The GNU Binary Utilities

Version 2.10.1

May 1993

Roland H. Pesch
Jeffrey M. Osier
Cygnus Support

Cygnus Support
TEXinfo 1999-09-25.10

Copyright (©) 1991, 92, 93, 94, 95, 96, 97, 1998 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

Introduction 1

Introduction

This brief manual contains preliminary documentation for the GNU binary utilities (col-
lectively version 2.10.1):

ar
nm
objcopy
objdump
ranlib
readelf
size
strings
strip
c++filt

addr2line

nlmconv
windres

dlltool

Create, modify, and extract from archives
List symbols from object files

Copy and translate object files

Display information from object files
Generate index to archive contents
Display the contents of ELF format files.
List file section sizes and total size

List printable strings from files

Discard symbols

Demangle encoded C++ symbols (on MS-DOS, this program is named cxxfilt)

Convert addresses into file names and line numbers
Convert object code into a Netware Loadable Module
Manipulate Windows resources

Create the files needed to build and use Dynamic Link Libraries

GNU Binary Utilities

Chapter 1: ar 3

1 ar

ar [-1p[mod [relpos] [count]] archive [member...]
ar -M [<mri-script]
The GNU ar program creates, modifies, and extracts from archives. An archive is a single
file holding a collection of other files in a structure that makes it possible to retrieve the
original individual files (called members of the archive).

The original files’ contents, mode (permissions), timestamp, owner, and group are pre-
served in the archive, and can be restored on extraction.

GNU ar can maintain archives whose members have names of any length; however, de-
pending on how ar is configured on your system, a limit on member-name length may be
imposed for compatibility with archive formats maintained with other tools. If it exists, the
limit is often 15 characters (typical of formats related to a.out) or 16 characters (typical of
formats related to coff).

ar is considered a binary utility because archives of this sort are most often used as
libraries holding commonly needed subroutines.

ar creates an index to the symbols defined in relocatable object modules in the archive
when you specify the modifier ‘s’. Once created, this index is updated in the archive
whenever ar makes a change to its contents (save for the ‘q’ update operation). An archive
with such an index speeds up linking to the library, and allows routines in the library to
call each other without regard to their placement in the archive.

You may use ‘nm -s’ or ‘nm --print-armap’ to list this index table. If an archive lacks
the table, another form of ar called ranlib can be used to add just the table.

GNU ar is designed to be compatible with two different facilities. You can control its
activity using command-line options, like the different varieties of ar on Unix systems; or,
if you specify the single command-line option ‘-M’, you can control it with a script supplied
via standard input, like the MRI “librarian” program.

4 GNU Binary Utilities

1.1 Controlling ar on the command line

ar [-1p[mod [relpos] [count]] archive [member...]

When you use ar in the Unix style, ar insists on at least two arguments to execute: one
keyletter specifying the operation (optionally accompanied by other keyletters specifying
modifiers), and the archive name to act on.

Most operations can also accept further member arguments, specifying particular files
to operate on.

GNU ar allows you to mix the operation code p and modifier flags mod in any order,
within the first command-line argument.

If you wish, you may begin the first command-line argument with a dash.

The p keyletter specifies what operation to execute; it may be any of the following, but
you must specify only one of them:

d Delete modules from the archive. Specify the names of modules to be deleted
as member. . .; the archive is untouched if you specify no files to delete.

If you specify the ‘v’ modifier, ar lists each module as it is deleted.

m Use this operation to move members in an archive.

The ordering of members in an archive can make a difference in how programs
are linked using the library, if a symbol is defined in more than one member.

If no modifiers are used with m, any members you name in the member ar-
guments are moved to the end of the archive; you can use the ‘a’, ‘b’, or ‘i’
modifiers to move them to a specified place instead.

) Print the specified members of the archive, to the standard output file. If the
‘v’ modifier is specified, show the member name before copying its contents to
standard output.

If you specify no member arguments, all the files in the archive are printed.

q Quick append; Historically, add the files member. .. to the end of archive,
without checking for replacement.

The modifiers ‘a’, ‘b’, and ‘i’ do not affect this operation; new members are
always placed at the end of the archive.

The modifier ‘v’ makes ar list each file as it is appended.

Since the point of this operation is speed, the archive’s symbol table index is
not updated, even if it already existed; you can use ‘ar s’ or ranlib explicitly
to update the symbol table index.

However, too many different systems assume quick append rebuilds the index,
so GNU ar implements q as a synonym for r.

r Insert the files member. .. into archive (with replacement). This operation
differs from ‘q’ in that any previously existing members are deleted if their
names match those being added.

If one of the files named in member. .. does not exist, ar displays an error
message, and leaves undisturbed any existing members of the archive matching
that name.

Chapter 1: ar 5

By default, new members are added at the end of the file; but you may use one
of the modifiers ‘a’, ‘b’, or ‘i’ to request placement relative to some existing
member.

The modifier ‘v’ used with this operation elicits a line of output for each file
inserted, along with one of the letters ‘a’ or ‘r’ to indicate whether the file was
appended (no old member deleted) or replaced.

t Display a table listing the contents of archive, or those of the files listed in
member. .. that are present in the archive. Normally only the member name
is shown; if you also want to see the modes (permissions), timestamp, owner,
group, and size, you can request that by also specifying the ‘v’ modifier.

If you do not specify a member, all files in the archive are listed.

If there is more than one file with the same name (say, ‘fie’) in an archive (say
‘b.a’), ‘ar t b.a fie’ lists only the first instance; to see them all, you must ask
for a complete listing—in our example, ‘ar t b.a’.

x Eztract members (named member) from the archive. You can use the ‘v’ mod-
ifier with this operation, to request that ar list each name as it extracts it.

If you do not specify a member, all files in the archive are extracted.

A number of modifiers (mod) may immediately follow the p keyletter, to specify varia-
tions on an operation’s behavior:

a Add new files after an existing member of the archive. If you use the modifier
‘a’, the name of an existing archive member must be present as the relpos
argument, before the archive specification.

b Add new files before an existing member of the archive. If you use the modifier
‘b’, the name of an existing archive member must be present as the relpos
argument, before the archive specification. (same as ‘i’).

c Create the archive. The specified archive is always created if it did not exist,
when you request an update. But a warning is issued unless you specify in
advance that you expect to create it, by using this modifier.

f Truncate names in the archive. GNU ar will normally permit file names of any
length. This will cause it to create archives which are not compatible with the
native ar program on some systems. If this is a concern, the ‘f’ modifier may
be used to truncate file names when putting them in the archive.

i Insert new files before an existing member of the archive. If you use the modifier
‘i’, the name of an existing archive member must be present as the relpos
argument, before the archive specification. (same as ‘b’).

This modifier is accepted but not used.

N Uses the count parameter. This is used if there are multiple entries in the
archive with the same name. Extract or delete instance count of the given
name from the archive.

o Preserve the original dates of members when extracting them. If you do not
specify this modifier, files extracted from the archive are stamped with the time
of extraction.

6 GNU Binary Utilities

P Use the full path name when matching names in the archive. GNU ar can
not create an archive with a full path name (such archives are not POSIX
complaint), but other archive creators can. This option will cause GNU ar to
match file names using a complete path name, which can be convenient when
extracting a single file from an archive created by another tool.

S Write an object-file index into the archive, or update an existing one, even if no
other change is made to the archive. You may use this modifier flag either with
any operation, or alone. Running ‘ar s’ on an archive is equivalent to running
‘ranlib’ on it.

S Do not generate an archive symbol table. This can speed up building a large
library in several steps. The resulting archive can not be used with the linker.
In order to build a symbol table, you must omit the ‘S’ modifier on the last
execution of ‘ar’, or you must run ‘ranlib’ on the archive.

u Normally, ‘ar r’... inserts all files listed into the archive. If you would like
to insert only those of the files you list that are newer than existing members
of the same names, use this modifier. The ‘v’ modifier is allowed only for the
operation ‘r’ (replace). In particular, the combination ‘qu’ is not allowed, since
checking the timestamps would lose any speed advantage from the operation

[P

q

v This modifier requests the verbose version of an operation. Many operations
display additional information, such as filenames processed, when the modifier
‘v’ is appended.

v This modifier shows the version number of ar.

1.2 Controlling ar with a script

ar -M [<script]

If you use the single command-line option ‘-M’ with ar, you can control its operation
with a rudimentary command language. This form of ar operates interactively if standard
input is coming directly from a terminal. During interactive use, ar prompts for input (the
prompt is ‘AR >’), and continues executing even after errors. If you redirect standard input
to a script file, no prompts are issued, and ar abandons execution (with a nonzero exit
code) on any error.

The ar command language is not designed to be equivalent to the command-line options;
in fact, it provides somewhat less control over archives. The only purpose of the command
language is to ease the transition to GNU ar for developers who already have scripts written
for the MRI “librarian” program.

The syntax for the ar command language is straightforward:

e commands are recognized in upper or lower case; for example, LIST is the same as
list. In the following descriptions, commands are shown in upper case for clarity.

e a single command may appear on each line; it is the first word on the line.
e empty lines are allowed, and have no effect.

e comments are allowed; text after either of the characters ‘*’ or *;’ is ignored.

Chapter 1: ar 7

e Whenever you use a list of names as part of the argument to an ar command, you can
separate the individual names with either commas or blanks. Commas are shown in
the explanations below, for clarity.

e ‘+’is used as a line continuation character; if ‘+’ appears at the end of a line, the text
on the following line is considered part of the current command.

