7  | VCMPAD | C7  | P5.3    | E7  | P4.11   | G7  | P3.6    |
| A8  | QNR    | C8  | P5.8    | E8  | P4.9    | G8  | P3.12   |
| A9  | QPR    | C9  | P5.5    | E9  | P4.7    | G9  | P3.10   |
| A10 | RADREF | C10 | P5.9    | E10 | P4.4    | G10 | P3.4    |
| A11 | TXPW   | C11 | P5.7    | E11 | P4.2    | G11 | P3.7    |
| A12 | AOCQ   | C12 | P5.10   | E12 | P4.0    | G12 | P3.15   |
| A13 | AOCI   | C13 | RADGNDR | E13 | GNDL    | G13 | GNDL    |
| A14 | D15    | C14 | D9      | E14 | D0      | G14 | A21     |
| A15 | D14    | C15 | D8      | E15 | WRN0    | G15 | A19     |
| A16 | D13    | C16 | D7      | E16 | RDN     | G16 | A20     |
| B1  | AIP4   | D1  | AIP0    | F1  | PWRNLOC | H1  | VSEUIL  |
| B2  | AIP5   | D2  | AIP2    | F2  | RETBAT  | H2  | VEXTON  |
| B3  | QNX    | D3  | AIP1    | F3  | PWRNEXT | H3  | GNDP    |
| B4  | QPX    | D4  | IOVREF  | F4  | IOV3A   | H4  | V3PA    |
| B5  | P5.4   | D5  | IOGNDA  | F5  | P4.14   | H5  | P3.3    |
| B6  | P5.0   | D6  | GNDL    | F6  | P4.13   | H6  | P3.1    |
| B7  | P5.2   | D7  | MODGNDA | F7  | P4.10   | H7  | P3.5    |
| B8  | P5.14  | D8  | MODV3A  | F8  | P4.8    | H8  | P3.8    |
| B9  | P5.13  | D9  | VCC     | F9  | P4.6    | H9  | P3.14   |
| B10 | P5.12  | D10 | RADGNDA | F10 | P4.5    | H10 | P3.13   |
| B11 | P5.15  | D11 | RADV3A  | F11 | P4.3    | H11 | P3.9    |
| B12 | P5.11  | D12 | FCGND   | F12 | P4.1    | H12 | P3.11   |
| B13 | FC     | D13 | FCVREF  | F13 | VCC     | H13 | VCC     |
| B14 | D12    | D14 | D5      | F14 | A23     | H14 | A17     |
| B15 | D11    | D15 | D3      | F15 | GCSN2   | H15 | A16     |
| B16 | D10    | D16 | D4      | F16 | GCSN0   | H16 | A15     |

# Tetrapol IC

Table 1. Tetrapol IC Pin Description (Continued)


| Pin | Signal  | Pin | Signal | Pin | Signal     | Pin | Signal     |
|-----|---------|-----|--------|-----|------------|-----|------------|
| J1  | SELEXTN | L1  | TCK    | N1  | VDAC       | R1  | MIC2+      |
| J2  | VEXT    | L2  | TMS    | N2  | EAIN       | R2  | MIC1-      |
| J3  | SELEXT  | L3  | EMUN   | N3  | MIC0-      | R3  | MIC1+      |
| J4  | VCC     | L4  | GNDL   | N4  | GNDL       | R4  | COUT       |
| J5  | P2.6    | L5  | P1.2   | N5  | COFIV3A    | R5  | MODCLKX    |
| J6  | P2.5    | L6  | P1.1   | N6  | COFIGNDA   | R6  | USART1SCK1 |
| J7  | P2.9    | L7  | P1.5   | N7  | PAGNDA     | R7  | COFOFSR    |
| J8  | P2.12   | L8  | P1.3   | N8  | PAV3A      | R8  | MODDX      |
| J9  | P2.14   | L9  | P1.11  | N9  | VCC        | R9  | MODCLKR    |
| J10 | P2.4    | L10 | P1.10  | N10 | GNDL       | R10 | CLKOUT     |
| J11 | P2.2    | L11 | P1.12  | N11 | HRADVCCA   | R11 | PLL_LFT    |
| J12 | P2.0    | L12 | P1.15  | N12 | HRADGNDA   | R12 | GCSN3      |
| J13 | GNDL    | L13 | VCC    | N13 | VCC        | R13 | ROMN       |
| J14 | A8      | L14 | A2     | N14 | INT0       | R14 | GCSN1      |
| J15 | A10     | L15 | A4     | N15 | INT2       | R15 | A13        |
| J16 | A11     | L16 | A3     | N16 | INT1       | R16 | A9         |
| K1  | TDO     | M1  | CONS1  | P1  | VMID       | T1  | MIC2-      |
| K2  | TDI     | M2  | CONS0  | P2  | VCM        | T2  | VBG        |
| K3  | TRSTN   | M3  | NC     | P3  | MIC0+      | T3  | SPK-       |
| K4  | VCC     | M4  | VCC    | P4  | USART1TXD2 | T4  | SPK+       |
| K5  | P2.10   | M5  | P1.6   | P5  | COFIDX     | T5  | MODFSR     |
| K6  | P2.7    | M6  | P1.7   | P6  | DSPCLK     | T6  | COFIFSX    |
| K7  | P2.8    | M7  | P1.0   | P7  | MODFSX     | T7  | COFIFSXR   |
| K8  | P2.11   | M8  | P1.4   | P8  | COFIDR     | T8  | MODDR      |
| K9  | P2.13   | M9  | P1.8   | P9  | DSPCLKR    | T9  | USART1RXD1 |
| K10 | P2.15   | M10 | P1.9   | P10 | COPCLK     | T10 | PUMPCLK    |
| K11 | P2.3    | M11 | P1.13  | P11 | TESTN      | T11 | HRAD       |
| K12 | P2.1    | M12 | P1.14  | P12 | PLL_TEST   | T12 | D1         |
| K13 | GNDL    | M13 | GNDL   | P13 | D2         | T13 | D6         |
| K14 | A5      | M14 | A0     | P14 | A12        | T14 | WR1N       |
| K15 | A7      | M15 | INT3   | P15 | A22        | T15 | NC         |
| K16 | A6      | M16 | A1     | P16 | A14        | T16 | A18        |





