dbx User’s Guide

Document Number 007-0906-110



CONTRIBUTORS

Written by Wendy Ferguson, Ken Jones and Leif Wennerberg

Edited by Christina Cary

Production by Gloria Ackley, Kay Maitz, and Lorrie Williams

Engineering contributions by Dave Anderson, Alan Foster, Jay Gischer, Ray Milkey
and Jon Templeton

Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,
Erik Lindholm, and Kay Maitz

© Copyright 1996 Silicon Graphics, Inc.— All Rights Reserved

This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics and IRIS are registered trademarks and IRIX is a trademark of
Silicon Graphics, Inc. This product documents the duel program developed by
Michael Golan.

dbx User’s Guide
Document Number 007-0906-110



Contents

List of Tables ix

About This Guide xi

What This Guide Contains xi

What You Should Know Before Reading This Guide xii
Suggestions for Further Reading  xii

Conventions Used in This Guide  xiii

Getting Started With dbx 1

Examining Core Dumps to Determine Cause of Failure 1
Debugging Your Programs 2

Studying a New Program 3

Avoiding Common Pitfalls 4

Running dbx 5
Compiling a Program for Debugging Under dbx 5
Compiling and Linking Programs With Dynamic Shared Objects 6
Invoking dbx 6

dbx Options 7

Specifying Object and Core Files 8

The dbx Prompt 8

Specifying Files with dox Commands 9
Running Your Program 9
Automatically Executing Commands on Startup 10
Using Online Help 11
Entering Multiple Commands on a Single Line 11
Spanning a Command Across Multiple Lines 12
Invoking a Shell 12
Quitting dbx 13



Contents

3. Examining Source Files 15
Specifying Source Directories 15
Specifying Source Directories With Arguments 15
Specifying Source Directories With dbx Commands 16
Examples of dir and use 16
Path Remapping 17
Controlling use of Path Remappings and Your Source-Directory List 18
Changing Source Files 18
Listing Source Code 19
Listing Inlines and Clones 20
Searching Through Source Code 21
Calling an Editor 22

4, Controlling dbx 23

Creating and Removing dbx Variables 23
Setting dbx Variables 24
Listing dbx Variables 25
Removing Variables 25

Using the History Feature and the History Editor 25
Examining the History List 26
Repeating Commands 26
The History Editor 27

Creating and Removing dbx Aliases 28
Listing Aliases 29
Creating Command Aliases 29
Removing Command Aliases 31
Alias Example 31

Recording and Playing Back dbx Input and Output 32
Recording Input 32
Ending a Recording Session 33
Playing Back Input 33
Recording Output 34
Playing Back Output 35
Examining the Record State 35



Contents

Executing dbx Scripts 35

Examining and Changing Data 37
Using Expressions 37
Operators 38
Constants 40
Numeric Constants 40
String Constants 41
Printing Expressions 41
Using Data Types and Type Coercion (Casts) 43
Qualifying Names of Program Elements 43
Displaying and Changing Program Variables 46
Variable Scope 46
Displaying the Value of a VVariable 47
Changing the Value of a VVariable 48
Conflicts Between Variable Names and Keywords 49
Case Sensitivity in Variable Names 50
Displaying and Changing Environment Variables Used by a Program 50
Using the High-Level Debugging Language duel 51
Using duel Quick Start 52
duel Operator Summary 54
duel EXAMPLES 55
duel SEMANTICS 57
duel Operators 58
Differences from Other Languages 62
Differences from C 62
Differences from Fortran 63
Determining Variable Scopes and Fully Qualified Names 63
Displaying Type Declarations 64
Examining the Stack 64
Printing Stack Traces 65
Moving Within the Stack 67
Moving to a Specified Procedure 69
Printing Activation Level Information 70



Contents

vi

Using Interactive Function Calls 71

Using ccall 72

Using clearcalls 73

Nesting Interactive Function Calls 74
Obtaining Basic Blocks Counts 75
Accessing C++ Member Variables 77

Controlling Program Execution 79
Setting Breakpoints 79
Setting Unconditional Breakpoints 80
Setting Conditional Breakpoints 80
Stopping If a Variable or Memory Location Has Changed 81
Using Fast Data Breakpoints 82
Stopping If a Test Expression Is True 83
Conditional Breakpoints Combining Variable and Test Clauses 83
Continuing Execution After a Breakpoint 84
Tracing Program Execution 85
Writing Conditional Commands 87
Managing Breakpoints, Traces, and Conditional Commands 89
Listing Breakpoints, Traces, and Conditional Commands 89
Disabling Breakpoints, Traces, and Conditional Commands 90
Enabling Breakpoints, Traces, and Conditional Commands 91
Deleting Breakpoints, Traces, and Conditional Commands 91
Using Signal Processing 92
Catching and Ignoring Signals 92
Continuing After Catching a Signal 93
Stopping on C++ Exceptions 94
Stopping at System Calls 96
Stepping Through Your Program 97
Stepping Using the step Command 98
Stepping Using the next Command 100
Using the return Command 100
Starting at a Specified Line 100
Referring to C++ Functions 101



Contents

Debugging Machine Language Code 105
Examining and Changing Register Values 105
Printing Register Values 107
Changing Register Values 109
Examining Memory and Disassembling Code 109
Setting Machine-Level Breakpoints 112
Syntax of the stopi Command 113
Linking With DSOs 114
Continuing Execution After a Machine-Level Breakpoint 115
Tracing Execution at the Machine Level 116
Writing Conditional Commands at the Machine Level 118
Stepping Through Machine Code 119

Multiple Process Debugging 121
Processes and Threads 121
Using the pid Clause 122
Using the pgrp Clause 123
Using the thread Clause 123
Using Scripts 124
Listing Available Processes 124
Adding a Process to the Process Pool 125
Deleting a Process From the Process Pool 126
Selecting a Process 126
Suspending a Process 126
Resuming a Suspended Process 127
Waiting for a Resumed Process 128
Waiting for Any Running Process 129
Killing a Process 129
Handling fork System Calls 130
Handling exec System Calls 131
Handling sproc System Calls and Process Group Debugging 132

Vii



Contents

A dbx Commands 137
Predefined Aliases 159

C. Predefined dbx Variables 163
Index 173

viii



List of Tables

Table 2-1
Table 3-1

Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 6-1
Table 7-1
Table 7-2
Table 8-1
Table 8-2
Table B-1
Table C-1

dbx Command-Line Options 7

Effect of $sourcepathrule on Use of Path Remapping and Source Directory
List 18

dbx Language Independent Operators 38

C Language Operators Recognized by dbx 39

Pascal Operators Recognized by dbx 39

Fortran 77 and Fortran 90 Operators Recognized by dbx 40

Variable Types 42

duel Operator Summary 54

duel Examples 55

Effect of $stepintoall VVariable on the step Command 99

Hardware Registers and Aliases 105

Memory Display Format Codes 110

How the $promptonfork Variable Affects dbx’s Treatment of Forks 130
How the $mp_program Variable Affects dbx’s Treatment of sprocs 133
Predefined Aliases 159

Predefined dbx Variables 163






About This Guide

This guide explains how to use the source level debugger, dbx. You can use dbx to debug
programs in C, C++, Fortran, and assembly language.

What This Guide Contains

This guide describes the features of dbx and provides simple examples of how to use dbx
to debug programs. Specifically, this guide includes:

Chapter 1, “Getting Started With dbx,” introduces some basic dbx commands and offers
some tips about how to approach a debugging session.

Chapter 2, “Running dbx,” explains how to run dbx and perform basic dbx control
functions.

Chapter 3, “Examining Source Files,” explains how to examine source files under dbx.

Chapter 4, “Controlling dbx,” describes features of dbx that affect its operation while
debugging a program.

Chapter 5, “Examining and Changing Data,” describes how to examine and change data
in your program while running it under dbx.

Chapter 6, “Controlling Program Execution,” describes how to use the dbx commands
that control execution of your program.

Chapter 7, “Debugging Machine Language Code,” explains how to debug machine
language code.

Chapter 8, “Multiple Process Debugging,” explains multiprocess debugging procedures.

Appendix A, “dbx Commands,” lists and describes all dbx commands.

xi



About This Guide

Appendix B, “Predefined Aliases,” lists and describes all predefined dbx aliases.

Appendix C, “Predefined dbx Variables,” lists and describes all predefined dbx variables.

What You Should Know Before Reading This Guide

This manual is written for programmers, and assumes that you are familiar with general
debugging techniques.

Suggestions for Further Reading

This dbx User’s Guide is part of the IRIS Developer Option (IDO), which provides the
software and documentation that you can use to write applications for Silicon Graphics
platforms. A few IDO online and printed manuals that may be of interest to you are listed
below.

Programming on Silicon Graphics Systems: An Overview provides information about the
IRIX programming environment and tools available for application programming.
Topics covered include IRIX operating system, compilers, user interface and developer
tools, and application libraries.

Compiling and Performance Tuning Guide describes the compiler system and programming
tools and interfaces, and explains how to improve program performance.

Topics in IRIX Programming presents information about internationalizing an application,
working with fonts, file and record locking, and inter-process communication.

C Language Reference Manual covers the syntax and semantics of the C programming
language as implemented on the IRIX operating system.

Silicon Graphics offers software options to assist in software development. The
CASEVision/Workshop option provides the WorkShop toolset: Debugger, Static Analyzer,
Performance Analyzer, Tester, and Build Manager.

You can order a printed manual from Silicon Graphics by calling SGI Direct at

1-800-800-SGI1 (800-7441). Outside the U.S. and Canada, contact your local sales office or
distributor.

Xii



About This Guide

Silicon Graphics also provides manuals online. To read an online manual after installing
it, type insight  or double-click the InSight icon. It’s easy to print sections and chapters
of the online manuals from InSight.

Conventions Used in This Guide

The conventions used in this manual help make information easy to access and
understand. The following list describes the conventions and how they are used:

Command names, including dbx commands, appear in italics. For example:
The edit command lets you edit files from within dbx.

Examples, shell prompts, and information displayed on the screen appear in a
typewriter font. For example:

Process 946: [6] trace count in main

Examples of what you enter are in boldface typewriter font. This example illustrates
entering edit soar.c in response to a (dbx) prompt:

(dbx)  edit soar.c

Command arguments you replace with actual values appear in italics. In this
example, you replace name with the name of an alias:

alias name

Optional arguments are enclosed in square brackets ([ ... ]). In the following
example, you can provide one or more directory names as arguments to the
command:

use [ dir...]

Mutually exclusive arguments to a command are enclosed in braces

({ ... }) and separated by a pipe character (]). In the first example below, you can
provide either an activation level or a procedure name as an argument to the
command. In the second example, because the argument choices are enclosed in
square brackets, you can use either the call or return argument, or omit an argument
to the command:

func { activation_level | procedure}
syscall catch [{ cal | retun 1}

File and directory names appear in italics. For example:

You can put any dbx command in the .dbxinit file.

xiii



About This Guide

< New terms appear in italics. For example:

Each procedure on the stack defines an activation level.

Xiv



Chapter 1

Getting Started With dbx

You can use dbx to trace problems in a program at the source code level, rather than at
the machine code level. dbx enables you to control a program’s execution, symbolically
monitoring program control flow, variables, and memory locations. You can also use dbx
to trace the logic and flow of control to acquaint yourself with a program written by
someone else.

This chapter introduces some basic dbx commands and discusses some tips about how to
approach a debugging session. Specifically, this chapter covers:

« “Examining Core Dumps to Determine Cause of Failure”

< “Debugging Your Programs”

e “Studying a New Program”

< “Avoiding Common Pitfalls”

Examining Core Dumps to Determine Cause of Failure

Even if your program compiles successfully, it still can crash when you try to run it.
When a program crashes, it generates a terminating signal that instructs the system to
write out to a core file. The core file is the memory image of the program at the time it
crashed.

You can examine the core file with dbx to determine at what point your program crashed.
To determine the point of failure, follow these steps:

1. If the core file is not in the current directory, specify the pathname of the core file on
the dbx command line.

Note: If the source code for the program is on a different machine or the source was
moved, provide dbx with the pathname to search for source code (also see
“Specifying Source Directories” on page 15).



Chapter 1: Getting Started With dbx

2. Invoke dbx for the failed program as described in “Invoking dbx” on page 6. dbx
automatically reads in the local core file.

3. Perform a stack trace using the where command (described in “Examining the Stack”
on page 64) to locate the failure point.

For example, suppose you examine the core file for a program called test. Suppose the
stack trace appears as follows:

(dbx)  where

> 0foo2(i=5) [fusrtmpftest.c”:44, 0x1000109c]
1 foo(i = 4) ['fusritmpltest.c”:38, 0x1000105c]
2 main(argc = 1, argv = Oxffffffad 78) [/usrtmpftest.c”:55, 0x10001104]
3__start() [/shamu/crtltext.s"137, 0x10000ee4]

In this case, test crashed at line 44 of the source file test.c. The program crashed while
executing the function foo2. foo2 was called from line 38 in the function foo, which was
in turn called from line 55 in the function main. You can use the other features of dbx to
examine values of program variables and otherwise investigate why test crashed.

If you use dbx to debug code that wasn’t compiled using the —g option, local variables are
invisible to dbx, and source lines may appear to jump around as a result of various
optimizations. If the code is stripped of its debugging information, dbx displays very
little information.

Debugging Your Programs

Debugging a program consists primarily of stopping your program under certain
conditions and then examining the state of the program stack and the values stored in
program variables.

You stop execution of your program by setting breakpoints in your program. Breakpoints
can be unconditional, in which case they always stop your program when encountered, or
conditional, in which case they stop your program only if a test condition that you specify
is true. (See “Setting Breakpoints” on page 79 for more information.)

To use breakpoints to debug your program, examine your program carefully to
determine where problems are likely to occur, and set breakpoints in these problem
areas. If your program crashes, first determine which line causes it to crash, then set a
breakpoint just before that line.



Studying a New Program

You can use several dbx commands to trace a variable’s value. Here’s a simple method
for tracing a program variable:

1.

Studying a New Program

Use the stop command (see “Setting Breakpoints” on page 79) to set breakpoints in
the program at locations where you want to examine the state of the program stack
or the values stored in program variables.

Use the run or rerun command (described in “Running Your Program” on page 9) to
run your program under dbx. The program stops at the first breakpoint that it
encounters during execution.

Examine the program variable as described in “Displaying the Value of a Variable”
on page 47. Examine the program stack as described in “Examining the Stack” on
page 64.

Use the cont command (see “Continuing Execution After a Breakpoint” on page 84)
to continue execution past a breakpoint. However, you cannot continue execution
past a line that crashes the program.

Use dbx to examine the flow of control in a program. When studying the flow of control
within a program, use the dbx commands stop, run/rerun, print, next, step, and cont. To
study a new program:

1.

Use the stop command to set breakpoints in the program. When you execute the
program under dbx, it stops execution at the breakpoints.

If you want to review every line in the program, set a breakpoint on the first
executable line. If you don’t want to look at each line, set breakpoints just before the
sections you intend to review.

Use the run and rerun commands to run the program under dbx. The program stops
at the first breakpoint.

Use the print command to print the value of a program variable at a breakpoint.

Use the step, next, or cont command to continue past a breakpoint and execute the
rest of the program.

= step executes the next line of the program. If the next line is a procedure call, step
steps down into the procedure. step is described in “Stepping Using the step
Command” on page 98.



Chapter 1: Getting Started With dbx

= next executes the next line; if it is a procedure, next executes it but does not step
down into it. next is described in “Stepping Using the next Command” on
page 100.

= cont resumes execution of the program past a breakpoint and does not stop until
it reaches the next breakpoint or the end of the program. cont is explained in
“Continuing Execution After a Breakpoint” on page 84.

Another tool that you can use to follow the execution of your program is the trace
command (described in “Tracing Program Execution” on page 85). With it you can
examine:

values of variables at specific points in your program or whenever variables change
value

parameters passed to and values returned from functions

line numbers as they are executed

Avoiding Common Pitfalls

You may encounter some problems when you debug a program. Common problems and
their solutions are listed below.

If dbx does not display variables, recompile the program with the —g compiler
option. Note that in some cases, this may cause the problem to go away, or its
symptoms to change.

If the debugger’s listing seems confused, try separating the lines of source code into
logical units. The debugger may get confused if more than one source statement
occurs on the same line.

If the debugger’s executable version of the code doesn’t match the source,
recompile the source code. The code displayed in the debugger is identical to the
executable version of the code.

If code appears to be missing, it may be contained in an include file or a macro. The
debugger treats macros as single lines. To debug a macro, expand the macro in the
source code.



Chapter 2

Running dbx

This chapter explains how to run dbx—specifically, it covers:

“Compiling a Program for Debugging Under dbx”

e “Compiling and Linking Programs With Dynamic Shared Objects”
« “Invoking dbx” from a shell

« “Running Your Program”

= “Automatically Executing Commands on Startup”

e “Using Online Help”

« “Entering Multiple Commands on a Single Line”

e “Spanning a Command Across Multiple Lines”

« “Invoking a Shell” from dbx

e “Quitting dbx”

Compiling a Program for Debugging Under  dbx

Before using dbx to debug a program, compile the program using the —g option (for
example, cc —g). The —g option includes additional debugging information in your
program object so that dbx can list local variables and find source lines.

If you use dbx to debug code that was not compiled using the —g option, local variables
are invisible to dbx, and source lines may appear to jump around oddly as a result of
various optimizations. It is more difficult to debug code without reliable references to
lines of source code.



Chapter 2: Running dbx

Compiling and Linking Programs With Dynamic Shared Objects

This section summarizes a few things you need to know if you compile and link your
program with Dynamic Shared Objects (DSOs). A DSO is a relocatable shared library. By
linking with a DSO, you keep your program size small and use memory efficiently.

If you compile and link with DSOs, dbx automatically notices their use in the program
and picks up the relevant debugging information. The dbx command listobj shows any
DSOs in a process. The dbx command whichobj lists all DSOs in which a specified variable
is present. The dbx command listregions identifies DSO addresses at run time.

The dbx help section on hint_dso has more information on dbx and DSOs. For more
information on DSOs, see “Using Dynamic Shared Objects” in the Compiling and
Performance Tuning Guide.

Invoking dbx

This section describes how to invoke dbx and includes:
< “dbx Options”

= “Specifying Object and Core Files”

e “The dbx Prompt”

= “Specifying Files with dbx Commands”

To invoke dbx from the shell command line, type dbx. The syntax is:
dbx [ options] [ object_file [ corefile]]



Invoking dbx

dbx Options

Table 2-1 lists options you can give to dbx. These options are described in detail later in
this chapter.

Table 2-1 dbx Command-Line Options
Option Description
—c file Selects a command file other than .dbxinit to execute on

starting dbx. For information on .dbxinit, see “Automatically
Executing Commands on Startup.”

-d Provides startup information to the shell when a program is
started with the run command.

—e num Chooses a large size for the evaluation stack (as large as you
want). The default stack size is 20,000 bytes. num = number
of bytes. If you see the message too large to evaluate ,
rerun dbx suppling a value greater than 20,000.

—i Uses interactive mode. This option prompts for source even
when it reads from a file and treats data in a file as if it comes
from a terminal (stdin). This option does not treat “#”
characters as comments in a file.

-1 dir Tells dbx to look in the specified directory (in addition to the
current directory and the object file’s directory) for source
files. To specify multiple directories, use a separate —I for
each. If no directory is specified when you invoke dbx, it
looks for source files in the current directory and in the
object file’s directory. From dbx, changes the directories
searched for source files with the use and dir commands.

-k Turns on kernel debugging. When debugging a running
system, specify /dev/kmem as the core file.

-N Sets the dbx variable $nonstop to 1 on startup: attaching to a
process does not stop the process. Affects only the dbx
options -p and -P and the addproc command.

—P name Debugs the running process with the specified name (name as
described in the ps(1) reference page).

—p pid Debugs the process specified by the pid number.




Chapter 2: Running dbx

Table 2-1 (continued) dbx Command-Line Options
Option Description
-R Allows breakpointsinrid .

—r program [arg] Runs the named program upon entering dbx, using the
specified arguments. The .dbxinit file (if any) is read and
executed after executing the object_file. You cannot specify
a core file with —r.