Here are the commands you can use in ar scripts, or when using ar interactively. Three
of them have special significance:

OPEN or CREATE specify a current archive, which is a temporary file required for most of
the other commands.

SAVE commits the changes so far specified by the script. Prior to SAVE, commands affect
only the temporary copy of the current archive.

ADDLIB archive

ADDLIB archive (module, module, ... module)
Add all the contents of archive (or, if specified, each named module from
archive) to the current archive.

Requires prior use of OPEN or CREATE.

ADDMOD member, member, ... member
Add each named member as a module in the current archive.

Requires prior use of OPEN or CREATE.

CLEAR Discard the contents of the current archive, canceling the effect of any operations
since the last SAVE. May be executed (with no effect) even if no current archive
is specified.

CREATE archive
Creates an archive, and makes it the current archive (required for many other
commands). The new archive is created with a temporary name; it is not actu-
ally saved as archive until you use SAVE. You can overwrite existing archives;
similarly, the contents of any existing file named archive will not be destroyed
until SAVE.

DELETE module, module, ... module
Delete each listed module from the current archive; equivalent to ‘ar -d archive
module ... module’.

Requires prior use of OPEN or CREATE.

DIRECTORY archive (module, ... module)

DIRECTORY archive (module, ... module) outputfile
List each named module present in archive. The separate command VERBOSE
specifies the form of the output: when verbose output is off, output is like that
of ‘ar -t archive module...’. When verbose output is on, the listing is like ‘ar
-tv archive module. ..’.

Output normally goes to the standard output stream; however, if you specify
outputfile as a final argument, ar directs the output to that file.

END Exit from ar, with a 0 exit code to indicate successful completion. This com-
mand does not save the output file; if you have changed the current archive
since the last SAVE command, those changes are lost.

GNU Binary Utilities

EXTRACT module, module, ... module

LIST

Extract each named module from the current archive, writing them into the
current directory as separate files. Equivalent to ‘ar -x archive module. .. .

Requires prior use of OPEN or CREATE.

Display full contents of the current archive, in “verbose” style regardless of the

state of VERBOSE. The effect is like ‘ar tv archive’. (This single command is a
GNU ar enhancement, rather than present for MRI compatibility.)

Requires prior use of OPEN or CREATE.

OPEN archive

Opens an existing archive for use as the current archive (required for many
other commands). Any changes as the result of subsequent commands will not
actually affect archive until you next use SAVE.

REPLACE module, module, ... module

VERBOSE

SAVE

In the current archive, replace each existing module (named in the REPLACE ar-
guments) from files in the current working directory. To execute this command
without errors, both the file, and the module in the current archive, must exist.

Requires prior use of OPEN or CREATE.

Toggle an internal flag governing the output from DIRECTORY. When the flag
is on, DIRECTORY output matches output from ‘ar -tv ’. ...

Commit your changes to the current archive, and actually save it as a file with
the name specified in the last CREATE or OPEN command.

Requires prior use of OPEN or CREATE.

Chapter 2: 1d 9

2 1d

The GNU linker 1d is now described in a separate manual. See section “Overview” in
Using LD: the GNU linker.

10

GNU Binary Utilities

Chapter 3: nm 11
3 nm
nm [-a | --debug-syms] [-g | -—extern-only]
[-B] [-C | --demangle] [-D | --dynamic]
[-s | ——print-armap] [-A | -o | ——print-file-name]
[l nl| -v | -—numeric-sort] [-p | ——no-sort]
[-r | --reverse-sort] [--size-sort] [-u | --undefined-only]
[-t radix | --radix=radix 1 [-P | --portability]
[--target=bfdname] [-f format | --format=format]
[--defined-only] [-1 | --line-numbers]
[--no-demangle] [-V | --version] [--help 1 [objfile...]
GNU nm lists the symbols from object files objfile.... If no object files are listed as

arguments, nm assumes the file ‘a.out’.

For each symbol, nm shows:

e The symbol value, in the radix selected by options (see below), or hexadecimal by
default.

e The symbol type. At least the following types are used; others are, as well, depending
on the object file format. If lowercase, the symbol is local; if uppercase, the symbol is
global (external).

A
B
C

= g A nn ™ =

The symbol’s value is absolute, and will not be changed by further linking.
The symbol is in the uninitialized data section (known as BSS).

The symbol is common. Common symbols are uninitialized data. When
linking, multiple common symbols may appear with the same name. If the
symbol is defined anywhere, the common symbols are treated as undefined
references. For more details on common symbols, see the discussion of
—warn-common in section “Linker options” in The GNU linker.

The symbol is in the initialized data section.

The symbol is in an initialized data section for small objects. Some object
file formats permit more efficient access to small data objects, such as a
global int variable as opposed to a large global array.

The symbol is an indirect reference to another symbol. This is a GNU
extension to the a.out object file format which is rarely used.

The symbol is a debugging symbol.

The symbol is in a read only data section.

The symbol is in an uninitialized data section for small objects.
The symbol is in the text (code) section.

The symbol is undefined.

The symbol is a weak object. When a weak defined symbol is linked with
a normal defined symbol, the normal defined symbol is used with no error.
When a weak undefined symbol is linked and the symbol is not defined,
the value of the weak symbol becomes zero with no error.

12 GNU Binary Utilities

W The symbol is a weak symbol that has not been specifically tagged as a
weak object symbol. When a weak defined symbol is linked with a normal
defined symbol, the normal defined symbol is used with no error. When a
weak undefined symbol is linked and the symbol is not defined, the value
of the weak symbol becomes zero with no error.

- The symbol is a stabs symbol in an a.out object file. In this case, the
next values printed are the stabs other field, the stabs desc field, and the
stab type. Stabs symbols are used to hold debugging information; for more
information, see section “Stabs Overview” in The “stabs” debug format.

? The symbol type is unknown, or object file format specific.
e The symbol name.
The long and short forms of options, shown here as alternatives, are equivalent.

-A

-0

--print-file-name
Precede each symbol by the name of the input file (or archive member) in which
it was found, rather than identifying the input file once only, before all of its

symbols.
-a
--debug-syms
Display all symbols, even debugger-only symbols; normally these are not listed.
-B The same as ‘-—=format=bsd’ (for compatibility with the MIPS nm).
-C
--demangle

Decode (demangle) low-level symbol names into user-level names. Besides re-
moving any initial underscore prepended by the system, this makes C++ func-
tion names readable. See Chapter 10 [c++filt], page 35, for more information
on demangling.

--no-demangle
Do not demangle low-level symbol names. This is the default.

-D

--dynamic
Display the dynamic symbols rather than the normal symbols. This is only
meaningful for dynamic objects, such as certain types of shared libraries.

-f format

--format=format
Use the output format format, which can be bsd, sysv, or posix. The default
is bsd. Only the first character of format is significant; it can be either upper
or lower case.

g

-—extern-only
Display only external symbols.

Chapter 3: nm 13

-1

--line—numbers
For each symbol, use debugging information to try to find a filename and line
number. For a defined symbol, look for the line number of the address of the
symbol. For an undefined symbol, look for the line number of a relocation entry
which refers to the symbol. If line number information can be found, print it
after the other symbol information.

-n
-V
--numeric-sort

Sort symbols numerically by their addresses, rather than alphabetically by their

names.

Y

--no-sort
Do not bother to sort the symbols in any order; print them in the order en-
countered.

-P

--portability
Use the POSIX.2 standard output format instead of the default format. Equiv-
alent to ‘-f posix’.

-8

--print-armap
When listing symbols from archive members, include the index: a mapping
(stored in the archive by ar or ranlib) of which modules contain definitions
for which names.

-r
--reverse-sort
Reverse the order of the sort (whether numeric or alphabetic); let the last come
first.

--size-sort
Sort symbols by size. The size is computed as the difference between the value
of the symbol and the value of the symbol with the next higher value. The size
of the symbol is printed, rather than the value.

-t radix

--radix=radix
Use radix as the radix for printing the symbol values. It must be ‘d’ for decimal,
‘o’ for octal, or ‘x’ for hexadecimal.

--target=bfdname
Specify an object code format other than your system’s default format. See
Section 16.1 [Target Selection], page 51, for more information.

-u
--undefined-only
Display only undefined symbols (those external to each object file).

14 GNU Binary Utilities

--defined-only

Display only defined symbols for each object file.
-V
--version

Show the version number of nm and exit.

--help Show a summary of the options to nm and exit.

Chapter 4: objcopy 15

4 objcopy

objcopy [-F bfdname | --target=bfdname]

[-I bfdname | --input-target=bfdname]

[-0 bfdname | --output-target=bfdname]

[-S| --strip-all] [-g | --strip-debug]

[-K symbolname | --keep-symbol=symbolname]

[-N symbolname | --strip-symbol=symbolname]

[-L symbolname | --localize-symbol=symbolname]
[-W symbolname | --weaken-symbol=symbolname]
[-x | --discard-all 1 [-X | --discard-locals]
[-b byte | --byte=byte]

[-i interleave | --interleave=interleave]

[-j sectionname | --only-section=sectionname]

[-R sectionname | --remove-section=sectionname]
[-p | --preserve-dates] [--debugging]

[--gap-fill=val 1 [--pad-to=address]

[--set-start=val] [--adjust-start=incr]

[--change-addresses=incr]

[--change-section-address section{=,+,-}val]

[--change-section-1lma section{=,+,-}val]

[--change-section-vma section{=,+,-}val]

[--change-warnings] [--no-change-warnings]

[--set-section-flags section=flags]

[--add-section sectionname=filename]

[--change-leading-char] [--remove-leading-char]
[--redefine-sym old=new] [--weaken]

[-v | ——verbose 1 [-V | —-version] [--help]
infile [outfile]

The GNU objcopy utility copies the contents of an object file to another. objcopy uses
the aNU BFD Library to read and write the object files. It can write the destination object
file in a format different from that of the source object file. The exact behavior of objcopy
is controlled by command-line options.

objcopy creates temporary files to do its translations and deletes them afterward.
objcopy uses BFD to do all its translation work; it has access to all the formats described
in BFD and thus is able to recognize most formats without being told explicitly. See section
“BFD” in Using LD.

objcopy can be used to generate S-records by using an output target of ‘srec’ (e.g., use
‘-0 srec’).

objcopy can be used to generate a raw binary file by using an output target of ‘binary’
(e.g., use ‘-0 binary’). When objcopy generates a raw binary file, it will essentially pro-
duce a memory dump of the contents of the input object file. All symbols and relocation
information will be discarded. The memory dump will start at the load address of the
lowest section copied into the output file.