# **Block Diagram**

Figure 3. Tetrapol IC Block Diagram



# Tetrapol IC

# **Architectural Overview**

# **ARM7TDMI Microcontroller Core**

The ARM7TDMI processor has a high-performance 32-bit RISC architecture with a high-density 16-bit instruction set and very low power consumption. In addition, a large number of internally banked registers result in very fast exception handling, making the device ideal for real-time control applications.

# **JTAG and Test Interface Controller**

The ARM7TDMI uses the serial JTAG port for processor emulation. The parallel TIC, multiplexed with the chip address and data buses, enables access to internal registers while bypassing the processor.

Additional test interfaces are:

- Boundary Scan Interface
- · Device-specific test interface
- Atmel-specific test configuration

## AMBA Bus and Bridge

The system architecture consists of two main buses, the Advanced System Bus (ASB) and the Advanced Peripheral Bus (APB). The ASB is designed for maximum performance. It interfaces the processor with the on-chip 32-bit memories and the external memories and devices by means of the External Bus Interface (EBI). The APB is designed for accesses to on-chip peripherals and is optimized for low power consumption. The AMBA Bridge provides the interface between the ASB and the APB.

### **Internal and External Memories**

#### **Memory Controller**

The memory controller manages internal and external memory access. It is connected to the internal and external memory blocks by means of the ASB and the External Bus Interface.

### Internal RAM and ROM

The internal RAM is a memory of  $512 \times 32$  bits which can be used for either instructions or data. It is accessible in 16-and 32-bit modes.

The internal ROM is a memory of 256 x 32 bits. It contains the boot program.

#### **External Bus Interface**

The EBI provides fast, flexible access to 8- or 16-bit external memory blocks or compatible devices. It is fully programmable and can address up to 64M bytes.

# **Timing and Standby Mode**

### Sequencer

The sequencer is a finite-state machine which triggers actions at precise time intervals.

#### Frame and Frame Sample Counters

These are programmable counters - modulo 200 for the frame counter and modulo 320 for the frame sample counter.

#### Clock Generation and Standby Management/ 13 and 26 MHz Clock Generation

The clock generation function generates and controls the permanent 26 MHz clock, from which the permanent 13 MHz clock is generated.

#### Timer

The timer block is made up of three 16-bit programmable timers.

#### Watchdog

A watchdog timer prevents system lock-up in the case of entry into an endless loop.

## **ARM Peripherals**

#### Interrupt Controller

The device incorporates an 8-level priority, individually maskable, vectored interrupt controller. This feature substantially reduces the software and real time overhead in handling internal and external interrupts.

The interrupt controller is connected to the NFIQ (fast interrupt request) and the NIRQ (standard interrupt request) inputs of the ARM7TDMI processor. The processor's NFIQ line can only be asserted by the external fast interrupt request input: FIQ. The NIRQ line can be asserted by the interrupts generated by the on-chip peripherals and the external interrupt request lines.