Specifying Object and Core Files

The object_file is the name of the executable object file that you want to debug. It provides
both the code that dbx executes and the symbol table that provides variable and
procedure names and maps executable code to its corresponding source code in source
files.

A corefile is produced when a program exits abnormally and produces a core dump. dbx
allows you to provide the name of a core file that it uses as “the contents of memory” for
the program that you specify. If you provide a core file, dbx lists the point of program
failure. You can then perform stack traces and examine variable values to determine why
a program crashed. However, you cannot force the program to execute past the line that
caused it to crash.

If you don’t specify a corefile, dbx examines the current directory for a file named core. If
it finds core, and if core seems (based on data in the core file) to be a core dump of the
program you specified, dbx acts as if you had specified core as the core file.

You can specify object and core files either as arguments when you invoke dbx or as
commands that you enter at the dox prompt.

The dbx Prompt

Once dbx starts, it displays the prompt:
(dbx)

To change this prompt, change the value of the dbx $prompt variable. “Setting dbx
Variables” on page 24 describes how to set dbx variables.



Running Your Program

Specifying Files with  dbx Commands

The givenfile and corefile dox commands allow you to set the object file and the core file,
respectively, while dbx is running.

givenfile [file]
If you provide a filename, dbx kills the currently running processes and
loads the executable code and debugging information found in file.

If you do not provide a filename, dbx displays the name of the program
that it is currently debugging without changing it.

corefile  [file]
If you provide a filename, dbx uses the program data stored in the core
dump file.

If you do not provide a filename, dbx displays the name of the current
core file without changing it.

Running Your Program

You can start your program under dbx using the run or rerun command.

run run-arguments
The run command starts your program and passes to it any arguments
that you provide. The command uses your shell (the program named in
the SHELL environment variable or /bin/sh if an environment variable
does not exist) to process a run command. The syntax allowed in your
shell is allowed on the run command line. All shell processing is
accepted, such as expansion and substitution of * and ? in filenames.
Redirection of the program’s standard input and standard output,
and/or standard error is also done by the shell.

In other words, the run command does exactly what typing target
run-arguments  at the shell prompt does. You can specify target either on
dbx invocation or in a prior givenfile command. dbx passes ./target as
argv[0] to target when you specify it as a relative pathname.

The run command does not invoke the initialization files of the Bourne, C, and Korn
shells before it starts a program. If you use a non-standard shell, before you run a
program set the dbx variable $shellparameters to a string that will instruct the shell to not
load the initialization file. For example, for the C shell you would enter set



Chapter 2: Running dbx

$shellparameters = “-f’ .To verify exactly how your application is being started by
the run or rerun command, start dbx with the -d option.

If the environment variable SHELL is set to a C shell and your program has
file-descriptors other than the default values: 0,1,2, switch to the Bourne shell before you
invoke the run command. This means you can only use sh-style redirections, but csh
would close the extra file-descriptors. Make the switch, for the purpose of running your
program, with the dox command setenv SHELL /bin/sh.

A run command must appear on a line by itself and cannot be followed by another dbx
command separated by a semi-colon (;). Terminate the command line with a return
(new-line). Note that you cannot include a run command in the command list of a when
command.

rerun [run-arguments]
The rerun command, without any arguments, repeats the last run
command if applicable. Otherwise rerun is equivalent to the run
command without any arguments.

The sort command takes an input file and produces a sorted output file; you can specify
input and output files either through command-line arguments or file redirection.

For example, from the command line you can enter:

% sort -i input -0 output

% sort < input2 > output2

If you are debugging the sort program, the equivalent dbx commands are:

(dbx)  run -i input -0 output

(dbx)  run < input2 > output2

If you execute these run commands in the order presented, you can repeat the last run
command by using the rerun command:

(dbx)  rerun

Automatically Executing Commands on Startup

You can use an editor to create a .dbxinit command file. This file contains various dbx
commands that automatically execute when you invoke dbx. You can put any dbx

10



Using Online Help

Using Online Help

command in the .dbxinit file. If a command requires input, the system prompts you for it
when you invoke dbx.

On invocation, dbx looks for a .dbxinit file in the current directory. If the current directory
does not contain a .dbxinit file, dbx looks for one in your home directory. (This assumes
that you have set the IRIX system HOME environment variable.)

The dbx command help has several options:
help shows the supported dbx commands

help keyword shows information pertaining to the given keyword, such as alias, help,
most_used, quit, playback, record, and so on

help all shows the entire dbx help file

When you type help all , dbx displays the file using the command name given by the
dbx $pager variable. The dbx help file is large and can be difficult to read even if you use
a simple paging program like more(1). You can set the $pager variable to a text editor like
vi(1) or to your favorite editor.

For example, just add the following command in your .dbxinit file:
set $pager = “vi”
When the above entry is in your .dbxinit file, dbx displays the help file in vi. You can then

use the editor’s search commands to look through the help file quickly. Quit the editor to
return to dbx.

Entering Multiple Commands on a Single Line

You can use a semicolon (;) as a separator to include multiple commands on the same
command line. This is useful with commands such as when (described in “Writing
Conditional Commands” on page 87) as it allows you to include multiple commands in
the command block. For example:

(dbx) when at “myfile.c”:37 {print a ; where ; print b}

11



Chapter 2: Running dbx

Spanning a Command Across Multiple Lines

Invoking a Shell

12

You can use a backslash (\) at the end of a line of input to indicate that the command is
continued on the next line. This can be convenient when entering complex commands
such as an alias definition (aliases are discussed in “Creating and Removing dbx Aliases
on page 28).

For example:
(dbx) alias foll "print *(struct list *)$p ; \
set $p = (int)((struct list *)($p))->next"

Hint: You can also use the hed command for creating and modifying commands. “The
History Editor” on page 27 has details on this command.

To invoke a subshell, enter sh at the dbx prompt, or enter sh and a shell command at the
dbx prompt. After invoking a subshell, type exit or <Ctrl-d>  to return to dbx.

The syntax for the sh command is:
sh Invoke a subshell.

sh command Execute the specified shell command. dbx interprets the rest of the line
as a command to pass to the spawned shell process, unless you enclose
the command in double-quotes or you terminate your shell command
with a semicolon (;).

For example, to spawn a subshell, enter:
(dbx) sh

%

To display the end of the file datafile, enter:
(dbx)  sh tail datafile



Quitting dbx

Quitting dbx

To end a dbx debugging session, enter the quit command at the dbx prompt:
(dbx) quit

13






Chapter 3

Examining Source Files

This chapter explains how to examine source files under dbx. It describes:

“Specifying Source Directories”

= “Listing Source Code”

= “Searching Through Source Code”
= “Changing Source Files”

« “Listing Inlines and Clones”

« “Calling an Editor”

Specifying Source Directories

Based on the information contained in an object file’s symbol table, dbx determines from
which source files the program was compiled and prints portions of these files as
appropriate.

Object files compiled with -g record the absolute path names to the source files. Each
time dbx needs a source file, it first searches the absolute path for the source file. If the
source file is not present (or if the object file was not compiled with -g), dbx checks its own
list of directories for source files.

By default, the dbx directory list contains only the current directory (from which you
invoked dbx) and the object file’s directory (if it is different from the current directory).
Each time dbx searches this list, it searches all directories in the list in the order in which
they appear until it finds the file with the specified name.

Specifying Source Directories With Arguments

You can specify additional source directories when you invoke dbx with the -1 option. To
specify multiple directories, use a separate -1 for each.

15



Chapter 3: Examining Source Files

16

For example, consider debugging a program called look in /usr/local/bin, the source for
which resides in /usr/local/src/look.c. To debug this program, you can invoke dbx from the
/usr/local/bin directory by entering:

% dbx -I /usr/local/src look

Specifying Source Directories With  dbx Commands

The dir and use commands allow you to specify a source directory list while dbx is
running.

dir [dir...] If you provide one or more directories, dbx adds those directories to the
end of the source directory list.

If you do not provide any directories, dbx displays the current source
directory list.

use [dir...] If you provide one or more directories, dbx replaces the source directory
list with the directories that you provide.

If you do not provide any options, dbx displays the current source
directory list.

Note: Both the dir and use commands recognize absolute and relative pathnames (for
example, ../src); however, they do not recognize C shell tilde (~) syntax (for example,
~kim/src) or environment variables (for example, SHOME/src).

Examples of dir and use

Let’s debug the look program in /usr/local/bin. Recall that the source resides in
/usr/local/src/look.c. If you invoke dbx from the /usr/local/bin directory without specifying
/usr/local/src as a source directory, it will not initially appear in the directory list:

(dbx) dir

However, you can add /usr/local/src with the dir command by entering:

(dbx)  dir /usr/locall/src
(dbx) dir
. lusr/local/src

If you use the use command instead, the current directory is no longer contained in the
source directory list:



Specifying Source Directories

(dbx)  use /usr/locall/src
(dbx) use
Jusr/local/src

Path Remapping

The debugging information for programs compiled with —g includes the full pathnames
for source files. By default, dbx uses these pathnames to search for source files. However,
if you are debugging a program that was compiled somewhere else and you want to
specify a new path to the sources, you can use path remapping. You can substitute one
pattern for another to remap the path so dbx can find the source file.

dir  patternl: pattern2
The dir (or use) command allows you to remap directories and specify a
new path to the source. dbx substitutes pattern2 for patterni.

For example, a compiled program’s source is /x/y/z/kk.c and the source was moved to
Ixlylzzz/kk/kk.c. Specify the dir (or use) command to remap the path:

(dbx)  dir /z/:/zzzIkk/

The new path is /x/y/zzz/kk/kk.c, where /z/ has been remapped to the string following the
colon.

17



Chapter 3: Examining Source Files

Controlling use of Path Remappings and Your Source-Directory List

The dbx variable $sourcepathrule controls how, in a source-file search, dbx uses path
remappings and the source-directory list created by the dir and use commands. Table 3-1
summarizes the effects of $sourcepathrule.

Table 3-1 Effect of $sourcepathrule on Use of Path Remapping and Source Directory List
Value Effect
0 (default) Search for a source file by:

a) using the pathname in the object file’s debugging information;
if the file is not found, then

b) examine pathnames remapped by the dir or use command;

if the file is still not found, then

¢) reduce full pathnames to base file names and search the list of
directories created by the dir or use command.

1 Permute the default source-file search sequence to: step b, step c,
then step a.
2 Use only steps b and ¢ of the default source-file search sequence.

$sourcepathrule = 1 is useful when, for example, you move source files after you compile
your program. You can direct dbx to the correct files.

$sourcepathrule = 2 is useful when, for example, your network is slow and you have full
pathnames in your debugging information that point to files on other machines. The
debugger ignores all pathnames in the debugging information and, hence, will not
attempt access over the network.

Changing Source Files

18

The file command changes the current source file to a file that you specify. The new file
becomes the current source file, on which you can search, list, and perform other
operations. For example, to set the current source file to “Examining the Stack” on

page 54procedure.c, enter:

(dbx) file procedure.c



Listing Source Code

Listing Source Code

Note: If your program is large, typically you store the source code in multiple files. dbx
automatically selects the proper source file for the section of code that you are examining.
Thus, many dbx commands reset the current source file as a side effect. For example,
when you move up and down activation levels in the stack using the up and down
commands, dbx changes the current source file to whatever file contains the source for the
procedure (see “Examining the Stack” on page 64 for more information on activation
levels).

If you enter the file command without any arguments, dbx prints the current source file:
(dbx) file

procedure.c

You can also change the current source file by typing:

(dbx) func procedure

You can use the tag command to search the tag file for procedure:
(dbx) tag procedure

The tag command finds C preprocessor macros if they have arguments
(func procedure cannot). For more information about the tag file, see ctags(1).

The list command displays lines of source code. The dbx variable $listwindow defines the
number of lines dbx lists by default. The list command uses the active frame and line of
the current source file unless overridden by a file command. Any execution of the
program overrides the file command by establishing a new current source file.

The syntax for the list command is:

list Lists $listwindow lines beginning at the current line (or list the line of the
current pc if the current line is unknown or not set).

list exp Lists $listwindow lines starting with the line number given by the
expression exp. The expression can be any valid expression that
evaluates to an integer value as described in “Using Expressions” on
page 37.

list expl: exp2 Listsexp2 lines, beginning at line expl.

19



Chapter 3: Examining Source Files

list expl, exp2 Lists all source between line expl and line exp2 inclusive.
list func Lists $listwindow lines starting at procedure func.

list func, exp Lists all source between func and exp, inclusive.

list func:exp Lists exp lines, beginning at func.

A > symbol prints to the left of the line that is the current line. A * symbol prints to the
left of the line of the current pc location.

For example, to list lines 20-35 of a file, enter:
(dbx) list 20,35

In response to this command, dbx displays lines 20 through 35 and sets the current line
to 36.

To list 15 lines starting with line 75, enter:
(dbx) list 75:15

In response to this command, dbx displays lines 75 through 89 and sets the current line
to 90.

Listing Inlines and Clones

20

The compiler may inline routines, replacing a call with quotes of code from the called
routine, either as a result of optimization or C++ inline directives. Clones are specialized
versions of routines that you can use to get faster-running code. The source for cloned
routines is called a root.

In special cases, you may want to find inlined routines or clones. The commands
listinlines and listclones find the routines, if enough debugging information is available.
Compilations with the -32 option or with IRIX 6.2 and earlier base compilers do not have
the necessary information; listinlines and listclones will show nothing.



Searching Through Source Code

The syntax for the listinlines command is:
listinlines Lists all inlined routines with their start and end addresses.
listinlines func
Lists all the inlined instances of func with their start and end addresses.

For example, ::MultPoints is a C++ routine and you enter:
(dbx) listinlines ::MultPoints

The dbx output lists the address ranges of all the instances where ::MultPoints is inlined.

The syntax for the listclones command is similar:
listclones Lists all the root functions and their derived clones.

listclones func
Lists the root and all derived clones for func.

Searching Through Source Code

Use the forward slash (/) and question mark (?) commands to search through the current
file for regular expressions in source code. For a description of regular expressions, see
the ed(1) reference page.

The search commands have the following syntax:

/ [reg_exp] Search forward through the current file from the current line for the
regular expression reg_exp. If dox reaches the end of the file without
finding the regular expression, it wraps around to the beginning of the
file. dbx prints the first source line containing a match of the search
expression.

If you don’t supply a regular expression, dbx searches forward based on
the last regular expression searched.

?[reg_exp] Search backward through the current file from the current line for the
regular expression reg_exp. If dox reaches the beginning of the file
without finding the regular expression, it wraps around to the end of the
file. dbx prints the first source line containing a match of the search
expression.

21



Chapter 3: Examining Source Files

Calling an Editor

22

If you don’t supply a regular expression, dbx searches backward based
on the last regular expression searched.

For example, to search forward for the next occurrence of the string “errno,” enter:
(dbx) /errno

To search backward for the previous occurrence of either “img” or “Img,” enter:
(dbx)  ?[illmg

The edit command lets you edit files from within dbx:

edit The edit command invokes an editor (vi by default) on the current source
file. If you set the dbx variable $editor to the name of an editor, the edit
command invokes that editor. If you do not set the $editor, dbx checks the
environment variable EDITOR and, if set, invokes that editor. When you
exit the editor, you return to the dbx prompt.

edit file Invokes the editor on the given file.

edit procedure Invokes the editor on the file that contains the source for the specified
procedure. dbx extended naming does not work. You may only name
procedures that dbx can find with a simple name: procedures in the
current activation stack and global procedures.

For example, to edit a file named soar.c from within dbx, type:

(dbx) edit soar.c

The edit command is also useful for editing dbx script files. See “Executing dbx Scripts”
on page 35 for more information on script files.



Chapter 4

Controlling dbx

This chapter describes features of dbx that affect its operation while debugging a
program. Specifically, this chapter covers:

= “Creating and Removing dbx Variables”

= “Using the History Feature and the History Editor”

= “Creating and Removing dbx Aliases”

= “Recording and Playing Back dbx Input and Output”
= “Executing dbx Scripts”

Creating and Removing dbx Variables

dbx allows you to define variables that you can use within dbx to store values. These
variables exist entirely in dbx; they are not part of your program. You can use dbx
variables for a variety of purposes while debugging. For example, you can use dbx
variables as temporary storage, counters, or pointers that you use to step through arrays.

dbx also provides many predefined variables that control how various dbx commands
function. Appendix C, “Predefined dbx Variables” provides a complete list of predefined
dbx variables and their purposes.

A dbx variable does not have a fixed type. You can assign a dbx variable any type of value,
even if it already has a value of a different type. However, a variable predefined by dbx
does have a fixed predefined type.

You can use almost any name for dbx variables. A good practice to follow is to use a dollar

sign ($) as the first character of all dbx variables to prevent conflicts with most program
variable names. All of dbx’s predefined variables begin with a dollar sign.

23



Chapter 4: Controlling dbx

24

The commands described in this section apply only to the manipulations of dbx variables,
not program variables. “Displaying and Changing Program Variables” on page 46
describes how to manipulate program variables.

Setting dbx Variables

The set command sets a dbx variable to a given value, defining the variable if it does not
exist:

set var=exp  Define (or redefine) the specified dbx variable, setting its value to that of
the expression you provide.

You can display the value of a variable with the print command. For example:

(dbx) set$k=1
(dbx)  print $k

1

(dbx) set $k = $k +23
(dbx)  print $k

24

(dbx)  print $k / 11

2

In the above example, dbx performs an integer division because both the variable $k and
the constant 11 are integers. If you assign a floating point value to $k and evaluate the
expression again, dbx performs a floating point division:

(dbx) set$k=24.0
(dbx) print $k

24.0

(dbx)  print $k / 11
2.1818181818181817

Note: We recommend that you begin a dbx variable with a $ to avoid confusion with a

program variable. A dbx variable without a leading $ hides any program variable that has
the same name. The only way to see the program variable is to remove the dbx variable
with an unset command.



Using the History Feature and the History Editor

Listing dbx Variables

If you enter the set command without providing any arguments, dbx displays (in
alphabetical order) a list of all currently defined dbx variables, including predefined
variables. Partial output looks like this:

(dbx) set

$addrfmt “0X%x"
$addrfmt64  “Ox%lIx”
$assignverify 1
$casesense 2
$ctypenames 1
$curevent 3

$curline 44

$curpc 268439708

$stacktracelimit 1024
$stdc 0

$stepintoall 0

$tagfile “tags”

Removing Variables

The unset command removes a dbx variable. For example, to delete the variable $k, enter:
(dbx) unset $k

Using the History Feature and the History Editor

The dbx history feature is similar to the C shell’s history feature in that it allows you to
repeat commands that you have entered previously. However, unlike the C shell’s
history feature, dox does not allow you to execute a history command anywhere except
the beginning of a line. Also, dbx does not support history substitution of command
arguments such as the C shell !$ argument.

25



Chapter 4: Controlling dbx

26

Examining the History List

dbx stores all commands that you enter in the history list. The value of the dbx variable
$lines determines how many commands are stored in the history list. The default value
is 100.

Display the history list with the history command. For example, after setting a
breakpoint, running a program, and examining some variables, your history list might
look something like this:

(dbx) history

1 set $prompt = “(dbx)”
set $page=0

set $pimode=1

stop in main

history

abhowiN

Repeating Commands

You can execute any of the commands contained in the history list. Each history
command begins with an exclamation point (!):

Il Repeats the previous command. If the value of the dbx variable
$repeatmode is set to 1, then entering a carriage return at an empty line is
equivalent to executing !!. By default, $repeatmode is set to 0.

I string Repeats the most recent command that starts with the specified string.

! integer Repeats the command associated with the specified integer in the history
list.

I- integer Repeats the command that occurred integer times before the most recent

command. Entering !-1 executes the previous command, !-2 the
command before that, and so forth.

You can use the !' command to facilitate single-stepping through your program.
(Single-stepping is described in “Stepping Through Your Program” on page 97.) The
following illustrates using the next command to execute 5 lines of source code and then
using the ! command to repeat the next command.