When generating an S-record or a raw binary file, it may be helpful to use ‘=S’ to
remove sections containing debugging information. In some cases ‘-R’ will be useful to
remove sections which contain information that is not needed by the binary file.

16 GNU Binary Utilities

infile

outfile The input and output files, respectively. If you do not specify outfile, objcopy
creates a temporary file and destructively renames the result with the name of
infile.

-I bfdname

--input-target=bfdname
Consider the source file’s object format to be bfdname, rather than attempting
to deduce it. See Section 16.1 [Target Selection], page 51, for more information.

-0 bfdname

--output-target=bfdname
Write the output file using the object format bfdname. See Section 16.1 [Target
Selection], page 51, for more information.

-F bfdname

--target=bfdname
Use bfdname as the object format for both the input and the output file; i.e.,
simply transfer data from source to destination with no translation. See Sec-
tion 16.1 [Target Selection], page 51, for more information.

-j sectionname

--only-section=sectionname
Copy only the named section from the input file to the output file. This option
may be given more than once. Note that using this option inappropriately may
make the output file unusable.

-R sectionname

--remove-section=sectionname
Remove any section named sectionname from the output file. This option may
be given more than once. Note that using this option inappropriately may make
the output file unusable.

-S
--strip-all
Do not copy relocation and symbol information from the source file.
g
--strip-debug
Do not copy debugging symbols from the source file.

--strip-unneeded
Strip all symbols that are not needed for relocation processing.

-K symbolname

--keep-symbol=symbolname
Copy only symbol symbolname from the source file. This option may be given
more than once.

-N symbolname

--strip-symbol=symbolname
Do not copy symbol symbolname from the source file. This option may be
given more than once.

Chapter 4: objcopy 17

-L symbolname

--localize-symbol=symbolname
Make symbol symbolname local to the file, so that it is not visible externally.
This option may be given more than once.

-W symbolname
--weaken-symbol=symbolname
Make symbol symbolname weak. This option may be given more than once.

-X
--discard-all
Do not copy non-global symbols from the source file.

-X
--discard-locals
Do not copy compiler-generated local symbols. (These usually start with ‘L’ or

“)

-b byte

--byte=byte
Keep only every byteth byte of the input file (header data is not affected). byte
can be in the range from 0 to interleave-1, where interleave is given by the ‘-1’
or ‘-—interleave’ option, or the default of 4. This option is useful for creating
files to program ROM. It is typically used with an srec output target.

-i interleave

--interleave=interleave
Only copy one out of every interleave bytes. Select which byte to copy with the
-b or ‘--byte’ option. The default is 4. objcopy ignores this option if you do
not specify either ‘b’ or ‘~-byte’.

Y

--preserve-dates
Set the access and modification dates of the output file to be the same as those
of the input file.

--debugging
Convert debugging information, if possible. This is not the default because
only certain debugging formats are supported, and the conversion process can
be time consuming.

--gap-fill val
Fill gaps between sections with val. This operation applies to the load address
(LMA) of the sections. It is done by increasing the size of the section with the
lower address, and filling in the extra space created with val.

--pad-to address
Pad the output file up to the load address address. This is done by increasing
the size of the last section. The extra space is filled in with the value specified
by ‘--gap-£ill’ (default zero).

18 GNU Binary Utilities

--set-start val
Set the start address of the new file to val. Not all object file formats support
setting the start address.

--change-start incr

--adjust-start incr
Change the start address by adding incr. Not all object file formats support
setting the start address.

--change-addresses incr

--adjust-vma incr
Change the VMA and LMA addresses of all sections, as well as the start address,
by adding incr. Some object file formats do not permit section addresses to be
changed arbitrarily. Note that this does not relocate the sections; if the program
expects sections to be loaded at a certain address, and this option is used to
change the sections such that they are loaded at a different address, the program
may fail.

--change-section-address section{=,+,-}val

--adjust-section-vma section{=,+,-}val
Set or change both the VMA address and the LMA address of the named
section. If ‘=" is used, the section address is set to val. Otherwise, val is
added to or subtracted from the section address. See the comments under
‘-—change-addresses’, above. If section does not exist in the input file, a
warning will be issued, unless ‘--no-change-warnings’ is used.

--change-section-1lma section{=,+,-}val

Set or change the LMA address of the named section. The LMA address is
the address where the section will be loaded into memory at program load
time. Normally this is the same as the VMA address, which is the address
of the section at program run time, but on some systems, especially those
where a program is held in ROM, the two can be different. If ‘=" is used, the
section address is set to val. Otherwise, val is added to or subtracted from
the section address. See the comments under ‘--change-addresses’, above.
If section does not exist in the input file, a warning will be issued, unless
‘--no-change-warnings’ is used.

--change-section-vma section{=,+,-}val

Set or change the VMA address of the named section. The VMA address is
the address where the section will be located once the program has started
executing. Normally this is the same as the LM A address, which is the address
where the section will be loaded into memory, but on some systems, especially
those where a program is held in ROM, the two can be different. If ‘=’ is used,
the section address is set to val. Otherwise, val is added to or subtracted from
the section address. See the comments under ‘--change-addresses’, above.
If section does not exist in the input file, a warning will be issued, unless
‘--no-change-warnings’ is used.

Chapter 4: objcopy 19

--change-warnings

--adjust-warnings
If ‘--change-section-address’ or ‘-—change-section-1lma’ or
‘-—change-section-vma’ is used, and the named section does not exist, issue
a warning. This is the default.

--no-change-warnings

--no-adjust-warnings
Do not issue a warning if ‘--change-section-address’ or
‘-—adjust-section-lma’ or ‘--adjust-section-vma’ is used, even if
the named section does not exist.

--set-section-flags section=flags
Set the flags for the named section. The flags argument is a comma separated
string of flag names. The recognized names are ‘alloc’, ‘contents’, ‘load’,
‘noload’, ‘readonly’, ‘code’, ‘data’, ‘rom’, ‘share’, and ‘debug’. You can set
the ‘contents’ flag for a section which does not have contents, but it is not
meaningful to clear the ‘contents’ flag of a section which does have contents—
just remove the section instead. Not all flags are meaningful for all object file

formats.

--add-section sectionname=filename
Add a new section named sectionname while copying the file. The contents of
the new section are taken from the file filename. The size of the section will be
the size of the file. This option only works on file formats which can support
sections with arbitrary names.

--change-leading-char
Some object file formats use special characters at the start of symbols. The
most common such character is underscore, which compilers often add before
every symbol. This option tells objcopy to change the leading character of every
symbol when it converts between object file formats. If the object file formats
use the same leading character, this option has no effect. Otherwise, it will add
a character, or remove a character, or change a character, as appropriate.

--remove-leading-char
If the first character of a global symbol is a special symbol leading character
used by the object file format, remove the character. The most common symbol
leading character is underscore. This option will remove a leading underscore
from all global symbols. This can be useful if you want to link together objects
of different file formats with different conventions for symbol names. This is
different from --change-leading-char because it always changes the symbol
name when appropriate, regardless of the object file format of the output file.

--redefine-sym old=new
Change the name of a symbol old, to new. This can be useful when one is
trying link two things together for which you have no source, and there are
name collisions.

--weaken Change all global symbols in the file to be weak. This can be useful when
building an object which will be linked against other objects using the -R option

20 GNU Binary Utilities

to the linker. This option is only effective when using an object file format which
supports weak symbols.

-V

--version
Show the version number of objcopy.

-V

--verbose

Verbose output: list all object files modified. In the case of archives, ‘objcopy
-V’ lists all members of the archive.

--help Show a summary of the options to objcopy.

Chapter 5: objdump

5 objdump

objdump [
[

rararrrrrararraarraraaraarrarrrra e

-a | --archive-headers]

-b bfdname | --target=bfdname]

-C | --demangle]

-d | --disassemble]

-D | --disassemble-all]

-z | --disassemble-zeroes]

-EB | -EL | ——endian={big | 1little } 1]
-f | --file-headers]

--file-start-context]
-g | --debugging 1

-h | --section-headers | --headers]
-i | --info]
-j section | --section=section]
-1 | --line-numbers]
-S | --source]
-m machine | --architecture=machine]
-M options | --disassembler-options=options]
-p | --private-headers]
-r | --reloc]
-R | --dynamic-reloc]
-s | —--full-contents]
-G | --stabs]
-t | --syms 1]
-T | --dynamic-syms]
|

--all-headers]

-w | —--wide]
--start-address=address]
--stop-address=address]
--prefix-addresses]
——[no-]show-raw-insn]
--adjust-vma=offset]

-V | --version]
-H | --help]
objfile. . .