#### I<sup>2</sup>C and I<sup>2</sup>C/SMBUS Controllers

The device contains two serial interfaces managed by two independent  $I^2C$  controllers. The standard  $I^2C$  interface enables exchanges with  $I^2C$ -type accessories, whether master or slave. It is multiplexed with the digital I/O ports which permits the connection of parallel access accessories on the same wires.

The SMBUS interface is dedicated to exchanges between the battery and the charger.

The two interfaces are independent of each other.

#### USART

The chip provides two identical, full-duplex, universal synchronous/asynchronous receiver/transmitters that interface to the APB and are each connected to a Peripheral Data Controller. This configuration allows data to be transferred with minimal processor intervention.

#### **Microwire**<sup>®</sup>

The Microwire is a serial interface between external peripherals and the ARM7TDMI microcontroller.





#### Digital and Multiplexed I/O

The chip contains 5 bidirectional I/O ports of 16 parallel bits. Some of these are multiplexed with functional I/Os.

#### Analog I/O

Eight analog inputs are available. They permit the measurement and comparison of minimum levels. Maximum levels can be measured with an interrupt trigger. Four of the eight inputs are multiplexed with the analog outputs. 8bit low-power analog-to-digital and digital-to-analog converters are used. The DACs are buffered to drive external resistive-capacitive loads.

## **IQ Modem and Radio Interface**

#### **Radio Programmer**

This block creates the serial interface between the internal bus and external radio circuits. It can program up to 8 radio circuits and transmit data packets of up to 56 bits. Programming is done by the ARM core.

#### **Frequency Controller**

The Frequency Controller produces an analog signal proportional to the required radio frequency. The signal is derived from digital data via a compact single-bit sigmadelta DAC with 10-bit resolution.

#### Transmission Gain Controller (Ramp-up, Ramp-down)

Transmitted signal power, as well as ramping up and ramping down at the beginning or end of a transmit burst, are controlled by low-power 8-bit Nyquist data converters. They are buffered to drive external resistive-capacitive loads.

#### **Reception Strength Measurement**

This block measures the average strength of received signals sampled during a given interval.

#### **Reception Offset Measurement**

This module measures the offset of received samples at given intervals.

#### **Reception Offset Compensation**

This block provides the necessary correction to compensate the natural offset of demodulated signals. Fine control steps are achieved by using oversampled multibit DACs with 14-bit resolution.

#### **IQ Transmission and Reception Modem**

The Baseband Modem (CODEC) performs A/D and D/A conversion of the I and Q waveforms according to the GMSK standard.

For the best dynamic performance in terms of SNR and THD, both transmission and reception chains are based on noise-shaped oversampled architectures. Each transmit channel includes:

- Sinc<sup>3</sup> interpolator
- Drop compensator
- 10-bit current-steering DAC
- · Second-order continous time filter with buffer

The differential offset for both I and Q can be reduced to 1 mV after performing a calibration cycle.

The I/Q receiver employs a delta-sigma ADC for each channel, the bitstream of which is decimated by a sinc<sup>3</sup> digital filter. A Parks McClellan FIR filter is included to assure rejection of out-of-band components.

### **Power Management**

#### On - Off

The on-off function controls power up and power down and ensures power up in a correctly initialized state.

#### **Power Supply Detect/Select**

The power supply function detects the presence of an external power supply and selects the power source from the battery or the external supply.

#### **Audio Interface**

#### Voice CODEC

The Atmel Voice CODEC contains seperate reception and transmission channels. The transmission channel filters the incoming microphone signals, converts them to digital signals, filters and then transmits the resulting data serially.

The reception channel filters the incoming serial digital signal, converts it to an analog signal and then amplifies/attenuates and transmits the signal to a speaker.

Digital signals interface directly with the off-chip DSP.

Sigma-delta conversion is used in both transmit and receive. The powerdown scheme allows only the transmit or receive section to be powered up. A control register programs all voice CODEC functions: multiplexing the three microphone inputs, bypass of the microphone amplifier, selection of auxiliary input, setting of TX and RX PGA gains, and loopback test mode.

# **Electrical Characteristics**

 $V_{DD}$  = 2.4V to 3.6V,  $T_A$  = -40°C to 85°C (worst case of process)

Table 2. Device Characteristics

| Symbol                | Parameter                | Description/Conditions          | Min | Тур | Max | Units |
|-----------------------|--------------------------|---------------------------------|-----|-----|-----|-------|
| $V_{EXT}$             | External Voltage         | Dynamic                         | 0   |     | 3.3 | V     |
| V <sub>SEUIL</sub>    | Threshold Voltage        | Dynamic                         | 0   |     | 3.3 | V     |
| SEL <sub>XXX(X)</sub> | TTL I/O Current Levels   | Low Level Current Load          |     |     | 4   | mA    |
|                       |                          | High Level Current Load         |     |     | 0.5 | mA    |
|                       | Static Power Consumption | Excluding load and $V_{CC} = 0$ |     | TBD | 25  | μA    |