For example:
(dbx) next5



Using the History Feature and the History Editor

Process 22545 (test) stopped at [main:60 ,0x10001150]
60 total +=j;

(dbx)

(! = next 5)

Process 22545 (test) stopped at [main:65 ,0x100011a0]
65 printf("i = %d, j = %d, total = %d\n",i,j,total);

Another convenient way to repeat a commonly used command is with ! string. For
example, suppose that you occasionally print the values of certain variables using the
printf command while running your program under dbx. (The printf command is
described in “Printing Expressions” on page 41.) In this case, as long as you do not enter
any command beginning with “pr” after you enter the printf command, you can repeat
the printf command by entering !pr . For example:

(dbx)  printf "i = %d, j = %d, total = %d\n", i, j, total
i=4,j=25total=1

(dbx) lpr
i=12,j=272, total = 529

Using ! integer, you can repeat any command in the history list. If you want to repeat the
printf command, but you have entered a subsequent print command, examine the history
list and then explicitly repeat the printf command using its reference number. For
example:

(dbx)  history

1 set $prompt = “(dbx)”
2 set $page=0

45 printf "i = %d, j = %d, total = %d\n", i, j, total

46 next

49 print j

53 history
(dbx) 145

(145 = printf "i = %d, j = %d, total = %d\n", i, j, total)
i=9,j=43, total = 1084

The History Editor

The history editor, hed, lets you use your favorite editor on any or all of the commands in
the current dbx history list. When you enter the hed command, dbx copies all or part of the

27



Chapter 4: Controlling dbx

history list into a temporary file that you can edit. When you quit the editor, any
commands left in this temporary file are automatically executed by dbx.

If you have set the dbx variable $editor to the name of an editor, the hed command invokes
that editor. If you have not set the dbx variable $editor, dbx checks whether you have set
the environment variable EDITOR and, if so, invokes that editor. If you have not set
either the dbx variable or the environment variable, dbox invokes the vi editor.

The syntax for the hed commands is:
hed Edits only the last line of the history list (the last command executed).

hed numl Edits line numl in the history list.

hed numl, num2
Edits the lines in the history list from num1 through num2.

hed all Edits the entire history list.

By default, dbx doesn’t display the commands that it executes as a result of the hed
command (the dbx variable $pimode is set to 0). If $pimode is set to 1, dbx displays the
commands as it executes them. See $pimode in Appendix C, “Predefined dbx Variables”
for more information.

Creating and Removing dbx Aliases

28

You can create dbx aliases for debugger commands. Use these aliases as you would any
other dbx command. When dbx encounters an alias, it expands the alias using the
definition you provided.

dbx has a group of predefined aliases that you can modify or delete. These aliases are
listed and described in Appendix B, “Predefined Aliases.”

If you find that you often create the same aliases in your debugging sessions, you can
include their definitions in your .dbxinit file so that they are automatically defined for
you. See “Automatically Executing Commands on Startup” on page 10 for more
information on the .dbxinit file.



Creating and Removing dbx Aliases

Listing Aliases

You can display the definition of aliases using the alias command:
alias Lists all existing aliases.

alias name Lists the alias definition for name.

For example, to display the definitions of the predefined aliases “I” and “bp,” enter:

(dbx) alias |
"list"

(dbx) alias bp
"stop in"

Creating Command Aliases

You can use the alias command to define new aliases:

alias name command
Defines name as an alias for command.

alias name “string”
Defines name as an alias for string. With this form of the alias command,
you can provide command arguments in the alias definition.

alias name(argl[, ...argN]) “string”
Defines name as an alias for string. argl through argN are arguments to
the alias, appearing in the string definition. When you use the alias, you
must provide values for the arguments, which dbx then substitutes in
string.

The simplest form of an alias is to redefine a dox command with a short alias. Many of
the predefined dbx aliases fall into this category: “a” is an alias for the assign command,
“s” is an alias for the step command. When you use one of these aliases, dbx simply
replaces it with the command for which it is an alias. Any arguments that you include on
the command line are passed to the command.

For example, if you to create “gf” as an alias for the givenfile command, enter:

(dbx) alias gf givenfile
(dbx) alias dof
"givenfile"

(dbx) of

29



Chapter 4: Controlling dbx

30

Current givenfile is test

(dbx) gf test2

Process 22545 (test) terminated

Executable /usr/var/tmp/dbx_examples/test2
(dbx) gdf

Current givenfile is test2

More complex alias definitions require more than the name of acommand. In these cases,
you must enclose the entire alias definition string in double quotation marks. For
example, you can define a brief alias to print the value of a variable that you commonly
examine. Note that you must use the escape character (\) to include the double quotation
marks as part of the alias definition. For example:

(dbx) alias pa "print\"a =\", a"
(dbx) alias pa

"print "a =", a"

(dbx) pa

a=3

You can also define an alias so that you can pass arguments to it, much in the same way
that you can provide arguments in a C language macro definition. When you use the
alias, you must include the arguments. dbx then substitutes the values that you provide
in the alias definition.

To illustrate this, consider the following alias definition:

(dbx) alias p(argl, arg2, arg3, arg4) "print '|argl|arg2|arg3|arg4|™
(dbx) aliasp
(arg1, arg2, arg3, argd)"print 'larg1larg2larg3larg4|™

The “p” alias takes four arguments and prints them surrounded by vertical bars (]). For
example:

(dbx) p(1,2,3,4)

11]2[3]4]

(dbx)  p( first, second, 3rd,4)

| first| second| 3rd|4|

In the previous example, dbx retains any spaces that you enter when calling an alias.

You can also omit arguments when calling an alias as long as you include the commas as
argument separators in the alias call:

(dbx)  p(a,,b,c)
[allblc|



Creating and Removing dbx Aliases

(dbx)  p(,first missing, preceding space,)
||first missing| preceding space||

(dbx) delete

delete

Removing Command Aliases

The unalias command removes the alias you provide as an argument. For example, to
remove the “pa” alias defined in the previous section, enter:

(dbx) unalias pa

You can remove any of the predefined dbx aliases; however, these aliases are restored the
next time you start dbx.

Alias Example

One way to follow linked lists is to use aliases and casts, another is to use the duel
command (See “Using the High-Level Debugging Language duel” in Chapter 5). This
example shows how to construct an alias that follows a simple linked list with members
defined by the following structure:

struct list { struct list *next; int value; };

In this example, a dbx variable called $p is used as a pointer to a member of the linked
list. You can define an alias called “foll” to print the contents of the list member to which
$p currently points and then advance to the next list member. Because the command is
too long to fit onto one line, this example uses the backslash character (\) to continue the
command on a second line:

(dbx) alias foll "print *(struct list *)$p ; \
set $p = (long)((struct list *)($p))->next"

Casting $p to an integer type when following the link (the second assignment in the alias)
is essential. If omitted, dbx may leave the $p reference symbolic and if so, goes into an
infinite loop. (Type Ctrl-c  to interrupt dbx if it gets into the infinite loop.)

Before using this alias, you must set $p to point at the first list member. In this example,
assume that the program variable top points to the first list member. Then you can use the
“foll” alias to follow the linked list, printing the contents of each member as you proceed:

(dbx) set$p=top

31



Chapter 4: Controlling dbx

(dbx)  foll

struct list {
next = Ox7fffc71c
value = 57

}

(dbx)  foll

struct list {
next = 0x7fffc724
value =3

}

(dbx) foll

struct list {
next = Ox7fffc72c
value = 12

}

Recording and Playing Back dbx Input and Output

32

dbx allows you to play back your input and record dbx’s output. dbx saves the
information that you capture in files, which allows you to create command scripts that
you can use in subsequent dbx sessions.

Recording Input

Use the record input command to start an input recording session. Once you start an input
recording session, all commands to dbx are copied to the specified file. If the specified file
already exists, dbx appends the input to the existing file. You can start and run as many
simultaneous dbx input recording sessions as you need.

Each recording session is assigned a number when you begin it. Use this number to
reference the recording session with the unrecord command described in “Ending a
Recording Session” on page 33.

After you end the input recording session, use the command file with the playback input
or pi commands to execute again all the commands saved to the file. See “Playing Back
Input” on page 33.

For example, to save the recorded input in a file called script, enter:

(dbx)  record input script



Recording and Playing Back dbx Input and Output

[4] record input script (O lines)

If you do not specify a file to record input, dbx creates a temporary dbx file in the /tmp
directory. The name of the temporary file is stored in the dbx variable $defaultin. You can
display the temporary filename using the print command:

(dbx)  print $defaultin

Because the dbx temporary files are deleted at the end of the dbx session, use the
temporary file to repeat previously executed dbx commands in the current debugging
session only. If you need a command file for use in subsequent dbx sessions, you must

specify the filename when you invoke record input. If the specified file exists, the new
input is appended to the file.

Ending a Recording Session

To end input or output recording sessions, use the unrecord command.

unrecord sessionl [, session2 ...]
Turns off the specified recording session(s) and closes the file(s)
involved.

unrecord all Turns off all recording sessions and closes all files involved.

For example, to stop recording session 4, enter the dbx command:
(dbx)  unrecord 4

To stop all recording sessions, enter:

(dbx)  unrecord all
The dbx status command does not report on recording sessions. To see whether or not any

active recording sessions exist, use the record command described in “Examining the
Record State” on page 35.

Playing Back Input
Use playback input to execute commands that you recorded with the record input

command. Two aliases exist for playback input: pi and source.) If you don’t specify a
filename, dbx uses the current temporary file that it created for the record input command.

33



Chapter 4: Controlling dbx

34

If you set the dbx variable $pimode to nonzero, the commands are printed out as they are
played back. By default, $pimode is set to zero.

Recording Output

Use the record output command to start output recording sessions within dbx. During an
output recording session, dbx copies its screen output to afile. If the specified file already
exists, dbx appends to the existing file. You can start and run as many simultaneous dbx
output recording sessions as you need.

By default, the commands you enter are not copied to the output file; however, if you set
the dbx variable $rimode to a nonzero value, dbx also copies the commands you enter.

Each recording session is assigned a number when you begin it. Use this number to
reference the recording session with the unrecord command described in “Ending a
Recording Session” on page 33.

The record output command is very useful when the screen output is too large for a single
screen (for example, printing a large structure). Within dbx, you can use the playback
output command (described in “Playing Back Output” on page 35) to look at the recorded
information. After quitting dbx, you can review the output file using any IRIX system text
viewing command (such as vi(1)).

For example, to record the dbx output in a file called gaffa, enter:
(dbx) record output gaffa

To record both the commands and the output, enter:

(dbx) set $rimode=1
(dbx)  record output gaffa

If you omit the filename, dbx saves the recorded output in a temporary file in /tmp. The
temporary file is deleted at the end of the dbx session. To save output for use after the dbx
session, you must specify the filename when giving the record output command. The
name of the temporary file is stored in the dbx variable $defaultout.

To display the temporary filename, type:
(dbx)  print $defaultout



Executing dbx Scripts

Playing Back Output

The playback output command displays output saved with the record output command.
This command works the same as the cat(1) command. If you don’t specify a filename,
dbx uses the current temporary file created for the record output command.

For example, to display the output stored in the file script, enter:
(dbx) playback output script

Examining the Record State

The record command displays all record input and record output sessions currently active.
For example:

(dbx) record
[4] record input /usr/demol/script (12 lines)
[5] record output /tmp/dbxoXal17992 (5 lines)

Executing dbx Scripts

You can create dbx command scripts using an external editor and then execute these
scripts using the pi or playback input command. This is a convenient method for creating
and executing automated test scripts.

You can include comments in your command scripts by using a single pound sign (#) to
introduce a comment. To include a # operator (described in “Operators” on page 38) ina
dbx script, use two pound signs (for example, ##27). When dbx sees a pound sign in a
script file, it interprets all characters between the pound sign and the end of the current
line as a comment.

35






Chapter 5

Using Expressions

Examining and Changing Data

This chapter describes how to examine and change data in your program while running
it under dbx. Topics covered include:

“Using Expressions”

“Printing Expressions”

“Using Data Types and Type Coercion (Casts)”
“Qualifying Names of Program Elements”

“Displaying and Changing Program Variables”
“Displaying and Changing Environment Variables Used by a Program”
“Using the High-Level Debugging Language duel”
“Determining Variable Scopes and Fully Qualified Names”
“Displaying Type Declarations”

“Examining the Stack”

“Using Interactive Function Calls”

“Obtaining Basic Blocks Counts”

“Accessing C++ Member Variables”

Many dbx commands accept one or more expressions as arguments. Expressions can
consist of constants, dbx variables, program variables, and operators. This section
discusses operators and constants. “Creating and Removing dbx Variables” on page 23
describes dbx variables, and “Displaying and Changing Program Variables” on page 46
describes program variables.

37



Chapter 5: Examining and Changing Data

38

Operators

In general, dbx recognizes most expression operators from C, Fortran 77, and Pascal. dbx
also provides some of its own operators. Operators follow the C language precedence.
You can also use parentheses to explicitly determine the order of evaluation.

Table 5-1 lists the operators provided by dbx.

Table 5-1 dbx Language Independent Operators

Operator Description

not Unary operator returning false if the operand is true

or Binary logical operator returning true if either operand is
nonzero

xor Binary operator returning the exclusive-OR of its operands

/ Binary division operator (“// " also works for division)

div Binary operator that coerces its operands to integers before
dividing

mod Binary operator returning opl modulo op2. This is equivalent

to the C “9%’ operator

#exp Unary operator returning the address of source line specified
by exp

"file" # exp  Unary operator returning the address of source line specified
by exp in the file specified by file

proc #exp Unary operator returning the address of source line specified
by exp in the file containing the procedure proc

The # operator takes the line number specified by the expression that follows it and
returns the address of that source line. If you precede the # operator with a filename
enclosed in quotation marks, the # operator returns the address of the line number in the
file you specify. If you precede the # operator with the name of a procedure, dbx identifies
the source file that contains the procedure and returns the address of the line number in
that file.

For example, to print the address of line 27 in the current source file, enter:
(dbx)  print #27



Using Expressions

To print the address of line 27 in the source file foo.c (assuming that foo.c contains source
that was used to compile the current object file), enter:

(dbx) print  "foo.c " #27

To print the address of line 27 in the source file containing the procedure bar (assuming
that bar is a function in the current object file), enter:

(dbx)  print bar #27

Note: A pound sign (#) introduces a comment in a dbx script file. When dbx sees a pound
signin ascript file, it interprets all characters between the pound sign and the end of the
current line as a comment. See “Executing dbx Scripts” on page 35 for more information
on dbx script files. To include the # operator in a dbx script, use two pound signs (for
example, ##27).

Table 5-2 lists the C language operators recognized by dbx.

Table 5-2 C Language Operators Recognized by dbx

Type Operators

Unary I & + - * sizeof()

Binary % << >> == <=>= 1=2<> & && | || +-*[] > .

Note: C does not allow you to use the sizeof operator on bit fields. However, dbx allows
you to enter expressions using the sizeof operator on bit fields; in these cases, dbx returns
the number of bytes in the data type of bit fields (such as int or unsigned int). The C
language “~” exclusive-OR operator is not supported. Use the dbx “xor " operator
instead.

Table 5-3 lists the Pascal operators recognized by dbx.

Table 5-3 Pascal Operators Recognized by dbx

Type Operators

Unary not ~ + -

Binary mod = <= >= <> < > and or + - * / div []

39



Chapter 5: Examining and Changing Data

40

Table 5-4 lists the Fortran 77 and Fortran 90 language operators recognized by dbx. Note
that dbx does not recognize Fortran logical operators (such as .or. and .TRUE. ).

Table 5-4 Fortran 77 and Fortran 90 Operators Recognized by dbx
Type Operators

Unary + -

Binary + - 1 %

Note: Fortran array subscripts may be in either square brackets, [ ], or the standard
parenthesis, (), and the Fortran 90 member selection operator (%) is allowed.

Constants
You can use both numeric and string constants under dbx.

Note: Expressions cannot contain constants defined by #define declarations to the C
preprocessor.

Numeric Constants

In numeric expressions, you can use any valid integer or floating point constants. By
default, dbx assumes that numeric constants are in decimal. You can set the default input
base to octal by setting the dbx variable $octin to a nonzero value. You can set the default
input base to hexadecimal by setting the dbx variable $hexin to a nonzero value. If you set
both $octin and $hexin to nonzero values, $hexin takes precedence.

You can override the default input type by prefixing “0x” to indicate a hexadecimal
constant, or “Ot” to indicate a decimal constant. For example, “0t23” is decimal 23 (which
equals hexadecimal 0x17), and “0x2A” is hexadecimal 2A (which equals decimal 42).

By default, dbx prints the value of numeric expressions in decimal. You can set the default
output base to octal by setting the dbx variable $octints to a nonzero value. You can set the
default output base to hexadecimal by setting the dbx variable $hexints to a nonzero

value. If you set both $octints and $hexints to nonzero values, $hexints takes precedence.



Printing Expressions

Printing Expressions

String Constants

Most dbx expressions cannot include string constants. The print and printf commands are
two of the dbx commands that accept string constants as arguments. You can also use the
set command to assign a string value to a dbx variable.

Otherwise, string constants are useful only as arguments to functions that you call
interactively. See “Using Interactive Function Calls” on page 71 for information on
interactive function calls.

You can use either the double-quotation mark (") or the single-forward quotation mark
() to quote strings in dbx. In general, dbx recognizes the following escape sequences in
guoted strings (following the standard C language usage):

WAn\r\f\b \t V' \" \a

Enclosing a character string in back quotation marks (* ) indicates that the whole string
is the name of a program element, not a character-string constant. This is useful, for
example, when referring to C++ templates, which include in their names the greater-than
(>) and less-than (<) characters. Without back quotation marks, dox would attempt to
interpret the characters as operators. For further discussion, see the sections “Qualifying
Names of Program Elements” in this chapter and “Referring to C++ Functions” in
Chapter 6.

dbx provides the following commands for printing values of expressions:

print [expl[, exp2, ..]]
Prints the value(s) of the specified expression(s).

printd  [expl[, exp2, ...]1]
Prints the value(s) of the specified expression(s) in decimal. (pd is an
alias for printd . See “Creating and Removing dbx Variables” on page 23
for more information about dbx aliases.)

printo  [expl[, exp2, ...]1]
Prints the value(s) of the specified expression(s) in octal. (po is an alias
for printo )

41



Chapter 5: Examining and Changing Data

printx  [expl [, exp2, ...]1]
Prints the value(s) of the specified expression(s) in hexadecimal. (px is
an alias for printx )

For displaying information about variables, the duel command is a flexible alternative to
the print command; see “Using the High-Level Debugging Language duel” on page 51.

The variable types are listed in Table 5-5.

Table 5-5 Variable Types

Type Variable Name Value
signed char sc Oxff
unsigned char usc Oxff
signed short ssh Oxffff
unsigned short ush Oxffff

Examples include:

(dbx) pd sc
-1

(dbx) pd ssh
-1

(dbx) pxsc
Oxff

(dbx) pxssh
Oxffff

(dbx) pd usc
255

(dbx) pd ush
65535

dbx always prints the bits in the appropriate type. pd is an exception; it expands signed
types with sign extension so the decimal value looks correct.

Another example:

(dbx) print sc, usc
377 \377’

42



Using Data Types and Type Coercion (Casts)

If $hexchars is set, this command displays ‘0xff * ‘Oxff . (This is a change from releases
previous to IRIX 5.2. Previously, the px, po cases on signed char expanded to 32 bits, so
px sc printed Oxffffffff )

If the printed data type is pointer, dbx uses the format specified in the $addrfmt or
$addrfmt64 predefined dbx variable ($addrfmt64 is used on only 64-bit processes).

printf  string [, expl [, exp2, ...]1]
Print the value(s) of the specified expression(s) in the format specified by
the string, string. The printf command supports all formats of the IRIX
printf command except “%s” For a list of formats, see the printf(3S)
reference page.

Using Data Types and Type Coercion (Casts)

You can use data types for type conversion (casting) by including the name of the data
type in parentheses before the expression you want to cast. For example, to convert a
character into an integer, use (int)  to cast the value:

(dbx)  print (int) 'b’

98

To convert an integer into a character, use (char) to cast the value:
(dbx)  print (char) 67
o

This is standard C language type casting.

Qualifying Names of Program Elements

You can use the same name for different program elements, such as variables, functions,
statement labels, several times in a program. This is convenient and, during program
execution, the potential ambiguity presents no problem. For example, you can use a
temporary counter named “i”” in many different functions. The scope of each variable is
local; space is allocated for it when the function is called and freed when the function
returns. However, in dbx you sometimes need to distinguish occurrences of identical
names.