21

objdump displays information about one or more object files. The options control what
particular information to display. This information is mostly useful to programmers who are
working on the compilation tools, as opposed to programmers who just want their program
to compile and work.

objfile. . . are the object files to be examined. When you specify archives, objdump shows
information on each of the member object files.

The long and short forms of options, shown here as alternatives, are equivalent. At least

one option from the list ‘~a,-d,-D,-f,-g,-G,-h,-H,-p,-r,-R,-S,-t,-T,-V,-x’ must be

given.

22 GNU Binary Utilities

-a

--archive-header
If any of the objfile files are archives, display the archive header information
(in a format similar to ‘1s -1’). Besides the information you could list with ‘ar
tv’, ‘objdump -a’ shows the object file format of each archive member.

--adjust-vma=offset
When dumping information, first add offset to all the section addresses. This
is useful if the section addresses do not correspond to the symbol table, which
can happen when putting sections at particular addresses when using a format
which can not represent section addresses, such as a.out.

-b bfdname

--target=bfdname
Specify that the object-code format for the object files is bfdname. This option
may not be necessary; objdump can automatically recognize many formats.

For example,

objdump -b oasys -m vax -h fu.o
displays summary information from the section headers (‘-h’) of ‘fu.o’, which
is explicitly identified (‘-m’) as a VAX object file in the format produced by
Oasys compilers. You can list the formats available with the ‘=i’ option. See
Section 16.1 [Target Selection], page 51, for more information.

-C

--demangle
Decode (demangle) low-level symbol names into user-level names. Besides re-
moving any initial underscore prepended by the system, this makes C++ func-
tion names readable. See Chapter 10 [c++filt], page 35, for more information
on demangling.

-G

--debugging
Display debugging information. This attempts to parse debugging information
stored in the file and print it out using a C like syntax. Only certain types of
debugging information have been implemented.

-d

--disassemble
Display the assembler mnemonics for the machine instructions from objfile.
This option only disassembles those sections which are expected to contain
instructions.

-D

--disassemble-all
Like ‘=d’, but disassemble the contents of all sections, not just those expected
to contain instructions.

--prefix-addresses
When disassembling, print the complete address on each line. This is the older
disassembly format.

Chapter 5: objdump 23

--disassemble-zeroes
Normally the disassembly output will skip blocks of zeroes. This option directs
the disassembler to disassemble those blocks, just like any other data.

-EB

-EL

--endian={big|little}
Specify the endianness of the object files. This only affects disassembly. This
can be useful when disassembling a file format which does not describe endian-
ness information, such as S-records.

-f
--file-header
Display summary information from the overall header of each of the objfile files.

--file-start-context
Specify that when displaying interlisted source code/disassembly (assumes ’-S’)
from a file that has not yet been displayed, extend the context to the start of
the file.

-h
--section-header
--header Display summary information from the section headers of the object file.

File segments may be relocated to nonstandard addresses, for example by using
the ‘-Ttext’, ‘-Tdata’, or ‘-Tbss’ options to 1d. However, some object file
formats, such as a.out, do not store the starting address of the file segments.
In those situations, although 1d relocates the sections correctly, using ‘objdump
-h’ to list the file section headers cannot show the correct addresses. Instead,
it shows the usual addresses, which are implicit for the target.

--help Print a summary of the options to objdump and exit.

-i

--info Display a list showing all architectures and object formats available for specifi-
cation with ‘=b’ or ‘-m’.

-j name
--section=name
Display information only for section name.

-1

--line—numbers
Label the display (using debugging information) with the filename and source
line numbers corresponding to the object code or relocs shown. Only useful
with ‘-d’, ‘-D’, or ‘-r’.

-m machine

--architecture=machine
Specify the architecture to use when disassembling object files. This can be
useful when disassembling object files which do not describe architecture infor-
mation, such as S-records. You can list the available architectures with the ‘=i’
option.

24

-M options

GNU Binary Utilities

--disassembler-options=options

P

Pass target specific information to the disassembler. Only supported on some
targets.

If the target is an ARM architecture then this switch can be used to select which
register name set is used during disassembler. Specifying ‘-M reg-name-std’
(the default) will select the register names as used in ARM’s instruction set
documentation, but with register 13 called ’sp’, register 14 called ’Ir’ and register
15 called ’pc’. Specifying ‘-M reg-names-apcs’ will select the name set used by
the ARM Procedure Call Standard, whilst specifying ‘-M reg-names-raw’ will
just use ‘r’ followed by the register number.

There are also two variants on the APCS register naming scheme enabled
by ‘-M reg-names-atpcs’ and ‘-M reg-names-special-atpcs’ which use the
ARM/Thumb Procedure Call Standard naming conventions. (Eiuther with the
normal register name sor the special register names).

This option can also be used for ARM architectures to force the disassem-
bler to interpret all instructions as THUMB instructions by using the switch
‘--disassembler-options=force-thumb’. This can be useful when attempt-
ing to disassemble thumb code produced by other compilers.

--private-headers

-r
--reloc

-R

Print information that is specific to the object file format. The exact informa-
tion printed depends upon the object file format. For some object file formats,
no additional information is printed.

Print the relocation entries of the file. If used with ‘-d’ or ‘-D’, the relocations
are printed interspersed with the disassembly.

--dynamic-reloc

-S

Print the dynamic relocation entries of the file. This is only meaningful for
dynamic objects, such as certain types of shared libraries.

—--full-contents

-S
—-—-source

Display the full contents of any sections requested.

Display source code intermixed with disassembly, if possible. Implies ‘-d’.

--show-raw-insn

When disassembling instructions, print the instruction in hex as well as in
symbolic form. This is the default except when --prefix-addresses is used.

--no-show-raw-insn

When disassembling instructions, do not print the instruction bytes. This is
the default when --prefix-addresses is used.

Chapter 5: objdump 25

--stabs Display the full contents of any sections requested. Display the contents of the
.stab and .stab.index and .stab.excl sections from an ELF file. This is only
useful on systems (such as Solaris 2.0) in which .stab debugging symbol-table
entries are carried in an ELF section. In most other file formats, debugging
symbol-table entries are interleaved with linkage symbols, and are visible in the
‘—=—syms’ output. For more information on stabs symbols, see section “Stabs
Overview” in The “stabs” debug format.

--start-address=address
Start displaying data at the specified address. This affects the output of the
-d, -r and -s options.

--stop-address=address
Stop displaying data at the specified address. This affects the output of the -d,
-r and -s options.

-t
--syms Print the symbol table entries of the file. This is similar to the information
provided by the ‘nm’ program.

-T

--dynamic-syms
Print the dynamic symbol table entries of the file. This is only meaningful for
dynamic objects, such as certain types of shared libraries. This is similar to the
information provided by the ‘am’ program when given the ‘-D’ (‘--dynamic’)
option.

--version
Print the version number of objdump and exit.

-X

--all-header
Display all available header information, including the symbol table and relo-
cation entries. Using ‘-x’ is equivalent to specifying all of ‘-a -f -h -r -t’.

-W

--wide Format some lines for output devices that have more than 80 columns.

26

GNU Binary Utilities

Chapter 6: ranlib 27

6 ranlib

ranlib [-vV] archive

ranlib generates an index to the contents of an archive and stores it in the archive. The
index lists each symbol defined by a member of an archive that is a relocatable object file.

You may use ‘nm -8’ or ‘nm ——print-armap’ to list this index.

An archive with such an index speeds up linking to the library and allows routines in
the library to call each other without regard to their placement in the archive.

The GNU ranlib program is another form of GNU ar; running ranlib is completely
equivalent to executing ‘ar -s’. See Chapter 1 [ar], page 3.
-v
-V
--version

Show the version number of ranlib.

28

GNU Binary Utilities

Chapter 7: size 29

7 size
size [-A | -B | --format=compatibility]
[-help]l [-d | -o | -x | ——radix=number]
[--target=bfdname 1 [-V | --version]
[objfile...]

The GNU size utility lists the section sizes—and the total size—for each of the object
or archive files objfile in its argument list. By default, one line of output is generated for
each object file or each module in an archive.

objfile. . .

be used.

are the object files to be examined. If none are specified, the file a.out will

The command line options have the following meanings:

-A
-B

--format=compatibility

--help

Using one of these options, you can choose whether the output from GNU size
resembles output from System V size (using ‘-A’, or ‘--format=sysv’), or
Berkeley size (using ‘-B’, or ‘--format=berkeley’). The default is the one-

line format similar to Berkeley’s.
Here is an example of the Berkeley (default) format of output from size:

$ size --format=Berkeley ranlib size

text data bss dec hex filename
204880 81920 11592 388392 5ed28 ranlib
204880 81920 11888 388688 beebl0 size

This is the same data, but displayed closer to System V conventions:

$ size --format=SysV ranlib size

ranlib

section size addr
.text 294880 8192
.data 81920 303104
.bss 11592 385024
Total 388392

size

section size addr
.text 294880 8192
.data 81920 303104
.bss 11888 385024
Total 388688

Show a summary of acceptable arguments and options.

GNU Binary Utilities

--radix=number

Using one of these options, you can control whether the size of each section
is given in decimal (‘-d’, or ‘--radix=10’); octal (‘-0’, or ‘--radix=8’); or
hexadecimal (‘-x’, or ‘--radix=16’). In ‘--radix=number’, only the three
values (8, 10, 16) are supported. The total size is always given in two radices;
decimal and hexadecimal for ‘-d’ or ‘-x’ output, or octal and hexadecimal if

you're using ‘-o’.