#### Table 3. Voiceband CODEC Characteristics

| Symbol           | Parameter                 | Description/Conditions          | Min  | Тур | Max | Units |
|------------------|---------------------------|---------------------------------|------|-----|-----|-------|
| ADC Chan         | nel                       |                                 |      |     |     |       |
| G <sub>XAL</sub> | Gain Tracking Error       | ref @-10 dB, 3 dBm0 to -40 dBm0 | -0.5 |     | 0.5 | dB    |
| THD              | Total Harmonic Distortion | 0 to -6 dBm0                    |      | -65 | -48 | dB    |
|                  | Idle Channel Noise        |                                 |      |     | -67 | dBm0p |
| DAC Chan         | nel                       |                                 | ų.   |     | L   | 4     |
| R <sub>XAL</sub> | Gain Tracking Error       | ref @-10 dB, 3 dBm0 to -40 dBm0 | -0.5 |     | 0.5 | dB    |
| THD              | Total Harmonic Distortion | 0 to -6 dBm0                    |      |     | -48 | dB    |
|                  | Idle Channel Noise        |                                 |      |     | -74 | dBm0p |

#### Table 4. IQ Baseband Modem (CODEC) Characteristics

| Symbol           | Parameter                     | Description/Conditions                                 | Min  | Тур | Max | Units |
|------------------|-------------------------------|--------------------------------------------------------|------|-----|-----|-------|
| Transmit D       | AC                            |                                                        |      |     |     |       |
| Ν                | Resolution                    |                                                        |      | 10  |     | bits  |
| BW               | Signal Bandwidth              |                                                        | 12.5 |     |     | kHz   |
| f <sub>S</sub>   | Sampling Rate                 |                                                        |      | 40  |     | kHz   |
| THD              | Total Harmonic Distortion     | $V_{IN} = 2V_{PP}$ , $F_{IN} = 2$ khZ, BW = 0 to 8 kHz |      |     | -56 | dB    |
| V <sub>OFF</sub> | Differential Offset, post cal |                                                        | -1   |     | 1   | mV    |
| Receive AD       | C                             |                                                        |      | l.  |     |       |
| Ν                | Resolution                    |                                                        | 12   |     |     | bits  |
| BW               | Signal Bandwidth              |                                                        | 5    |     |     | kHz   |
|                  | Gain Flatness                 | BW = DC to 5 kHz                                       | -0.1 |     | 0.1 | dB    |
|                  | Out-of-Band Attenuation       | f > 6 kHz                                              | -55  |     |     | dB    |
| f <sub>S</sub>   | Sampling Rate                 |                                                        |      | 2   |     | MHz   |
| THD              | Total Harmonic Distortion     | $V_{IN} = 1V_{PP}$ , $F_{IN} = 2$ kHz, BW = 0 to 8 kHz |      |     | -50 | dB    |
| SNR              | Signal-to-Noise Ratio         | $V_{IN} = 2V_{PP}$ , $F_{IN} = 2$ kHz, BW = 0 to 8 kHz | 72   |     |     | dB    |





# **Atmel Headquarters**

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL (408) 441-0311 FAX (408) 487-2600

#### Europe

Atmel U.K., Ltd. Coliseum Business Centre Riverside Way Camberley, Surrey GU15 3YL England TEL (44) 1276-686677 FAX (44) 1276-686697

#### Asia

Atmel Asia, Ltd. Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon, Hong Kong TEL (852) 27219778 FAX (852) 27221369

#### Japan

Atmel Japan K.K. Tonetsu Shinkawa Bldg., 9F 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

# **Atmel Operations**

Atmel Colorado Springs 1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL (719) 576-3300 FAX (719) 540-1759

Atmel Rousset

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4 42 53 60 00 FAX (33) 4 42 53 60 01

### *Fax-on-Demand* North America: 1-(800) 292-8635 International: 1-(408) 441-0732

*e-mail* literature@atmel.com

Web Site http://www.atmel.com

*BBS* 1-(408) 436-4309



#### © Atmel Corporation 1999.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems. Marks bearing <sup>®</sup> and/or <sup>™</sup> are registered trademarks and trademarks of Atmel Corporation.

Marks bearing <sup>©</sup> and/or <sup>–</sup> are registered trademarks and trademarks of Atmel Corporation. ARM, Thumb, StrongARM and ARM Powered are regitered trademarks of ARM Limited.

The ARM7TDMI is a trademark of ARM Ltd.

Terms and product names in this document may be trademarks of others.



Printed on recycled paper.