43



Chapter 5: Examining and Changing Data

44

dbx allows unambiguous reference to all program elements by using source file and
routine names as qualifying information that makes otherwise indistinguishable names
unique. To find the fully qualified name of the active version of a name, use the which
command. To find the fully qualified names of all versions of a name, use the whereis
command. Note that if a variable, such as i, is used many times, whereis can generate
many lines of output.

The fully qualified name of a program element allows you not only to refer within a
procedure to variables of the same name with different scopes, but to refer
unambiguously to program elements outside your current frame or activation stack.

dbx qualifies names with the file (also called module), the procedure, a block, or a
structure. You can manually specify the full scope of a variable by separating scopes with
periods. For example:

mrx.main.i

In this expression, i is the variable name, main is a procedure in which it appears, and mrx
is the source file (omitting the file extension) in which the procedure is defined.

For languages without ‘modules,’ such as C, C++, and Fortran, the base name of the
source file, that is the file name up to the first dot in the name, is taken as a module name.
For example, if b is a Fortran subroutine in t.f, then t.b names the routine.

To illustrate how names are qualified, consider a C program called test that contains a
function compare. In this example, the variable i is declared in both the main procedure
and the compare function:

int compare (int);
main( argc, argv )

int argc;
char **argv;

{

inti;
}
int compare ( argl, arg2)

{

inti;



Qualifying Names of Program Elements

To trace the value of the i that appears in the function compare, enter:

(dbx) trace test.compare.i

To print the value of the i that appears in the procedure main, enter:

(dbx)  print test.main.i

It is possible to have variable scopes in C and C++ that are in unnamed program blocks.
dbx provides names for these scopes, starting with __$$blk1 and followed by __ $$blk2,
__$3blk3, etc, which it places in the fully qualified name of the variable as it would an
explicit scope name. The whereis and which commands show the names assigned.

dbx provides a special name __aout for your base executable. So for example, you can use
__aout.main to refer to a global C function main in your executable. You can, of course,
also refer to the function using the name of your executable; if your executable is named
myaout, myaout.main also refers to the global C function main.

If you wish to refer to a variable that occurs in a DSO, dbx uses a naming convention
similar to that for variables in your executable. If, for example, strcpy is a function from
the file stuff.c in the library libc.so.1, then both libc.stuff.strcpy and libc.strcpy refer to the
function strcpy.

In C, struct, union, and enum tags can conflict with other names. From the context, dbx
usually interprets correctly a reference to one of these tags. However, if dbx does not,
prefix the tag with the marker __$T_ to prevent confusion with variables or functions. For
example; use _ $T_foo if you wish to refer to:

struct foo { /* ... */ }

In ANSI C, statement label names also can conflict with other names. The ambiguity is
removed by applying a prefix of __$L_to the label name. Thus, for example:

int myfoo {intx; X: goto x; ++x}

If you enter:
(dbx) print &x

The output is the address of the variable x. If you enter:

(dbx) print & $L x

45



Chapter 5: Examining and Changing Data

The output is the address of label x. The —32 compiler provides no debugging
information on C labels.

To refer to Fortran statement labels you must either use the __$L_ prefix or use back
guotation marks to force dbx to recognize a numerical label as a name. For example, if
you have:

do 10 i=1,10
10 continue

Both of the following commands lists the address of the label:
(dbx) print &10°
(dbx) print& $L 10

You may have multiple source files with the same name, for example myfile.c, that are in
different directories. The ‘module’ name myfile may refer to either source file. dox resolves
this ambiguity by prefixing the fully qualified file names with a unique, numeric label.
The which and whereis commands show the label used. For example, suppose the main
executable has two myfile.c source files, then __aout.myfile refers to either source file,
__aout._$1_myfile refers to one of them, and __aout._$2_myfile refers to the other.

A leading dot (a period at the beginning of the identifier) tells dbx that the first qualifier
is not a module (file).

The leading dot is useful when a file and a procedure have the same name. For instance,
suppose mrx.c contains a function called mrx. Further, suppose that mrx.c contains a
global variable called mi and a local variable, also called mi. To refer to the global
variable, use the qualified form .mrx.mi, and to refer to the local variable, use the
qualified form mrx.mrx.mi.

Displaying and Changing Program Variables

You can use the value of program variables in dbx expressions. You can also change the
value of program variables while running your program under dbx control.

46



Displaying and Changing Program Variables

Variable Scope

You can access the value of a variable only while it is in scope. The variable is in scope
only if the block or procedure with which it is associated is active.

After you start your program, whenever your program executes a block or procedure
that contains variables, your program allocates space for those variables and they “come
into scope.” You may access the values of those variables as long as the block or
procedure is active. Once the block or procedure ends, the space for those variables is
deallocated and you may no longer access their values.

Displaying the Value of a Variable

You can display the value of a program variable using the print, printd, printf, printo, and
printx commands and the pd, po, and px aliases described in “Printing Expressions” on
page 41. For example, to print the value of the program variable total, enter:

(dbx)  print total
235

The print command also displays arrays, structures, and other complex data structures.
For example, if message is a character array (a string), dbx prints the string:

(dbx)  print message
"Press <Return> to continue."

As a more complex example, consider a simple linked list stored as an array of elements,
each element consisting of a pointer to the next element and an integer value. If the array
is named list, print the entire array by entering:

(dbx)  print array

dbx prints the value of each element in the array:
{
[0] struct list {
next = (nil)
value = 1034
}
[1] struct list {
next = 0x10012258
value = 1031

}
[2] struct list {

47



Chapter 5: Examining and Changing Data

48

next = 0x10012270
value = 1028

}

[3] struct list {
next = 0x10012288
value = 1025

}

[4] struct list {
next = 0x100122a0
value = 1022

}

[5] struct list {
next = 0x100122b8
value = 1019

}

To print an individual element, enter a command such as:

(dbx)  print array[5]
struct list {
next = 0x100122b8
value = 1019

}

If your array consists of simple elements such as integers or floating point values, you
can directly examine the contents of memory using the / (examine forward) command
described in “Examining Memory and Disassembling Code” on page 109.

Suppose a single-precision floating point array is named float_vals. To see the six
consecutive elements beginning with the fifth element, enter:

(dbx)  &float_vals[4] / 6f

10012018; 0.25000000000000000 0.20000000298023224 0.16666699945926666
0.14280000329017639

10012028: 0.12500000000000000 0.11111100018024445

You can also print parts of arrays and complex structures with duel, a high-level
debugging language. For more information, see “Using the High-Level Debugging
Language duel.”



Displaying and Changing Program Variables

Changing the Value of a Variable

The assign command changes the value of existing program variables. You can also use
the assign command to change the value of machine registers, as described in “Changing
Register Values” on page 109.

The syntax of the assign command is:

assign variable = expression
Assigns the value of expression to the program variable, variable.

For example:

(dbx) assign x = 27

27

(dbx) assigny=37.5

375

If you receive an incompatible types error when you try to assign a value to a pointer,

use casts to make the assignment work. For example if next is a pointer to a structure of
type “element,” you can assign next a null pointer by entering:

(dbx) assign *(int *) (&next) = 0
0

(dbx) assignnext=0
(nil)
(dbx) assign next = (struct list*) O;

(nil)

In this example, nil  denotes that the value of the pointer is O; nil is similar to NULL in
the C language.

Conflicts Between Variable Names and Keywords

When naming variables in your program, avoid using any dbx keywords. If you have a
variable with the same name as a dbx keyword and you attempt to use that variable in a
dbx command, dbx reports a syntax error.

If you do have a program variable with the same name as a dbx command, you can force
dbx to treat it as a variable by enclosing the variable in parentheses. For example, if you
try to print the value of a variable named in by entering the following command, dbx
displays an error.

49



Chapter 5: Examining and Changing Data

(dbx)  printin
printin
\ syntax error
Suggestion: in is a dbox keyword; a revised command is in history.
Type 116 or ! to execute: print (in)

The correct way to display the value of input is to enter:

(dbx) print (in)
34

dbx keywords include:

all not
and or
at  pgrp
div pid

if sizeof
in to
mod xor

Case Sensitivity in Variable Names

Whether or not dbx is case sensitive when it evaluates program variable names depends

on the value of the dbx variable $casesense.

If $casesense is 2 (the default), then the language in which the variable was defined is
taken into account (for example, C and C++ are case sensitive while Pascal and Fortran
are not). If $casesense is 1, case is always checked. If $casesense is 0, case is always ignored.
Note that file (module) names are always case sensitive since they represent UNIX file

names.

Displaying and Changing Environment Variables Used by a Program

50

You can control the values of environment variables used by a program without affecting
the shell. The dox commands printenv, setenv, and unsetenv control the debugging
environment much like their csh counterparts control the shell environment. However,
they only affect your program while it is being debugged. dbx passes the values shown
by the printenv command to the shell as the environment to use while your program is

run by the run or rerun commands.



Using the High-Level Debugging Language duel

The following commands control your program’s environment variables:

printenv Prints the list of environment variables affecting the program being
debugged.
setenv Same as printenv.

setenv. VAR  Sets the environment variable VAR to an empty value.

setenv VAR value
Sets the environment variable VAR to value, where value is not a dbx
variable.

setenv VAR $var
Sets the environment variable VAR to $var, where $var is a dbx variable.

setenv VAR “charstring”
Sets the environment variable VAR to charstring.

unsetenv VAR Removes the specified environment variable.

If you attempt to change the environment variables PAGER or EDITOR, the effect on dbx
is undefined; the new values may, or may not, affect how dbx runs.

Using the High-Level Debugging Language  duel

The duel language is a high-level debugging language that you can invoke from dbx. duel
is an acronym for Debugging U (might) Even Like.

The duel language provides the following commands for printing parts of arrays and
complex structures:

duel Invokes the duel debugging language.
duel alias Shows all current duel aliases.
duel clear Deletes all duel aliases.

To invoke duel from within dbx, type:
(dbx)  duel

For example, to print the array elements x[1] to x[10] that are greater than 5, enter:

(dbx) duel x[1..10] >? 5
x[3] = 14

51



Chapter 5: Examining and Changing Data

52

x[8] =6

The output includes the values 14 and 6, as well as their symbolic representation x[3]
and x[8]

Using duel Quick Start

The duel language is implemented by adding the duel command to dbx. All dbx
commands work as before. The duel command, however, is interpreted by duel, and its
concepts are not understood by other dox commands.

Note: This version of duel does not understand or allow interactive function calls.

duel is based on expressions that return multiple values. The x..y operator returns the
integers from x to y; the x,y operator returns x and then y. For example:

(dbx) duel (1,9,12..15,22)

This command prints 1, 9, 12, 13, 14, 15, and 22. You can use such expressions wherever
a single value is used. For example:

(dbx) duel x[1,9,12..15,22]

Thiscommand printselements 1, 9, 12, 13, 14, 15, and 22 of the array x. duel incorporates
C operators, and casts C statements as expressions.

The semicolon (;) prevents duel output. duel aliases are defined with x;=y and provide an
alternative to variable declaration. You can also return x[i] instead of using printf;

(dbx) duel if(x[i:=0..99]<0) x[i]
x[i] = -4

The symbolic output x[i]  can be fixed by surrounding i with {}. For example:
(dbx) duel if(x[i:=0..99]<0) x[{i}]
X[7] =-4

The {} are like (), but force the symbolic evaluation to use i’s value, instead of i. You can
usually avoid this altogether with direct duel operators:

(dbx)  duel x[..100] <? 0
X[7]=-4



Using the High-Level Debugging Language duel

The ..n operator is a shorthand for 0..n-1. For example, ..100 is the same as 0..99. The x<?y,
x==?y, x>=?y, and so forth, operators compare their left side operand to their right side
operand as in C, but return the left side value if the comparison result is true. Otherwise,
they look for the next values to compare, without returning anything.

duel’s x.y and x->y allow an expression y, evaluated under x’s scope:

(dbx)  duel emp[..100].(if(code>400) (code,name))
emp[46].code = 682
emp[46].name = “Ela”

The if() expression is evaluated under the scope of each element of emp[] , an array of
structures. In C language terms, we have to write:
for(i=0;i<100; i++) {
if(emp[1].code > 400) {
printf(“%d %s\n”,empl[i].cond,empl[i].name);

A useful alternative to loops is the x=>y operator. It returns y for each value of x, setting
the underbar () to reference x’s value. For example:

(dbx) ..100 => if(emp[_].code>400) emp[_].code,emp[_].name

Using _ instead of i also avoids the need for {i}. Finally, the x-->y operator expands lists
and other data structures. If head points to a linked list threaded through the next field,
then:

(dbx) duel head-->next->data
head->data = 12
head->next->data = 14
head-->next[[2]]->data = 20
head-->next[[3]]->data = 26

This produces the data field for each node in the list. x-->y returns
X, X->Y, X->y->y, X->y->y->y, ... until a NULL is found. The symbolic output x-->y[[n]]
indicates that ->y was applied n times. x[[y]] is also the selection operator:

(dbx)  duel head-->next[[50..60]]->data

This example returns the 50th through the 60th elements in the list. The #/x operator
counts the number of values. For example:

(dbx)  duel #/( head-->next->data >? 50)

53



Chapter 5: Examining and Changing Data

This example counts the number of data elements over 50 on the list. Several other
operators, including x@y, x#y, and active call stack access are described in the “duel
Operators.”

duel Operator Summary

Most duel operators have the same precedence as their C counterparts. Table 5-6 lists duel
operators in decreasing precedence.

Table 5-6 duel Operator Summary

Associativity ~ Operators Details

left gon->.f)--> X-->y expands X->y X->y->y ...
X[[y]] x#y x@y generate x; select, index or stop-at y

right #/ -* & ! ~ ++ -- (cast) #/x number of x values
frame(n) sizeof(x) reference to call stack activation level n
= simple assignment

left Xy X*y x%y multiply, divide, reminder

left X-y X+y add, subtract

left X<y X>>y shift left/right

none XY LY X Ly 0.y-10x.y return x, x+1...y

left <><=>=<?>?7<=?>=? x>?yreturn X if x>y

left ==I===?1=? X==?y return X if x=y

left X&y bit-and

left XNy bit-xor

left x|y bit-or

left X&&Y &&/X &&/x are all x values nonzero?

left xly 11/% | 1/xis any x value nonzero?

right x?y:z for each x, if(x) y else z

54



Using the High-Level Debugging Language duel

Table 5-6 (continued)

duel Operator Summary

Associativity  Operators

Details

right X:=y

left X,y

right X=>y

right if() else while() for()
left Xy

right .

X:=y set x as a duel aliasto y

return x, then y

for each x, evaluate y with x value

C statements cast as operators
evaluate and ignore x, returny

Fortran multi-dimensional array
separator: x[7,,5]. Note the square
brackets; x(7,,5) will not work in duel.

duel EXAMPLES

Table 5-7 lists and briefly explains duel examples.

Table 5-7 duel Examples

Example

Explanation

duel (0xff-0x12)*3

duel (1..10)*(1..10)

duel x[10..20,22,24,40..60]

duel x[9..0]

duel x[..100] >? 5

duel x[..100] >? 5 <? 10

duel x[..100] ==? (6..9)

duel x[0..99]=>if(_>5 && <10) _
duel y[x[..100] !=? 0]

duel emp[..50].code

duel emp[..50].(code,name)

compute simple expression
display multiplication table
display x[i] for the selected indexes
display x[i] backwards

display x[i] that are greater than 5
display x[i] if 5<x[i]<10

same as above

same as above

display y[x[i]] for each nonzero x[i]
display empli].code for i=0 to 49

display emp[i].code & empli].name

55



Chapter 5: Examining and Changing Data

Table 5-7 (continued) duel Examples

Example

Explanation

duel val[..50].(is_dbl? x:y)

duel val[..50].if(is_dbl) x else y
duel (hash[..1024]!=?0)->scope
duel x[i:=..100] >? x[i+1]

duel x[i:=..100] ==? x[}:=..100]=> if(i<j)

x[{i.j}]

duel if(x[i:=..99] == x][j:=i+1..99]) x[{i,j}]

duel (x[..100] >? 0)[[0]]
duel (x[..100] >? 0)[[2]]
duel (x[..100] >? 0)[[..5]]
duel (x[0..] >? 6)[[0]]
duel argv[0..]@0

duel x[0..]@20 >? 9

duel emp][0..]@(code==0)

duel head-->next->val

duel head-->next[[20]]
duel *head-->next[[20]]
duel #/head-->next

duel x-->y[[#/x-->y - 1]]
duel x-->y[[#/x-->y - 10..1]]

duel head-->next-> if(next) val >?
next->val

display val[i].x or val[i].y depending on

val[il.is_dbl.

same as above

hash[i].scope for non-null hash[i]
check if x[i] is not sorted

check if x has nonunique elements

same as above

the 1st (Oth element) positive Xx[i]
return the 3rd positive x[i]

return the first 5 positive x[i]
return the first x[i]>6, no limit on i
argv[0] argv[1] .. until first null
X[0..n]>9 where n is first x[n]==20

emp[0]..emp[n-1] where
empl[n].code==

val of each element in a linked list
the 21st element of a linked list
display above as a struct

count elements on a linked list
last element of a linked list

last 10 elements of a linked list

check if the list is sorted by val

duel head-->(next!=?head) expand cyclic linked list (tail->head)

duel head-->(next!=?_) handle termination with p->next==p

56



Using the High-Level Debugging Language duel

Table 5-7 (continued) duel Examples

Example Explanation

duel root-->(left,right)->key expand binary tree, show keys
duel root-->(left,right)->( check bin tree sorted by key

(left!=20)->key>="2key, (right !=?0
)->key<=?key)

duel (T mytype) x convert x to user defined type mytype

duel (struct s*) x convert x to struct s pointer

duel if(x) y; else z *ERR* “;> must be followed by an expression

duel {x} y *ERR* ‘Y requires *;" if followed by exp

fortarray[2..5,, 6,7] print 2-dimensional Fortran array
elements

duel SEMANTICS

The duel semantics are modeled after the Icon programming language. The input consists
of expressions that return sequences of values. C statements are cast as expressions, too.
Expressions are parsed into abstract syntax trees, which are traversed during evaluation.
The evaluation of most nodes (operators) recursively evaluates the next value for each
operand, and then applies the operator to produce the next result. Only one value is
produced each time, and duel’s eval function keeps a state for each node (backtracking,
co-routines, consumer-producer or threads are good metaphors for the evaluation
mechanism).

For example, in (5,3)+6..8, the evaluation of ‘+’ first retrieves the operands 5 and 6, to
compute and return 5+6. Then 7, the next right operand is retrieved and 5+7 is returned,
followed by 5+8. Since no other right operand value exists, the next left operand, 3 is
fetched. The right operand’s computation is restarted returning 6, and 3+6 is returned.
The final return values are 3+7 and 3+8.

The computation for operators like x>?y is similar, but when x<=y, the next values are

fetched instead of returning a value, forming the basis for an implicit search. Operators
like .. return a sequence of values for each pair of operands.

57



Chapter 5: Examining and Changing Data

The duel values follow the C semantics. A value is either an lvalue (can be used as the
left-hand side of assignment), or an rvalue. Therefor, objects like arrays can not be
directly manipulated. However, operators like x..y can accomplish such tasks.

The duel types also follow the C semantics, with some important differences. C types are
checked statically; duel types are checked when operators are applied. For example,
(1,1.0)/2 returns 0 (int) and 0.5 (double); (x,y).z returns x.z and y.z even if x and y are of
different types, as long as they both have a field z.

Values and types of symbols are looked up at run-time (using the dbx lookup rules).

To avoid this ambiguity, the keyword T must precede a user-defined type. For example,
if value is a typedef, C’s (value (*)()) x is written in duel as

(T value (*)()) x. Types that begin with a reserved keyword don’t need T. For example,
(struct value*) x and (long *[5]) y are accepted. As special cases, (type)x and (type*)x are
accepted but discouraged (it causes (printf)(“hi”), which is valid in C, to fail). A side
effect is that sizeof x must be written as sizeof(x).

duel Operators
The duel operators are described below.