--target=bfdname

--version

Specify that the object-code format for objfile is bfdname. This option may not
be necessary; size can automatically recognize many formats. See Section 16.1
[Target Selection], page 51, for more information.

Display the version number of size.

Chapter 8: strings 31

8 strings

strings [-afov] [-min-len] [-n min-len] [-t radix] [-]
[--all] [--print-file-name] [--bytes=min-len]
[--radix=radix] [--target=bfdname]
[--help] [--version] file. ..

For each file given, GNU strings prints the printable character sequences that are at
least 4 characters long (or the number given with the options below) and are followed by an
unprintable character. By default, it only prints the strings from the initialized and loaded
sections of object files; for other types of files, it prints the strings from the whole file.

strings is mainly useful for determining the contents of non-text files.

-a

--all

- Do not scan only the initialized and loaded sections of object files; scan the
whole files.

-f
--print-file-name
Print the name of the file before each string.

--help Print a summary of the program usage on the standard output and exit.

-min-len

-n min-len

--bytes=min-len
Print sequences of characters that are at least min-len characters long, instead
of the default 4.

-0 Like ‘-t o’. Some other versions of strings have ‘-0’ act like ‘-t d’ instead.
Since we can not be compatible with both ways, we simply chose one.

-t radix

--radix=radix
Print the offset within the file before each string. The single character argument
specifies the radix of the offset—‘0’ for octal, ‘x’ for hexadecimal, or ‘d’ for
decimal.

--target=bfdname
Specify an object code format other than your system’s default format. See
Section 16.1 [Target Selection], page 51, for more information.

-v
--version
Print the program version number on the standard output and exit.

32

GNU Binary Utilities

Chapter 9: strip 33

9 strip

strip [-F bfdname | --target=bfdname]
[-I bfdname | --input-target=bfdname]
[-0 bfdname | --output-target=bfdname]
[-s | --strip-all] [-S | -g | —--strip-debug]
[-K symbolname | --keep-symbol=symbolname]
[-N symbolname | --strip-symbol=symbolname]
[-x | --discard-all] [-X | --discard-locals]
[-R sectionname | --remove-section=sectionname]
[-o file] [-p | --preserve-dates]
[-v | --verbose] [-V | --version] [--help]
objfile

GNU strip discards all symbols from object files objfile. The list of object files may
include archives. At least one object file must be given.

strip modifies the files named in its argument, rather than writing modified copies
under different names.

-F bfdname

--target=bfdname
Treat the original objfile as a file with the object code format bfdname, and
rewrite it in the same format. See Section 16.1 [Target Selection], page 51, for
more information.

--help Show a summary of the options to strip and exit.

-I bfdname

-—input-target=bfdname
Treat the original objfile as a file with the object code format bfdname. See
Section 16.1 [Target Selection], page 51, for more information.

-0 bfdname

--output-target=bfdname
Replace objfile with a file in the output format bfdname. See Section 16.1
[Target Selection], page 51, for more information.

-R sectionname

--remove-section=sectionname
Remove any section named sectionname from the output file. This option may
be given more than once. Note that using this option inappropriately may make
the output file unusable.

-s
--strip-all

Remove all symbols.
g
-S

--strip-debug
Remove debugging symbols only.

34 GNU Binary Utilities

--strip-unneeded
Remove all symbols that are not needed for relocation processing.

-K symbolname

--keep-symbol=symbolname
Keep only symbol symbolname from the source file. This option may be given
more than once.

-N symbolname

--strip-symbol=symbolname
Remove symbol symbolname from the source file. This option may be given
more than once, and may be combined with strip options other than -K.

-o file Put the stripped output in file, rather than replacing the existing file. When
this argument is used, only one objfile argument may be specified.

Y

--preserve-dates
Preserve the access and modification dates of the file.

-X
--discard-all
Remove non-global symbols.

-X
--discard-locals
Remove compiler-generated local symbols. (These usually start with ‘L” or *.".)

-V
--version
Show the version number for strip.

-V

--verbose
Verbose output: list all object files modified. In the case of archives, ‘strip
-v’ lists all members of the archive.

Chapter 10: c++filt 35

10 c++filt

c++filt [-_ | --strip-underscores]
[-j | -—java]
[-n | --no-strip-underscores]
[-s format | --format=format]

[—=~help 1 [--version 1 [symbol...]

The C++ and Java languages provides function overloading, which means that you can
write many functions with the same name (providing each takes parameters of different
types). All C++ and Java function names are encoded into a low-level assembly label
(this process is known as mangling). The c++filt' program does the inverse mapping: it
decodes (demangles) low-level names into user-level names so that the linker can keep these
overloaded functions from clashing.

Every alphanumeric word (consisting of letters, digits, underscores, dollars, or periods)
seen in the input is a potential label. If the label decodes into a C++ name, the C++ name
replaces the low-level name in the output.

You can use c++filt to decipher individual symbols:
c++filt symbol

If no symbol arguments are given, c++filt reads symbol names from the standard
input and writes the demangled names to the standard output. All results are printed on
the standard output.

--strip-underscores
On some systems, both the C and C++ compilers put an underscore in front
of every name. For example, the C name foo gets the low-level name _foo.
This option removes the initial underscore. Whether c++filt removes the
underscore by default is target dependent.

-J

--java Prints demangled names using Java syntax. The default is to use C++ syntax.

-n

--no-strip-underscores
Do not remove the initial underscore.

-s format

--format=format
GNU nm can decode three different methods of mangling, used by different C++
compilers. The argument to this option selects which method it uses:

gnu the one used by the GNU compiler (the default method)
lucid the one used by the Lucid compiler

arm the one specified by the C++ Annotated Reference Manual
hp the one used by the HP compiler

1 MS-DOS does not allow + characters in file names, so on MS-DOS this program is named cxxfilt.

36 GNU Binary Utilities

edg the one used by the EDG compiler
--help Print a summary of the options to c++filt and exit.

--version
Print the version number of c++filt and exit.

Warning: c++filt is a new utility, and the details of its user interface are
subject to change in future releases. In particular, a command-line option may
be required in the the future to decode a name passed as an argument on the
command line; in other words,

c++filt symbol
may in a future release become

c++filt option symbol

Chapter 11: addr2line 37

11 addr2line

addr2line [-b bfdname | --target=bfdname]
[-C | --demangle]
[-e filename | --exe=filename]
[-f | --functions] [-s | --basename]
[-H | -~help] [-V | --version]
[addr addr ...]

addr2line translates program addresses into file names and line numbers. Given an
address and an executable, it uses the debugging information in the executable to figure
out which file name and line number are associated with a given address.

The executable to use is specified with the -e option. The default is the file ‘a.out’.
addr2line has two modes of operation.

In the first, hexadecimal addresses are specified on the command line, and addr2line
displays the file name and line number for each address.

In the second, addr2line reads hexadecimal addresses from standard input, and prints
the file name and line number for each address on standard output. In this mode, addr2line
may be used in a pipe to convert dynamically chosen addresses.

The format of the output is ‘FILENAME: LINENQO’. The file name and line number for each
address is printed on a separate line. If the —f option is used, then each ‘FILENAME:LINENO’
line is preceded by a ‘FUNCTIONNAME’ line which is the name of the function containing the
address.

If the file name or function name can not be determined, addr2line will print two
question marks in their place. If the line number can not be determined, addr2line will
print 0.

The long and short forms of options, shown here as alternatives, are equivalent.

-b bfdname
--target=bfdname
Specify that the object-code format for the object files is bfdname.

-C

--demangle
Decode (demangle) low-level symbol names into user-level names. Besides re-
moving any initial underscore prepended by the system, this makes C++ func-
tion names readable. See Chapter 10 [c++filt], page 35, for more information
on demangling.

-e filename

--exe=filename
Specify the name of the executable for which addresses should be translated.
The default file is ‘a.out’.

-f
--functions
Display function names as well as file and line number information.

38 GNU Binary Utilities

-s
--basenames
Display only the base of each file name.

Chapter 12: nlmconv 39

12 nlmconv

nlmconv converts a relocatable object file into a NetWare Loadable Module.

Warning: nlmconv is not always built as part of the binary utilities, since it is
only useful for NLM targets.

nlmconv [-I bfdname | --input-target=bfdname]
[-0 bfdname | --output-target=bfdname]
[-T headerfile | --header-file=headerfile]
[-d | --debug]l [-1 linker | --linker=linker]
[-h | --help] [-V | --version]

infile outfile

nlmconv converts the relocatable ‘1386’ object file infile into the NetWare Loadable
Module outfile, optionally reading headerfile for NLM header information. For instructions
on writing the NLM command file language used in header files, see the ‘linkers’ section,
‘NLMLINK’ in particular, of the NLM Development and Tools Overview, which is part of the
NLM Software Developer’s Kit (“NLM SDK”), available from Novell, Inc. nlmconv uses
the GNU Binary File Descriptor library to read infile; see section “BFD” in Using LD, for
more information.

nlmconv can perform a link step. In other words, you can list more than one object file
for input if you list them in the definitions file (rather than simply specifying one input file
on the command line). In this case, nlmconv calls the linker for you.

-I bfdname

-—input-target=bfdname
Object format of the input file. nlmconv can usually determine the format of
a given file (so no default is necessary). See Section 16.1 [Target Selection],
page 51, for more information.

-0 bfdname

--output-target=bfdname
Object format of the output file. nlmconv infers the output format based on
the input format, e.g. for a ‘1386’ input file the output format is ‘n1lm32-i386’.
See Section 16.1 [Target Selection], page 51, for more information.

-T headerfile

--header-file=headerfile
Reads headerfile for NLM header information. For instructions on writing the
NLM command file language used in header files, see see the ‘linkers’ sec-
tion, of the NLM Development and Tools Overview, which is part of the NLM
Software Developer’s Kit, available from Novell, Inc.

-d

--debug Displays (on standard error) the linker command line used by nlmconv.

-1 linker

--linker=linker
Use linker for any linking. linker can be an absolute or a relative pathname.

-h

--help Prints a usage summary.

40

-V
--version

Prints the version number for nlmconv.

GNU Binary Utilities

Chapter 13: windres 41

13 windres

windres may be used to manipulate Windows resources.

Warning: windres is not always built as part of the binary utilities, since it is
only useful for Windows targets.

windres [options] [input-file] [output-file]

windres reads resources from an input file and copies them into an output file. Either
file may be in one of three formats:

rc A text format read by the Resource Compiler.
res A binary format generated by the Resource Compiler.
coff A COFF object or executable.

The exact description of these different formats is available in documentation from Mi-
crosoft.

When windres converts from the rc format to the res format, it is acting like the
Windows Resource Compiler. When windres converts from the res format to the coff
format, it is acting like the Windows CVTRES program.

When windres generates an rc file, the output is similar but not identical to the format
expected for the input. When an input rc file refers to an external filename, an output rc
file will instead include the file contents.

If the input or output format is not specified, windres will guess based on the file name,
or, for the input file, the file contents. A file with an extension of ‘.rc’ will be treated as
an rc file, a file with an extension of ‘.res’ will be treated as a res file, and a file with an
extension of ‘.o’ or ‘.exe’ will be treated as a coff file.

If no output file is specified, windres will print the resources in rc format to standard
output.

The normal use is for you to write an rc file, use windres to convert it to a COFF
object file, and then link the COFF file into your application. This will make the resources
described in the rc file available to Windows.

-i filename

-—input filename
The name of the input file. If this option is not used, then windres will use
the first non-option argument as the input file name. If there are no non-option
arguments, then windres will read from standard input. windres can not read
a COFF file from standard input.

-o filename

--output filename
The name of the output file. If this option is not used, then windres will use
the first non-option argument, after any used for the input file name, as the
output file name. If there is no non-option argument, then windres will write
to standard output. windres can not write a COFF file to standard output.

42 GNU Binary Utilities

-1 format

-—input-format format
The input format to read. format may be ‘res’, ‘rc’, or ‘coff’. If no input
format is specified, windres will guess, as described above.

’

-0 format

--output-format format
The output format to generate. format may be ‘res’, ‘rc’, or ‘coff’. If no
output format is specified, windres will guess, as described above.

-F target

--target target
Specify the BFD format to use for a COFF file as input or output. This is a
BFD target name; you can use the —--help option to see a list of supported
targets. Normally windres will use the default format, which is the first one
listed by the --help option. Section 16.1 [Target Selection], page 51.

--preprocessor program
When windres reads an rc file, it runs it through the C preprocessor first. This
option may be used to specify the preprocessor to use, including any leading
arguments. The default preprocessor argument is gcc -E -xc-header -DRC_
INVOKED.

--include-dir directory
Specify an include directory to use when reading an rc file. windres will pass
this to the preprocessor as an -I option. windres will also search this directory
when looking for files named in the rc file.

-D target
--define sym/[=val]
Specify a -D option to pass to the preprocessor when reading an rc file.

-v Enable verbose mode. This tells you what the preprocessor is if you didn’t
specify one.

--language val
Specify the default language to use when reading an rc file. val should be a
hexadecimal language code. The low eight bits are the language, and the high
eight bits are the sublanguage.

--use-temp-file
Use a temporary file to instead of using popen to read the output of the pre-
processor. Use this option if the popen implementation is buggy on the host
(eg., certain non-English language versions of Windows 95 and Windows 98 are
known to have buggy popen where the output will instead go the console).

--no-use-temp-file
Use popen, not a temporary file, to read the output of the preprocessor. This
is the default behaviour.

--help Prints a usage summary.

--version
Prints the version number for windres.

Chapter 13: windres 43

--yydebug
If windres is compiled with YYDEBUG defined as 1, this will turn on parser
debugging.

44

GNU Binary Utilities

Chapter 14: Create files needed to build and use DLLs 45

14 Create files needed to build and use DLLs

dl1ltool may be used to create the files needed to build and use dynamic link libraries
(DLLs).

Warning: d11tool is not always built as part of the binary utilities, since it is
only useful for those targets which support DLLs.

dl1tool [-d|--input-def def-file-name]
[-b|--base-file base-file-name]
[-e|--output-exp exports-file-name]
[-z|--output-def def-file-name]
[-1]--output-1ib library-file-name]
[--export-all-symbols] [--no-export-all-symbols]
[--exclude-symbols list]
[--no-default-excludes]
[-S|--as path-to-assembler] [-f|--as-flags options]
[-D|--dllname name] [-m|--machine machinel
[-a|--add-indirect] [-U|--add-underscore] [-k|--kill-at]
[-A|--add-stdcall-alias]
[-x|--no-idata4] [-c|--no-idatab5] [-i|--interwork]
[-n|--nodelete] [-v|--verbose] [-h|--help] [-V|--version]
[object-file ...]

d11tool reads its inputs, which can come from the ‘-d’ and ‘-b’ options as well as object
files specified on the command line. Tt then processes these inputs and if the ‘-e’ option
has been specified it creates a exports file. If the ‘=1’ option has been specified it creates a
library file and if the ‘-z’ option has been specified it creates a def file. Any or all of the
-e, -1 and -z options can be present in one invocation of dlltool.

When creating a DLL, along with the source for the DLL, it is necessary to have three
other files. d11tool can help with the creation of these files.

The first file is a ‘.def’ file which specifies which functions are exported from the DLL,
which functions the DLL imports, and so on. This is a text file and can be created by hand,
or d11tool can be used to create it using the ‘=z’ option. In this case d11tool will scan
the object files specified on its command line looking for those functions which have been
specially marked as being exported and put entries for them in the .def file it creates.

In order to mark a function as being exported from a DLL, it needs to have an
‘~export :<name_of_function>’ entry in the ‘.drectve’ section of the object file. This
can be done in C by using the asm() operator:

asm (".section .drectve");
asm (".ascii \"-export:my_func\"");

int my_func (void) { ... }

The second file needed for DLL creation is an exports file. This file is linked with the
object files that make up the body of the DLL and it handles the interface between the
DLL and the outside world. This is a binary file and it can be created by giving the ‘-e’
option to d11tool when it is creating or reading in a .def file.

46 GNU Binary Utilities

The third file needed for DLL creation is the library file that programs will link with in
order to access the functions in the DLL. This file can be created by giving the ‘-1’ option
to dlltool when it is creating or reading in a .def file.

d11tool builds the library file by hand, but it builds the exports file by creating tempo-
rary files containing assembler statements and then assembling these. The ‘=S’ command
line option can be used to specify the path to the assembler that dlltool will use, and the
‘~f’ option can be used to pass specific flags to that assembler. The ‘-n’ can be used to
prevent dlltool from deleting these temporary assembler files when it is done, and if ‘-n’ is
specified twice then this will prevent dlltool from deleting the temporary object files it used
to build the library.

Here is an example of creating a DLL from a source file ‘d11.c’ and also creating a
program (from an object file called ‘program.o’) that uses that DLL:
gcc —c dll.c
dlltool -e exports.o -1 dll.1lib dll.o
gcc dll.o exports.o -o dll.dll
gcc program.o dll.1lib -o program

The command line options have the following meanings:

-d filename
-—input-def filename
Specifies the name of a .def file to be read in and processed.

-b filename

--base-file filename
Specifies the name of a base file to be read in and processed. The contents of
this file will be added to the relocation section in the exports file generated by
dlltool.

-e filename
--output-exp filename
Specifies the name of the export file to be created by dlltool.

-z filename
--output-def filename
Specifies the name of the .def file to be created by dlltool.

-1 filename
--output-1ib filename
Specifies the name of the library file to be created by dlltool.

--export-all-symbols
Treat all global and weak defined symbols found in the input object files as
symbols to be exported. There is a small list of symbols which are not exported
by default; see the --no-default-excludes option. You may add to the list
of symbols to not export by using the --exclude-symbols option.

--no-export-all-symbols
Only export symbols explicitly listed in an input .def file or in ‘.drectve’
sections in the input object files. This is the default behaviour. The ‘.drectve’
sections are created by ‘dl1lexport’ attributes in the source code.

Chapter 14: Create files needed to build and use DLLs 47

--exclude-symbols list
Do not export the symbols in list. This is a list of symbol names separated by
comma or colon characters. The symbol names should not contain a leading
underscore. This is only meaningful when --export-all-symbols is used.

--no-default-excludes
When --export-all-symbols is used, it will by default avoid exporting certain
special symbols. The current list of symbols to avoid exporting is ‘D11Main@12’,
‘D11EntryPoint@0’, ‘impure_ptr’. You may use the --no-default-excludes
option to go ahead and export these special symbols. This is only meaningful
when --export-all-symbols is used.

-S path
--as path Specifies the path, including the filename, of the assembler to be used to create
the exports file.

-f switches

--as-flags switches
Specifies any specific command line switches to be passed to the assembler when
building the exports file. This option will work even if the ‘=S’ option is not
used. This option only takes one argument, and if it occurs more than once
on the command line, then later occurrences will override earlier occurrences.
So if it is necessary to pass multiple switches to the assembler they should be
enclosed in double quotes.