XZY X+Y X-Y X*y XY X%y XY X|Y X&Y X<y X>>y

X>Y X<y X>=y X<=y X==Yy X!=y x[y]
These binary operators follow their C semantics. For each value of X,
they are evaluated for every value of y. For example, (5,2)>(4,1)
evaluates as 5>4, 5>1, 2>4, 2>1 returning 1, 1, 0, 1.

The y values are reevaluated for each new value of x. For example, i=4;
(4,5)>i++ evaluates as 4>4 and 5>5. Beware of multiple y values in
assignment. For example, X[..3]=(4,6,9) does not set x[0]=4, x[1]=6, and
X[2]=9. It assigns 4, 6, and 9 to each element, which has the same effect
as x[..3]=9. Use x[i:=..3]=(4,6,9)[[i]] to achieve the desired effect.

-X ~X &X *X IX ++X --X X++ X-- sizeof(x) (type)x
These unary operators follow their C semantics. They are applied to
each value of x. The increment and decrement operators require an
lvalue, so i:=0 ; i++ produces an error because i is a duel alias to 0, an
rvalue. Parenthesis must be used with sizeof(x). Note that sizeof x is not

58



Using the High-Level Debugging Language duel

allowed. Cast to user defined type requires generally requires T. For
example, (T val(*)())x, but (val)x and (val*)x are accepted as special
cases.

x&&y x]ly These logical operators also follow their C semantics, but have
nonintuitive results for multi-valued x and y. For example, (1,0,0) | |
(1,0) returns 1,1,0,1,0 — the right hand-side (1,0) is returned for each
left-hand side 0. It is best to use these operators only in single value
expressions.

x?y:z if(x)y if(x)yelsez
These expressions return the values of y for each nonzero value returned
by x, and the values of z for each zero value returned by x. For example,
if(x[..100]==0) y returns y for every x[i]==0, not if all x[i] are zero
(if(&&/(x[..100]==0)); y does that).

Also, if(x) y; else z is illegal. duel’s semicolon is an expression separator,
not a terminator.

while(x)y for(w;x;y)z
The while(x)y expression returns y as long as all values of x are nonzero.
The for() expression is similar and both have the expected C semantics.
For example, for(i=0 ; i<100 ; i++) x[i] is the same as x[..100]. Unlike the
if() expression, while(x[..100]==0) continues to execute only if all
elements of x are zero, that is, the condition is evaluated into a single
value using an implicit &&/x.

At present, assignments are not supported, so the for is of limited utility
except to assign aliases.

XY Xy X X.
These operators produce multiple values for single value operands. x,y
returns x, then y. x..y returns the integers from x to y. When x>y, the
sequence is returned in descending order, that is, 5..3 returns 5, 4, 3.

The ..x operator is a shorthand for 0..x-1. For example, ..3 returns 0, 1, 2.
The x.. operator is a shorthand for x..maxint. It returns increasing
integer values starting at x indefinitely, and should be bounded by [[n]]
or @n operators.

A comma (,) retains its precedence level in C. The precedence of .. is
above < and below arithmetic operators, so 0..n-1 and x==1..9 work as
expected.

59



Chapter 5: Examining and Changing Data

60

Xv ly

The ,, operator is very low precedence, is only usable inside the [] array
operators, and is used to separate the dimension expressions of Fortran
multi-dimensional arrays. Note the deviation from Fortran and dbx
command-line usage; array operators are square brackets, [], not
parentheses, ()

X<?y X>?y X>=?y X<=?y X|=?y x==2y

(%) {x} Xy x=>y

X->y Xy

These operators work like their C counterparts but return x if the
comparison is true. If the comparison is false, the next (x,y) value is tried,
forming the basis of an implicit search.

Both () and {} act as C parenthesis.

The {} set the returned symbolic value as the actual value. For example,
if i=5 and x[5]=3, then x[i] produces the output x[i] = 3, x[{i}] produces
X[5] = 3, and {x[i]} produces 3.

The semicolon is an operator. x;y evaluates x, ignoring the results, then
evaluates and returns y. For example, (i:=1..3 ; i+5) sets i to 3 and
returns 8.

The x=>y operator evaluates and returns y for each value of x. For
example, (i:=1..3 => i+5) returns 6, 7, and 8. The value returned by X is
also stored implicitly in _, which can be used in y. For example, 1.5 =>
z[ ][] produces z[1][1], z[2][2], and so forth. The symbolic value for _is
that of the left side value, hence {_} is not needed.

Semicolon (;) has the lowest precedence, so it must be used inside () or
{} for compound expressions. The precedence of => is just below
comma ().

Be aware that if(a) x; else {y;} z is illegal; a semicolon is not allowed
before } or else and must be inserted before z.

These expressions work as in C for a symbol y. If y is an expression, it is
evaluated under the scope of x. For example, x.(a+b) is the same as
x.a+x.b, if aand b are fields of x (if they are not, they are looked up as
local or global variables). x may return multiple values of different
types. For example, (u,v).a returns u.a and v.a, even if u and v are
different structures.

Also, the value of x is available as _inside y. For example, x[..100].(if(a)
_) produces x[i] for each x[i].a!=0. Nested x.y are allowed. For example,
u.(v.(a+b)) looks up a and b first under v, then under u.



Using the High-Level Debugging Language duel

X:=y The duel aliases store a reference to y in x. Any reference to x is then
replaced by y. If y is a constant or an rvalue, its value is replaced for x. If
yisan lvalue (e.g., a variable), areference to same lvalue is returned. For
example, x:=emp[5] ; x=9 assigns 9 to emp|[5].

Aliases retain their values across invocation of the duel command. A
duel alias to a local variable references a stray address when the variable
goes out of scope.

The special command duel clear delete all the duel aliases; duel alias
shows all current duel aliases. Symbols are looked up as duel aliases
first, so a duel alias x will hide a local x.

The duel aliases are separate from dbx aliases. Currently, duel aliases are
shared across all processes.

X-->Y The expansion operator x-->y expands a data structure x following the y
links.

It returns x, x->y, X->y->y, until a null is found. If x is null, no values are
produced. If y returns multiple values, they are stacked and each is
further expanded in a depth-first notion. For example, if r is the root of
a tree with children u->childs[..u->nchilds], then
u-->(childs[..nchilds]) expands the whole tree. y is an arbitrary
expression, evaluated exactly like x->y (this includes ).

X@y The expression x@y produces the values of x until x.y is nonzero. For
example, for(i=0 ; x[i].code!= -1 && i<100 ; i++) x[i] can be written as
X[..100]@(code==-1).

The evaluation of x is stopped as soon as y evaluates to true. x->y (or
x=>y) is used to evaluate y when x is not a struct or a union. If y isa
constant, (_==y) is used. For example, s[0..]@0 produces the characters
in string s up to but not including the terminating null.

#IX &&IX | |/x
These operators return a single summary value for all the values returned
by x. The #/x returns the number of values returned by x. For example,
#/(x[..100]>?0) counts the number of positive x[i]. The &&/x returns 1 if
all the values produced by x are nonzero, and | |/x returns 1 if any of x’s
values are nonzero. Like in C, the evaluation stops as soon as possible.

For example, | |/(X[..100]==0) and &&/(x[..100]==0) check if one or all
of x[i] are zero, respectively.

61



Chapter 5: Examining and Changing Data

x#y X[[v]] The operator x#y produces the values of x and arranges for y to be an
alias for the index of each value in x. It is commonly used with x-->y to
produce the element’s index. For example, head-->next->val#i=i
assigns each val field its element number in the list.

The selection operator x[[y]] produces the yth result of x. If y returns
multiple value, each select a value of x. For example, (5,7,11,13)[3,0,2]
returns 13, 5, and 11 (13 is the third element, 5 is the Oth element).

Don’t use side effects in X, since its evaluation can be restarted
depending on y. For example, after (x[0..i++])[[3,5]] the value of i is
unpredictable.

Note: Within a duel command, the # operator does not have anything to
do with line numbers or dbx comments.

frame(n) frames_no func.x
The frame(n) for an integer n returns a reference to the nth frame, or
activation level, on the stack (0 is the inner most function and
frame(frames_no-1) is main()).

Frame values can be compared to function pointers. For example,
frame(3)==myfunc is true if the fourth frame is a call to myfunc, and in
scope resolution. For example, frame(3).x returns the local variable x of
the fourth frame.

The frames_no is the number of active frames on the stack. For
example, (frames(..frames_no) ==? myfunc).x displays x for all active
invocations of myfunc. As a special case,
(frames(..frames_no)==2f)[[0]].x can be written as f.x (x can be an
expression).

Differences from Other Languages

The following paragraphs describe the differences between duel, C, and Fortran
languages.

Differences from C
Both {} and ; are operators, not statements or expression separators. For example, if(x) y;

else {z;} uisillegal; use if(x) y else {z} ; u. Ambiguities require preceding user-defined
types (typedef) with the keyword T. For example, if value is a user type, C’s

62



Determining Variable Scopes and Fully Qualified Names

sizeof(value*) is written sizeof(T value*), except for the casts (t)x and (t*)x; sizeof(x)
requires parenthesis for variable x.

Differences from Fortran

Because the comma (,) is used to separate a sequence of values, the usual dbx syntax for
multi-dimensional array references of myarr[3,4] does not mean the same thing to duel as
it does to dbx.

In duel, refer to the dimensions of a multi-dimensional Fortran array using ,, as the
dimension separator. In other words, if myarr is a two-dimensional array, myarr[3,,4]
refers to the Fortran array element myarr(3,4).

The base dbx syntax for this element remains unchanged. For example, to show that
element of myarr, use one of the following:

(dbx)  print myarr[3,4]
(dbx)  duel myarr[3,,4]

Determining Variable Scopes and Fully Qualified Names

The which command allows you to determine the scope of a variable. This command is
useful for programs that have multiple variables with the same name occurring in
different scopes.

The which command prints the fully qualified name of the active version of a specified
variable. For example, to determine the scope of the variable i, enter:

(dbx)  whichi
foo.foo2.i

In the example above, the variable i that is currently active is local to the procedure foo2
that appears in the module foo (corresponding to the file foo.c in a C language program).

The which command also determines the fully qualified name of other program elements,
such as procedures or type descriptors, that are submitted as arguments for the
command.

The whereis command prints the fully qualified names of all versions of the name of any

program element. dbx searches (a possibly limited part of) your program for all
occurrences of the name and returns the fully qualified names. The range of the search is

63



Chapter 5: Examining and Changing Data

determined by the dbx variable $whereisdsolimit. By default, $whereisdsolimit is 1 and only
the main executable is checked by whereis. To search all objects, set $whereisdsolimit to 0.
To check just the first n objects, set $whereisdsolimit to n.

Displaying Type Declarations

Examining the Stack

64

The whatis command displays the type declaration for a specified variable or procedure
in your program.

For example, to display the type declaration for the variable i, enter:

(dbx) whatis i
int i

The following example illustrates the output of whatis for an array of structures:

(dbx)  whatis array
struct list {
struct list* next;
int value;
} array[12];

When you provide a procedure name to whatis, dox reports the type of the value returned
by the procedure and the types of all arguments to the procedure:

(dbx)  whatis foo
int foo(i)

inti;

(dbx)  whatis main
int main(argc, argv)
int argc;

char** argv;

Each time your program executes a procedure, the information about where in the
program the call was made from is saved on a stack. The stack also contains arguments
to the procedure and all of the procedure’s local variables. Each procedure on the stack
defines an activation level or frame. Activation levels can also consist of blocks that define
local variables within procedures.



Examining the Stack

The most recently called procedure or block is numbered 0. The next active procedure
(the one that called the current procedure) is numbered 1. The last activation level is
always the main program block.

The stack determines the scope of many dbx commands and expressions. For example,
unless you qualify a variable, as described in “Qualifying Names of Program Elements”
on page 43, dbx assumes that variables you reference are local to the current activation
level. If a variable does not appear in the current activation level, dbx successively
examines previous activation levels in the stack until it finds the referenced variable. The
maximum number of activation levels examined is determined by the dbx variable
$stacktracelimit, which has a default value of 100.

Printing Stack Traces

The where command prints stack traces. Stack traces show the current activation levels
(procedures) of a program. For example, consider the following stack trace for a program
called test:

(dbx) where
> 0foo2(i = 5) [fusrivartmp/dbx_examplesftest.c”:44, 0x1000109¢]

1 foo(i = 4) ['fusrivarimpldbx_examplesftest.c”:38, 0x1000105c¢]

2 main(argc = 1, argv = Oxffffffad 78) [/usrivarmp/dbx_examplesftest.c™55,
0x10001104]

3__start() [/shamufiiblibclibc_64/crtltext.s™137, 0x10000ee4]

This program has four activation levels. The most recent, a call of the procedure foo2, is
numbered 0. The currently selected activation level is 0, indicated by the “>" character.

The stack trace also reports that foo2 was passed one argument: the value 5 was assigned
to the local variable i. The trace indicates that the program was stopped at line 44 of the
file test.c, which translates to machine address 0x1000109c .

The stack trace reports similar information for the next two activation levels in this
example. You can see that the function foo called foo2 from line 38 in test.c. In turn, foo
was called by main at line 5 of the file test.c. Finally, the run-time start-up level was
called at line 137 from the file ctritext.s.

If a program is highly recursive, stack traces can get quite long. The dbx variable
$stacktracelimit controls the maximum number of activation levels that appear in a stack
trace. In the example above, setting $stacktracelimit = 2 before issuing the where command
reduces the set of reported frames to just levels 0 and 1.

65



Chapter 5: Examining and Changing Data

66

If you compile with -g0 or with no -g option, limited symbols are reported. In cases such
as this, where detailed symbolic information is not available, the four hexadecimal
values returned represent dbx’s guess that the function has four integer arguments. The
following example illustrates such a case:
(dbx)  where
> 0 fooexample(0x300000000, 0x4000000ff, 0x5000000ff, 0x0)
[“/usr/var/tmp/dbx_examples/test3.c”:10, 0x10000cf8]
1 main(0x3, 0x4, 0x5, 0x0) [*/usr/var/tmp/dbx_examples/test3.c”:5,
0x10000chc]
2 _ start() [“/shamullib/libc/libc_64/csu/crtltext.s™:137,
0x10000c64]
(dbx) quit
Process 22582 terminated
int fooexample(int,int,int);
int main()
{
fooexample(3,4,5);
return O;

int fooexample(int i, int j, int k)
{

intx=i+j+ 3*;

return Xx;

}

The examples below show register values from code compiled without a -g option.
MIPS1 or MIPS2 code using the 32-bit ABI (for example, on an Indy):

(dbx) where

>0 subrl(0x3, Ox7fffaf14, Ox7fffaflc, 0x0) [‘t.c™3, 0x4009ec]
1 test(0x3, Ox7fffaf14, Ox7fffaflc, Ox0) [t.c":8, 0x400al0]
2 main(0x1, Ox7fffaf14, Ox7fffaflc, Ox0) ['t.c™:13, 0x400a48]
3__start() [‘crtltext.s™133, 0x40099c]

There are four hexadecimal values displayed in most lines of the code above since the
32-bit MIPS ABI has four integer argument passing registers. No user-useful registers are
passed to __start()

MIPS3 or MIPS4 code using the 64-bit ABI (for example, on a Power Challenge):

(dbx) where
>0 subrl(0x3, Oxffffffaed8, Oxfffffface8, 0x0, 0x2f, 0x10, Ox0, Oxfbd82a0)
[‘fusr/people/doc/debugtt.c™:3, 0x10000c9c]



Examining the Stack

1 test(0x3, Oxffffffacd8, Oxfffffface8, OxO, Ox2f, 0x10, 0x0, Oxfbd82a0)
[‘usr/people/doc/debugft.c™9, 0x10000ce8]

2 main(Ox1000000ff, Oxffffffacd8, Oxffffffaee8, 0x0, Ox2f, 0x10, 0O,
Oxthd82a0) ["/usr/people/doc/debugft.c™:14, 0x10000d2c]

3__start() [/shamu/redwood2/workfirixflib/ibc/ibc_64/csulcrtltext.s”137,
0x10000c70]

There are eight hexadecimal values displayed in most lines of the code above since the
64-bit MIPS ABI has eight integer argument passing registers. No user-useful registers
are passed to __start()

The values listed as arguments are the integer argument-passing register values.
Typically, only the 0 entry of the stack has those argument values correct. Correctness is
not guaranteed because the code generator can overwrite the values, using the registers
as temporary variables.

The debugger reports the integer argument-passing registers because this information
may be of some value.

For example, for the code samples above, the following code calls subrl()

int test(void)

{
subrl(3);

}

This code displays 0x3 as the argument register value. The other registers listed for
subrl contain arbitrary data.

Moving Within the Stack

The up and down commands move up and down the activation levels in the stack. These
commands are useful when examining a call from one level to another. You can also
move up and down the activation stack with the func command described in “Moving to
a Specified Procedure” on page 69.

The up and down commands have the following syntax:

up [num] Moves up the specified number of activation levels in the stack. The
default is one level.

67



Chapter 5: Examining and Changing Data

68

down [num] Moves down the specified number of activation levels in the stack. The
default is one level.

When you change activation levels, your scope changes. For example, unless you qualify
a variable, as described in “Qualifying Names of Program Elements” on page 43, dbx
assumes that variables you reference are local to the current activation level. Also, dbx
changes the current source file to the file containing the procedure’s source.

Consider examining the stack trace for a program called test4 and moving up in the
activation stack:

(dbx) where
> 0foo2(i = 5) [fusrivartmp/dbx_examples/foo.c:46, 0x10001214]
1 foo(i = 4) ['fusrivarimp/dbx_examplesffoo.c”:40, 0x100011d4]
2 main(argc = 1, argv = Oxffffffad78)
[‘fusrivarftmp/dbx_examples/test4.c™:25, 0x10000fa0]
3__start() [shamu/liblibclibc_64/csulcrtltext.s™:137, 0x10000f34]

(dbx) printi
5
(dbx) up

foo: 40 r=foo2(i+1);

The current activation level is now the procedure foo. As indicated in the output, the
variable i receives the argument passed to foo and is therefore local to foo. The variable
i at this activation level is different from the variable i in the foo2 activation level. You can

reference the currently active i as “i”’; whereas you must qualify the reference to the i in
foo2:

(dbx) printi
4

(dbx)  print foo2.i
<symbol not found>

Moving up one more activation level brings you to the main procedure:

(dbx) up
main: 25 j=foo());
(dbx) file

lusrivar/tmp/dbx_examples/test4.c

In this example, the source for main is in test4.c, whereas the source for foo and foo2 is
in foo.c; therefore, dbx changes the current source file when you move up to the main
activation level.



Examining the Stack

dbx resets the source file when you return to the foo2 activation level:

(dbx) down 2

foo2: 46 printf(“foo2 arg is %d\n”,i);
(dbx) file
Jusr/var/tmp/dbx_examples/foo.c

Moving to a Specified Procedure

The func command moves you up or down the activation stack. You can specify the new
activation level by providing either a procedure name or an activation level number.

The syntax for the func command is:

func {activation_level | procedure}
Changes the current activation level. If you specify an activation level by
number, dbx changes to that activation level. If you specify a procedure,
dbx changes to the activation level of that procedure. If you specify a
procedure name and that procedure has called itself recursively, dbx
changes to the most recently called instance of that procedure.

func Displays the name of the procedure corresponding to the current
activation level.

When you change your activation level, your scope changes. For example, unless you
gualify a variable as described in “Qualifying Names of Program Elements” on page 43,
dbx assumes that variables you reference are local to the current activation level. Also, dbx
changes the current source file to the one containing the procedure’s source and the
current line to the first line of the procedure.

You can also give the func command the name of a procedure that is not on the activation
stack, even when your program is not executing. In this case, dbx has no corresponding
activation level to make current. However, dbx still changes the current source file to the
one containing the procedure’s source and the current line to the first line of the
procedure.

For example, consider the following activation stack:

(dbx) where
> 0foo2(i = 5) [fusrivarimp/dbx_examples/foo.c”:46, 0x10001214]
1 foo(i = 4) ['fusrivarmp/dbx_examples/foo.c:40, 0x100011d4]
2 main(argc = 1, argv = Oxffffffad 78)
[‘lusrivarftmpl/dbx_examplesitest4.c™:25, 0x10000fa0]

69



Chapter 5: Examining and Changing Data

70

3_start() ['/shamufliblibcllibc_64/csulcrtltext.s™137, 0x10000f34]

In this case, you can go to the main activation stack by entering:

(dbx)  func main
main: 25 j = foo());

This command changes the current activation level to “2” and changes the current source
file to test4.c.