-D name

--dll-name name
Specifies the name to be stored in the .def file as the name of the DLL when
the ‘-e’ option is used. If this option is not present, then the filename given to
the ‘e’ option will be used as the name of the DLL.

-m machine

-machine machine
Specifies the type of machine for which the library file should be built. d11tool
has a built in default type, depending upon how it was created, but this option
can be used to override that. This is normally only useful when creating DLLs
for an ARM processor, when the contents of the DLL are actually encode using
THUMB instructions.

-a
--add-indirect
Specifies that when d11tool is creating the exports file it should add a section
which allows the exported functions to be referenced without using the import
library. Whatever the hell that means!

-U

--add-underscore
Specifies that when d11tool is creating the exports file it should prepend an
underscore to the names of the exported functions.

48 GNU Binary Utilities

-k

--kill-at
Specifies that when d11tool is creating the exports file it should not append
the string ‘@ <number>’. These numbers are called ordinal numbers and they
represent another way of accessing the function in a DLL, other than by name.

-A

--add-stdcall-alias
Specifies that when d11tool is creating the exports file it should add aliases
for stdcall symbols without ‘@ <number>’ in addition to the symbols with ‘@

<number>’.

-X

--no-idata4
Specifies that when d11tool is creating the exports and library files it should
omit the .idatad section. This is for compatibility with certain operating sys-
tems.

-c

--no-idatab
Specifies that when d11tool is creating the exports and library files it should
omit the .idatab section. This is for compatibility with certain operating sys-
tems.

-i

--interwork
Specifies that d11tool should mark the objects in the library file and exports
file that it produces as supporting interworking between ARM and THUMB
code.

-n

--nodelete
Makes d11tool preserve the temporary assembler files it used to create the ex-
ports file. If this option is repeated then dlltool will also preserve the temporary
object files it uses to create the library file.

-v

--verbose
Make dlltool describe what it is doing.

-h

--help Displays a list of command line options and then exits.

-V

--version

Displays dlltool’s version number and then exits.

Chapter 15: readelf 49

15 readelf

readelf [-a | --all]
[-h | --file-header]
[-1 | --program-headers | --segments]
[-S | —--section-headers | --sections]
[-e | --headers]
[-s | --syms | --symbols]
[-n | --notes]
[-r | --relocs]
[-4 | --dynamic]
[-V | --version-info]
[-D | --use-dynamic]
[-x <number> | --hex-dump=<number>]
[-w[liapr] | --debug-dump[=info,=line,=abbrev,=pubnames,=ranges]]|]
[--histogram]
[-v | —--version]
[-H | --help]
elffile. ..

readelf displays information about one or more ELF format object files. The options
control what particular information to display.

elffile. . . are the object files to be examined. At the moment, readelf does not support
examining archives, nor does it support examing 64 bit ELF files.

The long and short forms of options, shown here as alternatives, are equivalent. At least
one option besides ‘-v’ or ‘-H’ must be given.

-a

--all Equivalent to specifiying ‘--file-header’, ‘--program-headers’,
‘-—sections’, ‘--symbols’, ‘--relocs’, ‘--dynamic’, ‘--notes’ and
‘~—version-info’.

-h

--file-header
Displays the information contained in the ELF header at the start of the file.

-1
--program-headers
--segments
Displays the information contained in the file’s segment headers, if it has any.

-S
--sections
--section-headers
Displays the information contained in the file’s section headers, if it has any.

-s
—--symbols
--syms Displays the entries in symbol table section of the file, if it has one.

50 GNU Binary Utilities

-e
--headers
Display all the headers in the file. Equivalent to ‘~h -1 -S’.

-n
--notes Displays the contents of the NOTE segment, if it exists.

-r
--relocs Displays the contents of the file’s relocation section, if it ha one.

-d
--dynamic
Displays the contents of the file’s dynamic section, if it has one.

-V
--version-info
Displays the contents of the version sections in the file, it they exist.

-D

--use-dynamic
When displaying symbols, this option makes readelf use the symbol table in
the file’s dynamic section, rather than the one in the symbols section.

-x <number>
—-hex—-dump=<number>
Displays the contents of the indicated section as a hexadecimal dump.

-w[liapr]

--debug-dump [=1ine,=info,=abbrev,=pubnames,=ranges]
Displays the contents of the debug sections in the file, if any are present. If one
of the optional letters or words follows the switch then only data found in those
specific sections will be dumped.

--histogram
Display a histogram of bucket list lengths when displaying the contents of the
symbol tables.

-V
--version
Display the version number of readelf.
-H
--help Display the command line options understood by readelf.

Chapter 16: Selecting the target system 51

16 Selecting the target system

You can specify three aspects of the target system to the GNU binary file utilities, each
in several ways:

e the target
e the architecture
e the linker emulation (which applies to the linker only)
In the following summaries, the lists of ways to specify values are in order of decreasing
precedence. The ways listed first override those listed later.

The commands to list valid values only list the values for which the programs you
are running were configured. If they were configured with ‘--enable-targets=all’, the
commands list most of the available values, but a few are left out; not all targets can be
configured in at once because some of them can only be configured native (on hosts with
the same type as the target system).

16.1 Target Selection

A target is an object file format. A given target may be supported for multiple architec-
tures (see Section 16.2 [Architecture Selection], page 52). A target selection may also have
variations for different operating systems or architectures.

The command to list valid target values is ‘objdump -i’ (the first column of output
contains the relevant information).

Some sample values are: ‘a.out-hp300bsd’, ‘ecoff-littlemips’, ‘a.out-sunos-big’.

You can also specify a target using a configuration triplet. This is the same sort of name
that is passed to ‘configure’ to specify a target. When you use a configuration triplet as
an argument, it must be fully canonicalized. You can see the canonical version of a triplet
by running the shell script ‘config.sub’ which is included with the sources.

Some sample configuration triplets are: ‘m68k-hp-bsd’, ‘mips-dec-ultrix’
‘sparc-sun-sunos’.

objdump Target

Ways to specify:
1. command line option: ‘-b’ or ‘--target’
2. environment variable GNUTARGET
3. deduced from the input file

objcopy and strip Input Target

Ways to specify:
1. command line options: ‘-I’ or ‘-—input-target’, or ‘-F’ or ‘--target’
2. environment variable GNUTARGET
3. deduced from the input file

52 GNU Binary Utilities

objcopy and strip Output Target

Ways to specify:

. command line options: °

1 -0’ or ‘-—output-target’, or ‘-F’ or ‘--target’
2. the input target (see “objcopy and strip Input Target” above)

3. environment variable GNUTARGET
4

. deduced from the input file

nm, size, and strings Target

Ways to specify:
1. command line option: ‘--target’
2. environment variable GNUTARGET

3. deduced from the input file

Linker Input Target

Ways to specify:

‘~b’ or ‘--format’ (see section “Options” in Using LD)

command line option:
script command TARGET (see section “Option Commands” in Using LD)

environment variable GNUTARGET (see section “Environment” in Using LD)

- W=

the default target of the selected linker emulation (see Section 16.3 [Linker Emulation
Selection], page 53)

Linker Output Target

Ways to specify:
1. command line option: ‘~oformat’ (see section “Options” in Using LD)
2. script command OUTPUT_FORMAT (see section “Option Commands” in Using LD)
3. the linker input target (see “Linker Input Target” above)

16.2 Architecture selection

An architecture is a type of CPU on which an object file is to run. Its name may contain
a colon, separating the name of the processor family from the name of the particular cpu.

The command to list valid architecture values is ‘objdump -i’ (the second column con-
tains the relevant information).

Sample values: ‘m68k:68020’°, ‘mips:3000’, ‘sparc’.

objdump Architecture

Ways to specify:
1. command line option: ‘-m’ or ‘-—architecture’
2. deduced from the input file

Chapter 16: Selecting the target system 53

objcopy, nm, size, strings Architecture

1.

Ways to specify:
deduced from the input file

Linker Input Architecture

1.

Ways to specify:
deduced from the input file

Linker Output Architecture

1.
2.

Ways to specify:
script command OUTPUT_ARCH (see section “Option Commands” in Using LD)

the default architecture from the linker output target (see Section 16.1 [Target Selec-
tion], page 51)

16.3 Linker emulation selection

for
[]
[]

A linker emulation is a “personality” of the linker, which gives the linker default values
the other aspects of the target system. In particular, it consists of

the linker script
the target
several “hook” functions that are run at certain stages of the linking process to do
special things that some targets require
The command to list valid linker emulation values is ‘14 -V’
Sample values: ‘hp300bsd’, ‘mipslit’, ‘sun4’.
Ways to specify:

1. command line option: ‘-m’ (see section “Options” in Using LD)
2. environment variable LDEMULATION
3. compiled-in DEFAULT_EMULATION from ‘Makefile’, which comes from EMUL in

‘config/target.mt’

54

GNU Binary Utilities

Chapter 17: Reporting Bugs 55

17 Reporting Bugs

Your bug reports play an essential role in making the binary utilities reliable.

Reporting a bug may help you by bringing a solution to your problem, or it may not. But
in any case the principal function of a bug report is to help the entire community by making
the next version of the binary utilities work better. Bug reports are your contribution to
their maintenance.

In order for a bug report to serve its purpose, you must include the information that
enables us to fix the bug.

17.1 Have you found a bug?

If you are not sure whether you have found a bug, here are some guidelines:

e If a binary utility gets a fatal signal, for any input whatever, that is a bug. Reliable
utilities never crash.

e If a binary utility produces an error message for valid input, that is a bug.

e If you are an experienced user of binary utilities, your suggestions for improvement are
welcome in any case.