If you use the func command to go to a function that is not on the activation stack, dbx
changes only the current source file to the one containing the procedure’s source and the
current line to the first line of the procedure:

(dbx)  func bar

3 {

(dbx) file
Jusr/var/tmp/dbx_examples/bar.c

Printing Activation Level Information

The dump command prints information about the variables in an activation level:
dump Prints information about the variables in the current procedure.

dump procedure Prints information about the variables in the specified procedure. The
procedure must be active. Starts searching for procedure at the current
activation level as set by the up or down command. (See “Moving Within
the Stack” on page 67 for more information about the up and down
commands.)

dump . Prints information about the variables in all procedures in all activation
levels.

For example, executing dump while in a function called foo2 appears as:

(dbx) dump
foo2(i = 5) ["usrivartmpl/dbx_examples/foo.c™:46, 0x10001214]

To examine the information for the procedure main, enter:

(dbx) dump main

main(argc = 1, argv = Oxffffffad78) [/usrivartmp/dibox_examplesfest4.c”:25,
0x10000fa0]

j=4



Using Interactive Function Calls

i=12

I = <expression or syntax error>
a=0

total=0

To perform a complete dump of the program’s active variables, enter:

(dbx) dump.
> 0foo2(i = 5) [fusrivartmp/dbx_examples/foo.c:46, 0x10001214]
1 foo(i = 4) ['fusrivarkmp/dbx_examples/foo.c”:40, 0x100011d4]
r=0
2 main(argc = 1, argv = Oxffffffad78)
[‘fusrivarftmp/dbx_examples/test4.c™:25, 0x10000fa0]
j=4
i=12
r=<bad operand>
a=0
total=0

Using Interactive Function Calls

You can interactively call a function in your program from dbx.

If the function returns a value, you can use that function in a normal dbx expression. For
example, consider a function prime defined in your program that accepts an integer
value as an argument, and returns 1 if the value is prime and 0 if it is not. You can call
this function interactively and print the results by entering a command such as:

(dbx)  print prime(7)

1

71



Chapter 5: Examining and Changing Data

72

Using ccall

If your function does not return a value, or if you want to execute a function primarily
for its side effects, you can execute the function interactively with the dbx command ccall:

ccall func(argl, arg2, ..., argn)
This command calls a function with the given arguments. Regardless of
the language the function was written in, the call is interpreted as if it
were written in C, and normal C calling conventions are used.

Note: Structure and union arguments to a function, and structure and union returns
from a function, are not supported.

Functions called interactively honor breakpoints. Thus you can debug a function by
setting breakpoints and then calling it interactively.

If you perform a stack trace using the where command while stopped in a routine
executed interactively, dbx displays only those activation levels created by your
interactive function call. The activation levels for your active program are effectively
invisible. For example, a stack trace looks like this during an interactive function call:

(dbx)  where
> 0foo2(i=9) [fusrivartmp/dbx_examples/foo.c:46, 0x10001214]
1 foo(i = 8) [fusrivarmp/dbx_examples/foo.c”:40, 0x100011d4]

2 foo2(i = 5) ["usrivarfmpl/dbx_examples/foo.c”:46, 0x10001214]

3 foo(i = 4) [usrivartmpl/dbx_examplesffoo.c”:40, 0x100011d4]

4 main(argc = 1, argv = Oxffffffad78)
[‘fusrivarftmp/dbx_examplesfest4.c™:25, 0x10000fa0]

5__start() [/shamufliblibclibc_64/csulcrtltext.s™137, 0x10000f34]

If you stop execution of an interactively called function, you are responsible for
eventually “unstacking” the call and returning from the function call. To unstack a call,
you can complete the call using dbx commands such as cont, resume, next, or step as many
times as necessary. If you run or rerun your program, dbx automatically unstacks all
interactive function calls.



Using Interactive Function Calls

Using clearcalls

Another way to unstack an interactive function call is to execute the clearcalls command,
which clears all stopped interactive calls.

(dbx) clearcalls

When stopped or faulted within one or more nested interactive calls, the clearcalls
command removes these calls from the stack and returns the program to its regular
callstack. This command is useful when a segmentation fault, infinite loop, or other fatal
error is encountered within the interactive call.

When stopped in an interactive call, the call stack displayed by where shows the
following line at the end of each stack of interactive call instantiation.

==== nteractive function call ====

For example, if the procedure foo() is interactively called from main(), you see the
following stack:
> 0foo2(i = 9) ["usrivartmpl/dbx_examples/foo.c™:46, 0x10001214]

1 foo(i = 8) [fusrivarimp/dbx_examplesffoo.c”:40, 0x100011d4]

2 foo2(i = 5) ["usrivarimpl/dbx_examplesffoo.c”:46, 0x10001214]

3 foo(i = 4) [fusrivaritmp/dbx_examples/foo.c”:40, 0x100011d4]

4 main(argc = 1, argv = Oxffffffad78)
[‘fusrivarftmp/dbx_examplesftest4.c™:25, 0x10000fa0]

5__start() ['shamuliblibclibc_64/csufcrtltext.s”:137, 0x10000f34]

73



Chapter 5: Examining and Changing Data

74

Nesting Interactive Function Calls

You can also nest interactive function calls. In other words, if you have one or more
breakpoints in a function, and you call that function repeatedly, each interactive call is
stacked on top of the previous call. Breakpoints in a function affect all nesting levels, so
you cannot have different breakpoints at different nesting levels.

The where command shows the entire stack trace from which you can determine the
nesting depth. The following example has two nesting levels.

(dbx)  where
> 0 foo2(i = 17) [“/usr/var/tmp/dbx_examples/foo.c”:46, 0x10001214]
1 foo(i = 16) [“/usr/var/tmp/src/dbx_examples/foo.c”:40, 0x100011d4]

2 foo2(i = 9) [*/usrivar/tmp/dbx_examples/foo.c™.46, 0x10001214]
3 foo(i = 8) [“/usrivar/tmp/dbx_examples/foo.c™:40, 0x100011d4]

4 foo2(i = 5) [“/usrivar/tmp/dbx_examples/foo.c”:46, 0x10001214]

5 foo(i = 4) [“/usrivar/tmp/dbx_examples/foo.c™:40, 0x100011d4]

6 main(argc = 1, argv = Oxffffffad78)
[“/usr/var/tmp/src/dbx_examples/test4.c”:25, 0x10000fa0]

7 __start() [“/shamullib/libc/libc_64/csu/crtltext.s™:137,
0x10000f34]

To set a conditional breakpoint, for example, type:

(dbx) stopinfooifj==7
Process 0: [3] stop in foo if j==7

If j is not within the scope of foo, then you will receive an error message if you attempt
to call foo interactively. To prevent this, disable or delete any such breakpoints,
conditional commands, or traces before executing the interactive function call.



Obtaining Basic Blocks Counts

Obtaining Basic Blocks Counts

The dbx command allows interactive control of a pixie instrumented binary.
pixie clear Clear the basic block counts for the current execution.

pixie write Write out the counts file with the current basic block counts. The counts
reflect the execution of the program since the run command or since the
last pixie clear command, whichever was more recent.

When you debug a program that has been instrumented by pixie, it is often desirable to
perform experiments over different code paths and do comparisons of the results. You
can do this by capturing the pixie basic block counts at any point in the program’s
execution.

Suppose you want to determine the basic block counts for the section of code between
lines 10 and 15 of a given file. Just set breakpoints at the two lines of interest, zero the
counts when the first breakpoint is encountered, and then write out the counts file when
the second breakpoint is encountered. For example:

(dbx)  stop at “pix.c”:15

Process 0: [3] stop at “pix.c™:15

(dbx) stop at “pix.c™:20

Process 0: [4] stop at “pix.c™:20

(dbx)  run

Process 997 (pix.pixie) started

[3] Process 997 (pix.pixie) stopped at [main:15 ,0x400a48 (pixie
0x404570)] 15 first = 12;

(dbx) pixie clear

(dbx) cont

[4] Process 997 (pix.pixie) stopped at [main:20 ,0x400aa8 (pixie
0x404684)] 20 total = multiply(total, 2);

(dbx) pixie write

(dbx)  sh prof -pixie prog

Profile listing generated Tue Feb 14 11:08:46 1995
with:  prof -pixie prog

Total cycles Total Time Instructions Cyclesfinst Clock Target
53 5.3e-07s 27 1963 100.0MHz R4000

10: Total number of Load Instructions executed.

40: Total number of bytes loaded by the program.
3: Total number of Store Instructions executed.

75



Chapter 5: Examining and Changing Data

76

12: Total number of bytes stored by the program.

2: Total number nops executed in branch delay slot.

0: Total number conditional branches executed.

0: Total number conditional branches actually taken.

0: Total number conditional branch likely executed.

0: Total number conditional branch likely actually taken.

18: Total cycles waiting for current instr to finish.

26: Total cycles lost to satisfy scheduling constraints.
5: Total cycles lost waiting for operands be available.

*, *
-p[rocedures] using basic-block counts.
Sorted in descending order by the number of cycles executed in each *
procedure. Unexecuted procedures are not listed. *

*

*

*.

cycles(%) cum% secs instms  calls procedure(file)

27(50.94) 50.94 0.00 19 1 main(prog:prog.c)
18(33.96) 8491 0.00 4 1 multiply(prog:prog.c)
8(15.09) 100.00 0.00 4 2 add(prog:prog.c)

The above example uses the sh command to invoke prof directly from dbx.

For an explanation of the above listing and information on the prof and pixie commands,
see “Using the Performance Tools” in the Compiling and Performance Tuning Guide and the

prof(1) and pixie(1) reference pages.



Accessing C++ Member Variables

Accessing C++ Member Variables

Debugging a program written in C++ is somewhat different from debugging programs
written in other languages. This section describes features that affect how you access
variables. See also the section in the following chapter, “Referring to C++ Functions.”

Typically you use standard C++ syntax to access member variables of objects. For
example, if the string _name is a member variable of the object myWindow, you can print
its value by entering:

(dbx)  print myWindow._name
0x1001dclc = “MenuWindow”

To display a static member variable for a C++ class, you must specify the variable with
the class qualifier. For example, to print the value of the static member variable
costPerShare of the class CoOp, enter:

(dbx)  print CoOp::costPerShare
25.0

77






Chapter 6

Setting Breakpoints

Controlling Program Execution

A program typically runs until it exits or encounters an unrecoverable error. You can use
dbx, however, to stop a program under various conditions, step through your program
line by line, stop execution on receiving a signal, and execute conditional commands
based on your program’s status.

This chapter covers:

= “Setting Breakpoints”

« “Continuing Execution After a Breakpoint”

« “Tracing Program Execution”

= “Writing Conditional Commands”

= “Managing Breakpoints, Traces, and Conditional Commands”

= “Using Signal Processing”

= “Stopping on C++ Exceptions”

« “Stopping at System Calls”

= “Stepping Through Your Program”

= “Starting at a Specified Line”

« “Referring to C++ Functions”

Breakpoints allow you to stop execution of your program. Breakpoints can be
unconditional, in which case they always stop your program, or conditional, in which case
they stop your program only if a test condition that you specify is true.

79



Chapter 6: Controlling Program Execution

80

Note: All breakpoints halt program execution before executing the line on which they are
set. Therefore, if you want to examine the effects of a line of code, you should set the
breakpoint on the line of code following the one whose effects you want to study.

Each breakpoint is assigned a number when you create it. Use this number to reference
a breakpoint in the various commands provided for manipulating breakpoints (for
example, disable, enable, and delete, all described in “Managing Breakpoints, Traces, and
Conditional Commands” on page 89).

Setting Unconditional Breakpoints

To set an unconditional breakpoint, you simply specify the point at which you want to
stop program execution, using one of the following forms of the stop command:

stop at Sets a breakpoint at the current source line.
stopat line Sets a breakpoint at the specified source line in the current source file.

stopin  procedure
Sets a breakpoint to stop execution upon entering the specified
procedure. Execution will stop in all inlined or cloned instances of the
procedure.

stopat file:line
Sets a breakpoint in the specified file at the specified line.

Caution: If your program has multiple source files, be sure to set the breakpoint in the
correct file. To do so, you can explicitly set the source file using dbx’s file command (see
“Changing Source Files” on page 18) or you can use the func command to go to a source
file containing a specified function (see “Moving to a Specified Procedure” on page 69).

Setting Conditional Breakpoints

An unconditional breakpoint is the simplest type of breakpoint; your program stops
every time it reaches a specified place. On the other hand, a conditional breakpoint stops
your program only if a condition that you specify is true. The two conditions that you
can test are:

« Has the value of a variable or other memory location changed?

= |satest expression true?



Setting Breakpoints

Stopping If a Variable or Memory Location Has Changed

By including a variable clause in your stop command, you can cause dbx to stop if the
value of a variable or the contents of a memory location has changed.

If you provide only a variable name in your variable clause, the breakpoint stops your
program if the value of the variable has changed since the last time dbx checked it. If
instead of a variable name, you provide an expression of type pointer, dbx checks the data
pointed to. If the data pointed to is a structure, dbx checks that structure. If you provide
an expression that’s not of type pointer, dbx evaluates the expression and uses the result
as an address in memory. The breakpoint stops your program if the contents of the
memory location (32 bits) has changed since the last time dbx checked it.

The points at which dbx checks the value of a variable or memory location depend on the
command that you use to set the breakpoint:

stop [expression|variable]
Inspects the value before executing each source line. If the expression is
of type pointer, look at the data pointed to and watch until it changes.

If the expression is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address). For example, consider
the command:

stop (struct s*) 0x12345678

This command checks the contents of the structure located at
0x12345678 .

stop [expression]variable] at line
Inspects the value at the given source line. Stops if the value has
changed.

If the expression is of type pointer, look at the data pointed to and watch
until it changes. If the expression is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

stop [expression|]variable]in procedure
Inspects the value at every source line within a given procedure. Stops
if the value has changed.

If the expression is of type pointer, look at the data pointed to and watch
until it changes.

81



Chapter 6: Controlling Program Execution

82

If the expression is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

Using Fast Data Breakpoints

You can use fast watchpoints, also known as data breakpoints, with the stop command.
A fast watchpoint watches a specified variable or memory address without severely
impacting the performance of the program being debugged.

InIRIX 4 and earlier versions of dbx, the debugger had to single-step the process being
debugged and check if the value of a variable had changed after each instruction. With
fast watchpoints, the debugger uses a hardware virtual memory write protect
mechanism to allow the program to run freely until the variable being watched changes.
The program being debugged stops only when the virtual memory page containing the
variable is written to. If the value of the variable being watched does not changed, dbx
continues the execution of the process. If a write modifies a watched variable, dbx notifies
you of the change.

Consider a small program that contains a global variable called global
stop global

This command causes the program to stop if the value of the variable global changes.
The program runs virtually at full speed until global gets assigned a new value.
Similarly, consider the command:

stop 0x100100

This command stops when the 32- bit integer residing at address 0x100100 is modified,
and runs at nearly full speed until the value changes. This form of the stop command is
useful for watching the contents of anonymous memory, such as the memory returned
by malloc().

dbx still needs to use the single-step approach if the stop command contains an expression
to watch, such as in stop if global == 1 . The performance of the debugged program
can be greatly enhanced by including a variable to watch in the stop command.

For example, the previous stop command can be expressed equivalently as stop global
if global == . This instructs the debugger to check only the expression global ==
if the value of global changes. For situations where the expression does not depend



Setting Breakpoints

upon a particular variable getting modified such as stop if global == x * 3 , the
single-step approach is the only way to achieve the desired behavior.

Stopping If a Test Expression Is True

By including a test clause in your stop command, you can cause dbx to stop if the value
of an expression is true. You can use any valid numerical expression as a test. If the result
of the expression is nonzero, the expression is true and the test is successful.

The point at which dbx evaluates the test expression depends on the command that you
use to set the breakpoint:

stop if expression
Evaluates the expression before executing each source line. Note that
execution is very slow if you choose this type of conditional breakpoint.

stopat lineif expression
Evaluates the expression at the given line.

stopin procedure if expression
Evaluates the expression at every source line within a given procedure.

Conditional Breakpoints Combining Variable and Test Clauses

You can create conditional breakpoints that combine both variable and test clauses. In
these cases, the overall test evaluates to true only if both clauses are true.

The following forms of the stop command combine both the variable and test clauses:

stop [expressionl]variable]if expression2
Tests both conditions before executing each source line. Stops if both
conditions are true.

If expressionl is of type pointer, look at the data pointed to and watch
until it changes. If expressionl is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

stop [expressionl]variable] at lineif expression2
Tests both conditions at the given source line. Stops if both conditions
are true.

83



Chapter 6: Controlling Program Execution

84

If expressionl is of type pointer, look at the data pointed to and watch
until it changes. If expressionl is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

stop [expressionl]variable] in procedureif expression2
Tests both conditions at every source line within a given procedure.
Stops if both conditions are true.

If expressionl is of type pointer, look at the data pointed to and watch
until it changes. If expressionl is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

Continuing Execution After a Breakpoint

The cont command allows you to continue execution after any type of breakpoint. In its
simplest form, program execution continues until the end of the program or until another
breakpoint is reached. You can also tell dbx to continue your program until it reaches a
given line or procedure; this is similar to setting a temporary, “one-shot” breakpoint and
then continuing.

The syntax of the cont command is:
cont Continues execution with the current line.

cont {at | to}line
Sets a temporary breakpoint at the specified source line, then resumes
execution with the current line. When your program reaches the
breakpoint at line, dbx stops your program and deletes the temporary
breakpoint. The keywords at and to are equivalent.

contin procedure
Sets a temporary breakpoint to stop execution upon entering the
specified procedure, then resumes execution with the current line. When
your program reaches the breakpoint in procedure, dbx stops your
program and deletes the temporary breakpoint.

If your program stopped because dbx caught a signal intended for your program, then
dbx will send that signal to your program when you continue execution. You can also
explicitly send a signal to your program when you continue execution. Sending signals
to your program upon continuation is discussed in “Continuing After Catching a Signal”
on page 93.



Tracing Program Execution

When you debug multiprocess programs, the resume command can be more helpful than
the cont command. Refer to “Resuming a Suspended Process” on page 127 for more
information about the resume command.

Tracing Program Execution

The trace command allows you to observe the progress of your program as it executes.
With it, you can print:

= values of variables at specific points in your program or whenever variables change
value

= parameters passed to and values returned from functions

Each trace is assigned a number when you create it. Use this number to reference the
trace in the various commands provided for manipulating traces (for example, disable,
enable, and delete, all described in “Managing Breakpoints, Traces, and Conditional
Commands” on page 89).

The syntax of the trace command is:

trace variable Whenever the specified variable changes, dbx prints the old and new
values of that variable.

trace procedure
Prints the values of the parameters passed to the specified procedure
whenever your program calls it. Upon return, dbx prints the return
value.

trace [expression]variable] at line
Whenever your program reaches the specified line, dbx prints the value
of the variable if its value has changed.

If the expression is of type pointer, look at the data pointed to and watch
until it changes. If the expression is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

trace [expression|]variable]in procedure
Whenever the variable changes within the procedure, dbx prints the old
and new values of that variable.

85



Chapter 6: Controlling Program Execution

86

If the expression is of type pointer, look at the data pointed to and watch
until it changes. If the expression is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

trace [expressionl]variable] at lineif expression2
Prints the value of the variable (if changed) whenever your program
reaches the specified line and the given expression is true.

If expressionl is of type pointer, look at the data pointed to and watch
until it changes. If expressionl is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

trace [expressionl]variable]in procedureif expression2
Whenever the variable changes within the procedure that you specify,
dbx prints the old and new values of that variable, if the given expression
is true.