17.2 How to report bugs

A number of companies and individuals offer support for GNU products. If you ob-
tained the binary utilities from a support organization, we recommend you contact that
organization first.

You can find contact information for many support companies and individuals in the file
‘etc/SERVICE’ in the GNU Emacs distribution.

In any event, we also recommend that you send bug reports for the binary utilities to
‘bug-gnu-utils@gnu.org’.

The fundamental principle of reporting bugs usefully is this: report all the facts. If you
are not sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and
assume that some details do not matter. Thus, you might assume that the name of a file
you use in an example does not matter. Well, probably it does not, but one cannot be sure.
Perhaps the bug is a stray memory reference which happens to fetch from the location where
that pathname is stored in memory; perhaps, if the pathname were different, the contents
of that location would fool the utility into doing the right thing despite the bug. Play it
safe and give a specific, complete example. That is the easiest thing for you to do, and the
most helpful.

Keep in mind that the purpose of a bug report is to enable us to fix the bug if it is new
to us. Therefore, always write your bug reports on the assumption that the bug has not
been reported previously.

Sometimes people give a few sketchy facts and ask, “Does this ring a bell?” Those bug
reports are useless, and we urge everyone to refuse to respond to them except to chide the
sender to report bugs properly.

To enable us to fix the bug, you should include all these things:

56

GNU Binary Utilities

The version of the utility. Each utility announces it if you start it with the ‘--version’
argument.

Without this, we will not know whether there is any point in looking for the bug in the
current version of the binary utilities.

Any patches you may have applied to the source, including any patches made to the
BFD library.

The type of machine you are using, and the operating system name and version number.
What compiler (and its version) was used to compile the utilities—e.g. “gcc-2.7".

The command arguments you gave the utility to observe the bug. To guarantee you
will not omit something important, list them all. A copy of the Makefile (or the output
from make) is sufficient.

If we were to try to guess the arguments, we would probably guess wrong and then we
might not encounter the bug.

A complete input file, or set of input files, that will reproduce the bug. If the utility
is reading an object file or files, then it is generally most helpful to send the actual
object files, uuencoded if necessary to get them through the mail system. Note that
‘bug-gnu-utils@gnu.org’ is a mailing list, so you should avoid sending very large files
to it. Making the files available for anonymous FTP is OK.

If the source files were produced exclusively using GNU programs (e.g., gcc, gas, and/or
the GNU 1d), then it may be OK to send the source files rather than the object files. In
this case, be sure to say exactly what version of gcc, or whatever, was used to produce
the object files. Also say how gcc, or whatever, was configured.

A description of what behavior you observe that you believe is incorrect. For example,
“It gets a fatal signal.”

Of course, if the bug is that the utility gets a fatal signal, then we will certainly notice
it. But if the bug is incorrect output, we might not notice unless it is glaringly wrong.
You might as well not give us a chance to make a mistake.

Even if the problem you experience is a fatal signal, you should still say so explicitly.
Suppose something strange is going on, such as your copy of the utility is out of synch,
or you have encountered a bug in the C library on your system. (This has happened!)
Your copy might crash and ours would not. If you told us to expect a crash, then when
ours fails to crash, we would know that the bug was not happening for us. If you had
not told us to expect a crash, then we would not be able to draw any conclusion from
our observations.

If you wish to suggest changes to the source, send us context diffs, as generated by
diff with the ‘-u’, ‘=c’, or ‘-p’ option. Always send diffs from the old file to the new
file. If you wish to discuss something in the 1d source, refer to it by context, not by
line number.

The line numbers in our development sources will not match those in your sources.
Your line numbers would convey no useful information to us.

Here are some things that are not necessary:
A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to
the input file will make the bug go away and which changes will not affect it.

Chapter 17: Reporting Bugs 57

This is often time consuming and not very useful, because the way we will find the
bug is by running a single example under the debugger with breakpoints, not by pure
deduction from a series of examples. We recommend that you save your time for
something else.

Of course, if you can find a simpler example to report instead of the original one, that
is a convenience for us. Errors in the output will be easier to spot, running under the
debugger will take less time, and so on.

However, simplification is not vital; if you do not want to do this, report the bug
anyway and send us the entire test case you used.

e A patch for the bug.

A patch for the bug does help us if it is a good one. But do not omit the necessary
information, such as the test case, on the assumption that a patch is all we need. We
might see problems with your patch and decide to fix the problem another way, or we
might not understand it at all.

Sometimes with programs as complicated as the binary utilities it is very hard to
construct an example that will make the program follow a certain path through the
code. If you do not send us the example, we will not be able to construct one, so we
will not be able to verify that the bug is fixed.

And if we cannot understand what bug you are trying to fix, or why your patch should
be an improvement, we will not install it. A test case will help us to understand.

e A guess about what the bug is or what it depends on.

Such guesses are usually wrong. Even we cannot guess right about such things without
first using the debugger to find the facts.

o8

GNU Binary Utilities

Index

addr2line. 37
address to file name and line number.......... 37
all header information, object file 25
5 3
ar compatibility o o 3
architecture, 23
architectures available. 23
archive contents 27
archive headers 22
archives i 3

B

basefiles........... ... 46
bug criteria 55
bug reports. 55
bugs... 55
bugs, reporting L 55

C

cHHlt L. 35
changing object addresses 18
changing section address 18
changing section LMA 18
changing section VMA 18
changing start address 18
collections of files 3
compatibility, ar........ oL 3
contents of archive............................ 5
crash 55
creating archives.......... 5
exxfilt ... 35

D

dates in archive........... ool 5
debug symbols.......... il 25
debugging symbols..................... oL 12
deleting from archive.......................... 4
demangling C++ symbols 35
demangling in nm, 12
demangling in objdump................... 22, 37
disassembling object code 22
disassembly architecture................ 23
disassembly endianness....................... 23

disassembly, with source...................... 24

99
discarding symbols.......... L 33
DLL . 45
dlltool 45
dynamic relocation entries, in object file....... 24
dynamic symbol table entries, printing 25
dynamic symbols L 12
E
ELF corenotes.................ooiin.. 50
ELF dynamic section information............. 50
ELF file header information 49
ELF file information 49
ELF object file format 25
ELF program header information 49
ELF reloc information 50
ELF section information...................... 49
ELF segment information 49
ELF symbol table information 49
ELF version sections informations............. 50
endIanness vt 23
error on valid input 55
external symbols............. 12, 13, 14
extract from archive 5
F
fatal signal oL 55
filename....... 12
H
header information, all 25
I
input .deffile............... 46
input filename, 12
L
Id o 9
libraries.cooo i 3
linker ... 9
listings strings................... 31
M
machine instructions 22
moving in archive............... 4
MRI compatibility, ar......................... 6

60

N

name duplication in archive.................... 5
name length............... 3
055 P 11
nm compatibility 12
nm format 12
not writing archive index...................... 6

O

objdump 21
object code format 13, 22, 30, 31, 37
object file header 23
object file information........................ 21
object file sectionsl 24
object formats available 23
operations on archive 4

P

printing from archive.............. 4
printing strings L. 31

Q

quick append to archive 4

R

radix for section sizes 30
ranlib. 27
readelf 49
relative placement in archive................... 5
relocation entries, in object file 24
removing symbols.............. L 33
repeated names in archive..................... 5
replacement in archive 4

reporting bugs............ oL 55

GNU Binary Utilities

S

SCTIPtS, @ . ..o 6
section addresses in objdump 22
section headers oL 23
section information 23
SECtION SIZeS . .o v v 29
sections, full contents 24
SIZ . ottt e e e e e 29
size display format.............. 29
size number format 30
sorting symbols.............. 13
source code context 23
source disassembly 24
source filenamel 12
source filenames for object files 23
stab ... 25
start-address i 25
stop-address. ... 25
SETINgS 31
strings, printing o ol 31
SETIP oo e 33
symbol index.................. 3, 27
symbol index, listing 13
symbol line numbers L 13
symbol table entries, printing 25
Symbols. ... 11
symbols, discarding 33

U

undefined symbols................. 13, 14
Unix compatibility, ar......................... 4
updating an archive........................... 6

\'%

A5 151103 1 H 1
VMA inobjdump.........c.cooovii . 22

A%

wide output, printing 25
writing archive index............... 6

Table of Contents

Introductionc.oiiiiiiiiinna.. 1
- 3
1.1 Controlling ar on the command line 4
1.2 Controlling ar with a SCTIpto'wvveeeeeeeenneee.. 6
7. U 9
B S 11 e 11
% S oY o (670 o)28 15
5 objdumpcoiiiiiiiiiiiii i, 21
6 ranlib............. ... i, 27
A 7 < e 29
8 StringsScoviiiiiiiiiennneneeeennnnns 31
S TN =115) o JP SR 33
10 cH++filb ..o 35
11 addr2line............ccoeiiiiiiinnnnnnnnns 37
12 nlmeconvcviiiiiiiiinnnn. 39
13 Wwindresoovviiiiiiiiinnnnnnnnnnnenas 41
14 Create files needed to build and use DLLs
.. 45
15 readelf............, 49

ii GNU Binary Utilities

16 Selecting the target system............... 51
16.1 Target Selection.............couiriniiinnennenennn. 51
16.2 Architecture selection i 52
16.3 Linker emulation selection 53
17 Reporting Bugs, 55
17.1 Have youfoundabug?............. 55
17.2 How toreport bugs............. 55