If expressionl is of type pointer, look at the data pointed to and watch
until it changes. If expressionl is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

To examine the parameters passed to and values returned from a function, you can trace
that function. For example, if the function name is foo, set the trace by entering:

(dbx) trace foo

When you execute your program, dbx prints the values of the parameters passed to foo
whenever your program calls it. Upon return from foo, dbx prints the return value:

(dbx)  run

[3] calling foo(text = 0x10000484 = "Processing...\n", i = 4) from
function main

[4] foo returning -1 from foo

In the example shown above, foo receives two parameters: a character string variable
named text containing the value “Processing...\n” and an integer variable named i
containing the value 4. The trace also indicates that foo returns a value of -1.

You can also examine a variable as it changes values. For example, you can monitor the
value of a string variable named curarg as you use it to process an argument list. To set
the trace, enter:

(dbx) trace curarg
Process 2395: [6] trace .test.main.curarg in main



Writing Conditional Commands

When you set a trace on a variable, examine the confirmation that dbx prints. If you use
the same variable name in multiple functions in your program, dbx may not set the trace
on the variable that you want. If dbx sets the trace on an incorrect variable, delete the trace
and set a new trace using a qualified variable format as described in “Qualifying Names
of Program Elements” on page 43. For more information on deleting traces, see “Deleting
Breakpoints, Traces, and Conditional Commands” on page 91.

So, in this example, if you use the variable curarg in both main and a function called
arg_process, and you want to trace the curarg in arg_process, first delete this trace and
then set a new trace:

(dbx) delete 6
(dbx) trace arg_process.curarg
Process 2395: [7] trace .test.arg_process.curarg in arg_process

When you execute your program, whenever curarg changes, dbx prints its old and new
values:

(dbx) run
[7] curarg changed before [arg_process: line 53]:
new value = (nil);
[7] curarg changed before [arg_process: line 86]:
old value = 0;
new value = Ox7fffc7e5 = "-i";
[7] curarg changed before [arg_process: line 86]:
old value = 2147469285;
new value = 0x7fffc7eb = "names.out";
[7] curarg changed before [arg_process: line 86]:
old value = 2147469291
new value = 0x7fffc7f5 = "names.in";

Writing Conditional Commands

A conditional command created with the when command is similar to a breakpoint set
with the stop command, except that rather than stopping when certain conditions are
met, dbx executes a list of commands. The command list can consist of any dbx
commands, separated by semicolons if you include more than one command in the
command list. Additionally, you can use the keyword stop in the command list to stop
execution, just like a breakpoint.

Each conditional command is assigned a number when you create it. You use this
number to reference the conditional command in the various commands provided for

87



Chapter 6: Controlling Program Execution

manipulating conditional commands (for example, disable, enable, and delete, all
described in “Managing Breakpoints, Traces, and Conditional Commands” on page 89).

The syntax of the when command is:

when [expression | variable] { command-list}

Inspects the value before executing each source line. If it has changed,
executes the command list.

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

when [expression | variable] at line { command-list}

Inspects the value at the given source line. If it has changed, executes the
command list.

If the expression is of type pointer, look at the data pointed to and watch
until it changes. If the expression is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

when [expression | variable] in procedure { command-list}

Inspects the value at every source line within a given procedure. If it has
changed, executes the command list.

If the expression is of type pointer, look at the data pointed to and watch
until it changes. If the expression is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

when if expression { command-list}

Evaluates the expression before executing each source line. If it is true,
executes the command list. Note that execution is slow if you choose this
type of conditional command execution.

when at lineif expression { command-list}

Evaluates the expression at the given line. If it is true, executes the
command list.

when in procedure if expression { command-list}

88

Evaluates the expression at every source line within a given procedure.
If it is true, executes the command list.



Managing Breakpoints, Traces, and Conditional Commands

when [expressionl|variable] if expression2 { command-list}
Checks if the value of the variable has changed. If it has changed and the
expression is true, executes the command list.

If expressionl is of type pointer, look at the data pointed to and watch
until it changes. If expressionl is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

when [expressionl]variable] at lineif expression2 { command-list}
Checks if the value of the variable has changed each time the line is
executed. If the value has changed and the expression is true, executes
the command list.

If expressionl is of type pointer, look at the data pointed to and watch
until it changes. If expressionl is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

when [expressionl]variable] in procedureif expression2 { command-list}
Checks if the value of variable has changed at each source line of the
given procedure. If the value has changed and the expression is true,
executes the command list.

If expressionl is of type pointer, look at the data pointed to and watch

until it changes. If expressionl is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

Managing Breakpoints, Traces, and Conditional Commands

dbx provides commands that allow you to disable, enable, delete, and examine the status
of the breakpoints, traces, and conditional commands that you set in your programs.

Each breakpoint, trace, and conditional command is assigned a number when you create
it. Use these numbers as identifiers in the various commands provided for manipulating
these debugging controls.

Listing Breakpoints, Traces, and Conditional Commands

The status command lists all of the breakpoints, traces, and conditional commands that
you have set and indicates whether they are enabled or disabled.

89



Chapter 6: Controlling Program Execution

90

For example, consider executing the following commands while debugging a program
called test:

(dbx)  stop in foo
Process 0: [3] stop in foo
(dbx) r
Process 22631 (test) started
[3] Process 22631 (test) stopped at [fo0:38 ,0x10001050]
38 r =foo2(i+1);
(dbx) trace total
Process 22631.: [4] trace total in foo
(dbx) when at 60 {printi,j }
Process 22631: [5] when at “/usr/var/tmp/dbx_examples/test.c”:60 {

printi, j }
If you enter status, you see the following:

(dbx)  status

Process 22631: [3] stop in foo

Process 22631: [4] trace total in foo

Process 22631: [5] when at “/usr/var/tmp/dbx_examples/test.c”:60 {

printi, j}

Disabling Breakpoints, Traces, and Conditional Commands

The disable command allows you to temporarily disable a breakpoint, trace, or
conditional command so that it is inoperative and has no effect on program execution.
dbx remembers all information about a disabled breakpoint, trace, or conditional
command, and you may enable it using the enable command described in “Enabling
Breakpoints, Traces, and Conditional Commands” on page 91.

The syntax of the disable command is:

disable item [, item...]
Disables the specified breakpoint(s), trace(s), or conditional
command(s). This command has no effect if the item you specify is
already disabled.

For example, to disable the conditional command set in “Listing Breakpoints, Traces, and
Conditional Commands” on page 89 enter:

(dbx) disable 4



Managing Breakpoints, Traces, and Conditional Commands

If you enter status, you see the following:

(dbx)  status

Process 22631: [3] stop in foo

Process 22631: [4] (disabled) trace total in foo

Process 22631: [5] when at “/usr/var/tmp/dbx_examples/test.c”:60 {
print i, j

Enabling Breakpoints, Traces, and Conditional Commands

The enable command reverses the effects of a disable command: The breakpoint, trace, or
conditional command that you specify is enabled and once again affects the execution of
your program. The syntax of the enable command is:

enable item [, item...]
Enables the specified breakpoint(s), trace(s), or conditional command(s).

For example, to enable the conditional command disabled in “Disabling Breakpoints,
Traces, and Conditional Commands” on page 90, enter:

(dbx) enable 4

Executing the status command shows that the condition command is now enabled:

(dbx)  status

Process 22631: [3] stop in foo

Process 22631: [4] trace total in foo

Process 22631: [5] when at “/usr/var/tmp/dbx_examples/test.c”:60 {
printi, j

Deleting Breakpoints, Traces, and Conditional Commands

The delete command allows you to delete breakpoints, traces, and conditional
commands:

delete {item [, item..] ] all }
Deletes the item or items specified. If you use the keyword all instead of
listing individual items, dbx deletes all breakpoints, traces, and
conditional commands.

For example, to delete the breakpoint and trace set in “Listing Breakpoints, Traces, and
Conditional Commands” on page 89, enter:

91



Chapter 6: Controlling Program Execution

(dbx) delete 3, 4

If you enter status, you see the following:

(dbx)  status
Process 22631: [5] when at “/usr/var/tmp/dbx_examples/test.c”:60 {

printi, j}
To delete all breakpoints, traces, and conditional commands, enter:
(dbx) delete all

Using Signal Processing

92

dbx can detect any signals sent to your program while it is running and, at your option,
stop the program.

Catching and Ignoring Signals

With the catch command, you can instruct dbx to stop your program when it receives any
specified signal. The ignore command undoes the effects of a catch command.

The catch and ignore commands have the following syntax:

catch {signal | all }
Instructs dbx to stop your program whenever it receives the specified
signal. If you use the keyword all rather than giving a specific signal, dbx
catches all signals.

ignore {signal | all }
Instructs dbx to ignore the specified signal. All ignored signals are

passed to your program normally. If you use the keyword all rather than
giving a specific signal, dbx ignores all signals.

catch Prints a list of all signals caught.
ignore Prints a list of all signals ignored.
You can use the signal names and numbers as listed in the signal(2) reference page. You

can also abbreviate the signal names by omitting the “SIG” portion of the name. You can
use uppercase or lowercase for the signal names.



Using Signal Processing

Note: Because “int” (in lowercase) is a dbx keyword, you cannot use it as an abbreviation
for the SIGINT signal. You must use uppercase (“INT”), the full signal name (“SIGINT”
or “sigint”), or the signal number (“2”). SIGINT is the only signal name with such a
restriction.

If you instruct dbx to catch a signal, whenever that signal is directed to your program, dbx
intercepts it and stops your program. Your program does not see this signal until you
continue your program with the cont command. If your program has a handler for the
signal, the signal is then passed to the program. If there is no handler for the signal, the
program does not see the signal. You can suppress passing the signal to the program’s
signal handler by issuing a step or next command, rather than cont.

If you issue a SIGINT signal at the keyboard (usually by pressing <Ctrl-C> ) while you
are running an application under dbx, what happens depends on the circumstances:

= Ifthe process is in the same IRIX process group as dbx, the interrupt signal is sent to
both dbx and the process. Both dbx and the process stop running. You are left at the
dbx command line.

= |fthe process was added with addproc , dbx—P , or dox —p , it is not in the same IRIX
process group as dbx. In this case, the signal interrupt is sent to dbx but not to the
process. dbx stops running, but the process continues to run. Use the showproc
command to see whether the process is still running. Then use the suspend
command to stop the process.

Continuing After Catching a Signal

The cont command allows you to continue execution after catching a signal. You can also
use the cont command to specify a different signal to send to your program than the one
that dbx caught. Using the same syntax, you can also send a signal to your program when
you continue, even if your program did not stop because of a caught signal.

Use the following forms of the cont command when handling signals. In each case, if you
do not provide a signal, but your program stopped because dbx caught a signal intended
for your program, then dbx sends that signal to your program when you continue
execution:

cont [signal] Continues execution with the current line and sends the specified signal
to your program.

93



Chapter 6: Controlling Program Execution

cont [signal] {at ] to }line
Sets a temporary breakpoint at the specified source line, then resumes
execution with the current line and sends the specified signal to your
program.

cont [signal]in procedure
Sets a temporary breakpoint to stop execution upon entering the
specified procedure, then resumes execution with the current line and
sends the specified signal to your program.

For example, if your program stopped because dbx caught a SIGINT signal, dbx will
automatically send that signal to your program, if you enter:

(dbx) cont

Suppose you have a procedure called alarm_handler to handle an alarm signal sent to
your program. If you want to test this procedure by single-stepping through it, you can
execute the following command:

(dbx) cont SIGALRM in alarm_handler

This sets a temporary breakpoint to stop your program upon entering alarm_handler,
continues execution of your program, and sends a SIGALRM signal to your program.
Your program then enters the alarm_handler procedure and stops. You can then
single-step through the procedure and observe execution.

Stopping on C++ Exceptions

94

The intercept command stops program execution on C++ exceptions. You can append a
conditional expression to an intercept command by using the if clause. However, the
context of an intercept break is not that of the throw; the context is the exception handling
code of the C++ runtime library. Hence, only global variables have unambiguous
interpretation in the if clause. To refer to a variable whose scope is that of the throw, use
the fully qualified name for the variable.



Stopping on C++ Exceptions

The syntax of the intercept command is:

intercept {all] item}
Stops on all C++ exceptions, or exceptions that throw the base type item.

intercept unexpected {[ all}| [item [, item] I}
Stops on all C++ exceptions that have either no handler or are caught by
an “unexpected” handler. You may omit all. If you specify item, stops on
exceptions that throw the base type item.

intercept ... if expression
You can append the if clause to all intercept commands. Your program
stops only if expression is hon-zero. Note that the context for evaluation
of expression is the C++ runtime library, not that of the throw, so use
global variables or fully qualified names in expression.

bx is an alias for intercept and unx is an alias for unexpected.

The following program example illustrates the if clause with the intercept command:
int global = 1;

main ({
int local = 2;

try {
throw -1;

}
catch (int key) {
printf (“exception: %d.\n", key);
}
}

To set a break with a condition on the global variable, enter:
(dbx) intercept int if global = 0

Use a fully qualified name to set a break with a condition on the local variable:

(dbx) intercept int if main.local '= 0

Do not include complex expressions involving operators such as * and & in your type
specification for an intercept command. Note, however, that if you use the intercept

command with a specific base type, you will also stop your program on throws of
pointer, reference, const and volatile types. For example:

95



Chapter 6: Controlling Program Execution

(dbx)  bx char

Your program will stop on throws of type char, char *, char&, const char&, volatile
char*, and so forth.

Like all other break points, pgrp or a pid clause can be appended to an intercept
command. For example:

(dbx) intercept int pid 12345

(dbx) intercept char pgrp

Stopping at System Calls

96

Because system calls are part of the operating system and their source is generally not
available for debugging purposes, you cannot set breakpoints in system calls using the
same method that you use for your program’s procedures. Instead, dbx provides the
syscall command to allow you to stop your program when it executes system calls. With
the syscall command you can catch (breakpoint) system calls either at the entry to the
system call or at the return from the system call.

The syntax of the syscall command is:

syscall catch

syscall ignore

syscall catch

{call | return }{system_call ] all }

Sets a breakpoint to stop execution upon entering (call) or returning
from (return) the specified system call. Note that you can set dbx to catch
both the call and the return of a system call.

If you use the keyword all rather than giving a specific system call, dbx
catches all system calls.

{call | return }{system_call | all }
Clears the breakpoint to stop execution upon entering (call) or returning
from (return) the specified system call.

If you use the keyword all rather than giving a specific system call, dbx
clears the breakpoints to stop execution upon entering (call) or
returning from (return) all system calls.

[{call | return 1}]

Prints a list of all system calls caught upon entry (call) or return (return).
If you provide neither the call nor return keyword, dbx lists all system
calls that are caught.



Stepping Through Your Program

syscall ignore [{call ] return }]
Prints a list of all system calls not caught upon entry (call) or return
(return). If you provide neither the call nor return keyword, dbx lists all
system calls that are ignored.

syscall Prints a summary of the catch and ignore status of all system calls. The
summary is divided into four sections: 1) caught at call, 2) caught at
return, 3) ignored at call, and 4) ignored at return.

Note: The fork and sproc system calls are treated specially as they invoke new processes.
The returns from these system calls are controlled by the dbx variables $promptonfork and
$mp_program, not by syscall. This is discussed in “Handling fork System Calls” on

page 130 and “Handling sproc System Calls and Process Group Debugging” on

page 132. The execv and execve system calls are treated specially as they change a
process into a new program. For more information, see “Handling exec System Calls” on
page 131.

The system calls are listed in /usr/include/sys.s. dbx ignores the case of the system call
names in all syscall commands; therefore, you can use uppercase or lowercase in these
commands.

A particularly useful setting is:

(dbx)  syscall catch call exit

This stops your program upon entry to exit. With your program stopped, you can do a
stack trace before the termination to see why exit was called.

Stepping Through Your Program

Stepping is a process of executing your program for a fixed number of lines and then
automatically returning control to dbx. dbx provides two commands for stepping through
lines of code: step and next.

For both step and next, dbx counts only those source lines that actually contain code; for
the purposes of stepping, dbx ignores blank lines and lines consisting solely of comments.

The next and step commands differ in their treatment of procedure calls. When step
encounters a procedure call, it usually “steps into” the procedure and continues stepping
through the procedure (counting each line of source). On the other hand, when next
encounters a procedure call, it “steps over” the procedure—executing it without

97



Chapter 6: Controlling Program Execution

98

stopping but not counting lines in the procedure—and continues stepping through the
current procedure.

The following code fragment illustrates the difference between step and next:

55 foo(argl, arg2)
56 intargl, arg2;

57 {

58 if (argl <arg2) {
78 return(0);

79 }

211 x=foo(i,j);
212 y=2*x;

In this example, if at line 211 you execute a step command to advance one line, dbx allows
the process to proceed to line 58 (the first code line of the foo procedure). However, if you
execute a next command, dbx executes line 211—calling foo—and advances the process
to line 212.

Stepping Using the step Command

The format of the step command is:

step [integer] Executes the specified number of lines of source code, stepping into
procedures. If you do not provide an argument, step executes one line. If
step encounters any breakpoints, it immediately stops execution.

By default, step steps into only those procedures that are compiled with the debugging
options -g, -g2, or -g3 for which line numbers are available in the symbol table. Note that
this does not include standard library routines because they are not compiled using
debugging options.

You can modify this behavior, even force dbx to step into procedures not compiled with
full debugging information, by changing the value of the dbx variable $stepintoall.



Stepping Through Your Program

Table 6-1 summarizes how the value of $stepintoall affects the step command.

Table 6-1 Effect of $stepintoall Variable on the step Command

$stepintoall Effect on step Command

value

0 (default) Steps into all procedures that are compiled with debugging
options - g, -g2, or -g3 for which line numbers are available in the
symbol table.

1 In addition to the above procedures, steps into any procedures
for which a source file can be found. Note that when you debug
a source file compiled without symbols or compiled with
optimization, the line numbers may jump erratically.

2 Steps into all procedures. Note that if dbx cannot locate a source

file, then it cannot display source lines as you step through a
procedure.

If your program has DSOs, set the environment variable LD_BIND_NOW to 1 before you
run your program. This will force complete run-time linking. Otherwise, you can
accidentally step into the run-time-linker, rld(1), which becomes part of your program at
run time. Useful stack traces are then impossible. To avoid this situation, enter the
following before the run command:

(dbx) setenv LD_BIND_NOW 1

99



Chapter 6: Controlling Program Execution

Stepping Using the next Command

The format of the next command is:

next [integer] Executes the specified number of lines of source code, stepping over
procedures. If you do not provide an argument, next executes one line.
If next encounters any breakpoints, even in procedures that it steps over,
it immediately stops execution.

Using the return Command

If you step into a procedure and then decide you don’t want to step through the rest of
it, use return to finish executing the procedure and return to the calling procedure.

The format of the return command is:

return Continues execution until control returns to the procedure that invoked
the return command.

return  proc Continues execution until control returns to the named procedure.
Execution continues, unless stopped by a breakpoint, until the latest
invocation of the procedure named by proc at the time the command was
issued is reached. Execution doesn’t stop at subsequent invocations of
the same procedure. The search for the frame to return to starts with the
previous frame, because the current frame is skipped in looking for a
frame whose name matches proc. If execution is stopped for any reason,
this command is cancelled.

Starting at a Specified Line

When you continue your program, you typically do so at the place where it stopped
using the cont command. However, you can also force your program to continue at a
different address by using the goto command:

goto line Begins execution at the specified line. You may not use the goto
command to resume execution with a line outside of the current
procedure.

100



Referring to C++ Functions

Referring to C++ Functions

As discussed in the section “Accessing C++ Member Variables” in Chapter 5, debugging
a program written in C++ has some unique features. This section discusses setting
breakpoints in C++ functions.

For the purpose of dbx debugging, functions in C++ programs fall into three general
categories:

Member functions
Refers to member functions using the syntax classname::functionname.
For example, refers to the member function foo in the class Window as
Window::foo.

Global C++ functions
Refers to global functions using the syntax ::functionname. For example,
refers to the global function foo as ::foo.

Non-C++ functions
Refers to non-C++ functions using the syntax functionname. For
example, refers to the function printf as printf.

When using dbx with C++, you cannot distinguish between overloaded functions. For
example, consider two functions:

print(int);
print(float);

The following command sets a breakpoint in both functions:
(dbx)  stop in :print

The following example illustrates various possibilities:

#include <stdio.h>
class foo {
int n;
public:
foo() {n = 0;}
foo(int x);
int bar();
int bar(int);
2

int foo:: bar()

101



Chapter 6: Controlling Program Execution

{

return n;

}

int foo:: bar(int x)

{

return n + Xx;

}

foo::foo(int x)

{

n=x;

}

int square(int x)

{

return x*x;

}

main()

{

foo a;
foo b =11;
int x = a.bar();
inty = b.bar(x) + square(x);
printf("y = %d\n", y);
}
If you enter:
(dbx)  stop in foo::foo

dbx stops execution in the constructor for the variable b; dbx also stops in the constructor
for the variable a.

If you enter:
(dbx)  stop in foo::bar

dbx stops execution both when a.bar is called and when b.bar is called, because dbx is
unable to distinguish between the overloaded functions.

To stop in square, enter:

(dbx)  stop in ::square

102



Referring to C++ Functions

To stop in printf (a C function), enter:

(dbx)  stop in printf

To set breakpoints in a specific function from a C++ template, the name of the function
must be in back quotation marks to force dbx to interpret the entire character string as the

name of the function. Otherwise the < and > characters in the template name are
interpreted by dbx as operators.

dbx sets breakpoints in all instantiations of the template if you do not use back quotation
marks and simply leave out the template’s type-argument list, that is leave out the two
characters < and > and the characters included between them.

The following code illustrates these points:

template <class T> myclass {

myclass() { /*... */ }

~myclass() { /*... */ }

myfunc(T) {/* ... */ }};

To set a breakpoint only in the <int> template function for myfunc enter:

(dbx)  stop in “myclass<int>::myfunc’

To set breakpoints in all functions myfunc for all instantiations of the template class
enter:

(dbx) stop in myclass::myfunc

103






Chapter 7

Debugging Machine Language Code

This chapter explains how to debug machine language code by:
= “Examining and Changing Register Values”

= “Examining Memory and Disassembling Code”

= “Setting Machine-Level Breakpoints”

= “Continuing Execution After a Machine-Level Breakpoint”
= “Tracing Execution at the Machine Level”

= “Writing Conditional Commands at the Machine Level”

= “Stepping Through Machine Code”

Examining and Changing Register Values

Using dbx, you can examine and change the hardware registers during execution of your
program. Table 7-1 lists the machine form of the register names and the alternate
software names as defined in the include file regdef.h.

Table 7-1 Hardware Registers and Aliases

Register Software Name Description

$r0 $zero Always 0

$rl $at Reserved for assembler

$r2... $r3 $vO0... $v1 Expression evaluations, function return

values, static links

$rd... $r7 $a0... $a3 Arguments

$r8... $ril $t0... $t7 Temporaries (32 bit)
$a4... $a7, Arguments (64 bit)
$ta0... $ta3

105



Chapter 7: Debugging Machine Language Code

Table 7-1 (continued) Hardware Registers and Aliases

Register Software Name  Description

$ri2... $ri5 $t4... $t7, Temporaries (32 bit)

$t0... $t3
$ta0... $ta3 Temporaries (64 bit)

$ri6... $r23 $s0... $s7 Saved across procedure calls

$r24... $r25 $t8... $t9 Temporaries

$r26... $r27 $kO... $k1 Reserved for kernel

$r28 $gp Global pointer

$r29 $sp Stack pointer

$r30 $s8 Saved across procedure calls

$r3l $ra Return address

$mmhi Most significant multiply/divide result
register

$mmlo Least significant multiply/divide result
register

$fcsr Floating point control and status register

$feir Floating point exception instruction register

$cause Exception cause register

$do, $d2, ... $d30 Double precision floating point registers
(32 bit)

$d0, $d2, ... $d31 (64 bit)

$f0, $f2, ... $f30 Single precision floating point registers
(32 bit)

$f0, $f1, ... $f31 (64 bit)

106



Examining and Changing Register Values

For registers with alternate names, the dbx variable $regstyle controls which name is
displayed when you disassemble code (as described in “Examining Memory and
Disassembling Code” on page 109). If $regstyle is set to 0, then dbx uses the alternate form
of the register name (for example, “zero” instead of “r0,” and “t1” instead of “r9”); if
$regstyle is anything other than 0, the machine names are used (“r0” through “r31”).

Printing Register Values
Use the printregs command to print the values stored in all registers.

The base in which the register values are displayed depends on the values of the dbx

variables $octints and $hexints. By default, dbx prints the register values in decimal. You
can set the output base to octal by setting the dbx variable $octints to a nonzero value. You
can set the output base to hexadecimal by setting the dbx variable $hexints to a nonzero
value. If you set both $octints and $hexints to nonzero values, $hexints takes precedence.

To examine the register values in hexadecimal, enter the following:

(dbx) set $hexints = 1

(dbx) printregs

r0/zero=0x0  rl/at=0x19050
r2iM0=0x8  r3/v1=0x100120e0
r4/a0=0x4  r5/al=0xffffffad78
r6/a2=0xffffffad88  r7/a3=0x0
8/a4=0x10  r9/a5=0x20
rl0/a6=0x0 r1ll/a7=0xtbd5990
r12t0=0x0  r13/1=0x0
rl4f2=0x65 r15/t3=0x0
rl6/s0=0x1  r17/s1=0xfffffad78
r18/s2=0xffifffad88  r19/s3=0xffffffaf70
r20/s4=0x0  r21/s5=0x0
122/s6=0x0  r23/s7=0x0
r248=0x0  r25t9=0x10001034
r26/k0=0x0  r27/k1=0x20
r28/gp=0x1001a084  r29/sp=0xffffffaca0
130/s8=0x0  r31/ra=0x1000110c

107



Chapter 7: Debugging Machine Language Code

108

mdhi=0x0  mdlo=0xe0
cause=0x24  pc=0x10001050

fpesr=0x0

f0=0.0000000e+00  f1=0.0000000e+00
£3=0.0000000e+00  4=0.0000000e+00
6=0.0000000e+00  7=0.0000000e+00
f9=0.0000000e+00  10=0.0000000e+00

12=0.0000000e+00
15=0.0000000e+00
18=0.0000000e+00
21=0.0000000e+00
24=0.0000000e+00
27=0.0000000e+00
30=0.0000000e+00

13=0.0000000e+00
16=0.0000000e+00
19=0.0000000e+00
22=0.0000000e+00
25=0.0000000e+00
28=0.0000000e+00
31=0.0000000e+00

2=0.0000000e+00

5=0.0000000e+00

18=0.0000000e+00

11=0.0000000e+00

14=0.0000000e+00
17=0.0000000e+00
20=0.0000000e+00
23=0.0000000e+00
f26=0.0000000e+00
f29=0.0000000e+00

d0=0.000000000000000e+00
d2=0.000000000000000e+00
d4=0.000000000000000e+00
d6=0.000000000000000e+00
d8=0.000000000000000e+00
d10=0.000000000000000e+00
d12=0.000000000000000e+00
d14=0.000000000000000e+00
d16=0.000000000000000e+00
d18=0.000000000000000e+00
d20=0.000000000000000e+00
d22=0.000000000000000e+00
d24=0.000000000000000e+00
d26=0.000000000000000e+00
d28=0.000000000000000e+00
d30=0.000000000000000e+00

d1=0.000000000000000e+00
d3=0.000000000000000e+00
d5=0.000000000000000e+00
d7=0.000000000000000e+00
d9=0.000000000000000e+00
d11=0.000000000000000e+00
d13=0.000000000000000e+00
d15=0.000000000000000e+00
d17=0.000000000000000e+00
d19=0.000000000000000e+00
d21=0.000000000000000e+00
d23=0.000000000000000e+00
d25=0.000000000000000e+00
d27=0.000000000000000e+00
d29=0.000000000000000e+00
d31=0.000000000000000e+00

(Note that there are twice as many floating point registers with 64-bit programs.) You can
also use the value of a single register in an expression by typing the name of the register
preceded by a dollar sign ($).

For example, to print the current value of the program counter (the pc register), enter:

(dbx)  printx $pc
0x10001050



Examining Memory and Disassembling Code

Changing Register Values

In the same way you change the values of program variables, you can use the assign
command to change the value of registers:

assign register = expression
Assigns the value of expression to register. You must precede the name of
the register with a dollar sign ($).

For example:

(dbx) assign $f0 = 3.14159
3.1415899999999999

(dbx) assign $t3 = Ox5a
Ox5a

By default, the assign register command changes the register value in the current
activation level, which is a typical operation. To force the hardware register to be updated
regardless of the current activation level, use the $ set $framereg command.

Examining Memory and Disassembling Code

The listregions command shows all memory regions, along with their sizes, in use by your
program. This overview can be particularly useful if you want to know to what piece of
your program a given data address corresponds. Since listregions shows the sizes of the
memory regions, it allows you to easily determine the sizes of the data and stack regions
of your program.

The forward slash (/) and question mark (?) commands allow you to examine the
contents of memory. Depending on the format you specify, you can display the values as
numbers, characters, or disassembled machine code. Note that all common forms of
address are supported. Some unusual expressions may not be accepted unless enclosed in
parentheses, as in (address)/count format.

109



Chapter 7: Debugging Machine Language Code

110

The commands for examining memory have the following syntax:

address / count format

Prints the contents of the specified address, or disassembles the code for
the instruction at the specified address. Repeat for a total of count
addresses in increasing address—in other words, an “examine forward”
command. The format codes are listed in Table 7-2.

address ? count format

Prints the contents of the specified address or, disassembles the code for
the instruction at the specified address. Repeat for a total of count
addresses in decreasing address—in other words, an “examine
backward” command. The format codes are listed in Table 7-2.

address / count L value mask

Table 7-2

Examines count 32-bit words in increasing addresses; prints those 32-bit
words which, when ORed with mask, equals value. This command
searches memory for specific patterns.

Repeats the previous examine command with increasing address.

Repeats the previous examine command with decreasing address.

Memory Display Format Codes

Format Code

Displays Memory in the Format

i

d
D
dd

XX

print machine instructions (disassemble)
print a 16-bit word in signed decimal
print a 32-bit word in signed decimal
print a 64-bit word in signed decimal
print a 16-bit word in octal

print a 32-bit word in octal

print a 64-bit word in octal

print a 16-bit word in hexadecimal

print a 32-bit word in hexadecimal

print a 64-bit word in hexadecimal

print a 16-bit word in unsigned decimal




Examining Memory and Disassembling Code

Table 7-2 (continued) Memory Display Format Codes

Format Code Displays Memory in the Format

\Y print a 32-bit word in unsigned decimal

W print a 64-bit word in unsigned decimal

L like X but use with val mask

b print a byte in octal

c print a byte as character

S print a string of characters that ends in a null byte
f print a single-precision real number

g print a double-precision real number

For example, to display 10 disassembled machine instructions starting at the current
address of the program counter, enter:

(dbx)  $pc/10i

*[main:26, 0x400290] sw zero,28(sp)
[main:27, 0x400294] sw zero,24(sp)
[main:29, 0x400298] Iw t1,28(sp)
[main:29, 0x40029c] Iw t2,32(sp)
[main:29, 0x4002a0] nop
[main:29, 0x4002a4] slt at,t1,t2
[main:29, 0x4002a8] beq at,zero,0x4002ec
[main:29, 0x4002ac] nop
[main:31, 0x4002b0] Iw t3,28(sp)

[main:31, 0x4002b4] nop

To disassemble another 10 lines, enter:

(dbx) ./

[main:31, 0x4002b8] addiu  t4,t3,1
[main:31, 0x4002bc] sw t4,28(sp)
[main:32, 0x4002c0] Iw t5,24(sp)
[main:32, 0x4002c4] Iw 16,28(sp)

[main:32, 0x4002c8] nop
[main:32, 0x4002cc] addu t7,t5,t6

[main:32, 0x4002d0] sw t7,24(sp)
[main:33, 0x4002d4] Iw t8,28(sp)
[main:33, 0x4002d8] Iw 19,32(sp)

111



Chapter 7: Debugging Machine Language Code

[main:33, 0x4002dc] nop

To examine ten 32-bit words starting at address 0x7fffc754, and print those whose least
significant byte is hexadecimal 0x19, enter:

(dbx)  Ox7fffc754 / 10 L Ox19 Oxff
7fffc758: 00000019

Consider a single-precision floating point array named array. You can examine the six
consecutive elements, beginning with the fifth element, by entering:

(dbx)  &array[4] / 6f
7fffc748: 0.2500000 0.2000000 0.1666667 0.1428571
7fffc758: 0.1250000 0.1111111

Setting Machine-Level Breakpoints

112

dbx allows you to set breakpoints while debugging machine code just as you can while
debugging source code. You set breakpoints at the machine code level using the stopi
command.

The conditional and unconditional versions of the stopi commands work in the same way
as the stop command described in “Setting Breakpoints” on page 79, with these
exceptions:

= The stopi command checks its breakpoint conditions on a machine-instruction level
instead of a source-code level.

= The stopi at command requires an address rather than a line number.

Each breakpoint is assigned a number when you create it. Use this number to reference
the breakpoint in the various commands provided for manipulating breakpoints (for
example, disable, enable, and delete, all described in “Managing Breakpoints, Traces, and
Conditional Commands” on page 89).



Setting Machine-Level Breakpoints

Syntax of the stopi Command

The syntax of the stopi command is:

stopi at

stopi at

stopi in

stopi

stopi

stopi

stopi if

stopi at

Sets an unconditional breakpoint at the current instruction.

address

Sets an unconditional breakpoint at the specified address.

procedure

Sets an unconditional breakpoint to stop execution upon entering the
specified procedure.

[expression | variable]

Inspects the value before executing each machine instruction and stops
if the value has changed.

If the expression is of type pointer, look at the data pointed to and watch
until it changes. If the expression is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

[expression|variable] at address

Inspects the value when the program is at the given address and stops if
the value has changed (for machine-level debugging).

If the expression is of type pointer, look at the data pointed to and watch
until it changes. If the expression is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

[expression|variable] in procedure

Inspects the value at every machine instruction within a given
procedure and stops if the value has changed.

If the expression is of type pointer, look at the data pointed to and watch
until it changes. If the expression is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

expression

Evaluates the expression before executing each instruction and stops if
the expression is true. Note that execution is very slow if you choose this
type of conditional breakpoint.

address if expression

Evaluates the expression at the given address and stops if the expression
is true.

113



Chapter 7: Debugging Machine Language Code

114

stopiin  procedure if expression
Evaluates the expression at every instruction within a given procedure
and stops if the expression is true.

stopi [expressionl]variable] if expression2
Tests both conditions before executing each machine instruction. Stops
if both conditions are true.

If expressionl is of type pointer, look at the data pointed to and watch
until it changes. If expressionl is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

stopi [expressionl]variable] at addressif expression2
Tests both conditions at the given address (for machine-level
debugging). Stops if both conditions are true.

If expressionl is of type pointer, look at the data pointed to and watch
until it changes. If expressionl is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

stopi [expressionl]variable]in procedureif expression2
Tests the expression each time that the given variable changes within the
given procedure.

If expressionl is of type pointer, look at the data pointed to and watch
until it changes. If expressionl is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

Note: When you stop execution because of a machine-level breakpoint set by one of the
stopi in commands, a where command at the point of stop may yield an incorrect stack
trace. This is because the stack for the function is not completely set up until several
machine instructions have been executed. dbx attempts to account for this, but is
sometimes unsuccessful.

Linking With DSOs

If you link with a DSO, be careful when you use the stopi at command. For example,
suppose you enter:

dbx() stopi at functionx



Continuing Execution After a Machine-Level Breakpoint

The breakpoint at functionx is hit only if the gp_prolog instruction is executed. (gp_prolog
is a short sequence of instructions at the beginning of the routine.)

To avoid this problem, use the stopi in command:
dbx() stopiin functionx

If you really want to use stopi at, a safe alternative is to disassemble functionx and put the
breakpoint after the gp_prolog. For more information on gp_prolog, see the MIPSpro
Assembly Language Programmer’s Guide.

The tracei at, wheni at, and conti at commands described in the following sections also
follow this pattern. Use their “in” versions to ensure that the function breakpoint is hit.

Continuing Execution After a Machine-Level Breakpoint

The conti command continues executing assembly code after a breakpoint. As with the
cont command, if your program stops because dbx catches a signal intended for your
program, then dbx sends that signal to your program when you continue execution. You
can also explicitly send a signal to your program when you continue execution. Signal
processing and sending signals to your program is discussed in “Using Signal
Processing” on page 92.

The syntax of the conti command is:
conti [signal] Continues execution with the current instruction.

conti [signal] {at | to } address
Sets a temporary breakpoint at the specified address, then resumes
execution with the current instruction. When your program reaches the
breakpoint at address, dbx stops your program and deletes the
temporary breakpoint.

conti [signal]in procedure
Sets a temporary breakpoint to stop execution upon entering the
specified procedure, then resumes execution with the current
instruction. When your program reaches the breakpoint in procedure,
dbx stops your program and deletes the temporary breakpoint.

See also “Linking With DSOs” on page 114 for a description on using the conti in and conti
at commands with DSOs.

115



Chapter 7: Debugging Machine Language Code

Tracing Execution at the Machine Level

The tracei command allows you to observe the progress of your program while
debugging machine code, just as you can with the trace command while debugging
source code. The tracei command traces in units of machine instructions instead of in
lines of code.

Each trace is assigned a number when you create it. Use this number to reference the
breakpoint in the various commands provided for manipulating breakpoints (for
example, disable, enable, and delete, all described in “Managing Breakpoints, Traces, and
Conditional Commands” on page 89).

The syntax of the tracei command is:

tracei [expression|variable]
Whenever the specified variable changes, dbx prints the old and new
values of that variable. (For machine-level debugging.) Note that
execution is very slow if you choose this type of trace.

If the expression is of type pointer, look at the data pointed to and watch
until it changes. If the expression is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

tracei procedure
This command is equivalent to entering trace procedure. dbx prints the
values of the parameters passed to the specified procedure whenever
your program calls it. Upon return, dbx prints the return value.

tracei [expression|variable] at address
Prints the value of the variable whenever your program reaches the
specified address. (For machine-level debugging.)

If the expression is of type pointer, look at the data pointed to and watch
until it changes. If the expression is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

tracei [expression]variable] in procedure
Whenever the variable changes within the procedure that you specify,
dbx prints the old and new values of that variable. (For machine-level
debugging.)

116



Tracing Execution at the Machine Level

If the expression is of type pointer, look at the data pointed to and watch
until it changes. If the expression is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

tracei [expressionl]variable] at addressif expression2
Prints the value of the variable whenever your program reaches the
specified address and the given expression is true. (For machine-level
debugging.)

If expressionl is of type pointer, look at the data pointed to and watch
until it changes. If expressionl is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

tracei [expressionl]variable]in procedureif expression?2
Whenever the variable changes within the procedure that you specify,
dbx prints the old and new values of that variable, if the given expression
is true. (For machine-level debugging.)

If expressionl is of type pointer, look at the data pointed to and watch
until it changes. If expressionl is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

See also “Linking With DSOs” on page 114 for a description on using the tracei in and
tracei at commands with DSOs.

117



Chapter 7: Debugging Machine Language Code

Writing Conditional Commands at the Machine Level

118

Use the wheni command to write conditional commands for use in debugging machine
code. The wheni command works in the same way as the when command described in
“Writing Conditional Commands” on page 87. The command list is a list of dbx
commands, separated by semicolons. When the specified conditions are met, the
command list is executed. If one of the commands in the list is stop (with no operands),
then the process stops when the command list is executed.

wheni if  expression { command-list}
Evaluates the expression before executing each machine instruction. If
the expression is true, executes the command list.

wheni at  address if expression { command-list}
Evaluates the expression at the given address. If the expression is true,
executes the command list.

wheniin  procedure if expression { command-list}
Evaluates the expression in the given procedure. If the expression is
true, executes the command list.

wheni variable at address if expression { command-list}
Tests both conditions at the given address. If the conditions are true,
executes the command list. (For machine-level debugging.)

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

wheni variablein procedure if expression { command-list}
Tests both conditions at every machine instruction within a given
procedure. If they are true, executes the command list.

See also “Linking With DSOs” on page 114 for a description on using the wheni in and
wheni at commands with DSOs.



Stepping Through Machine Code

Stepping Through Machine Code

The stepi and nexti commands allow you to step through machine code in much the same
way you can with the step and next commands while debugging source code. The stepi
and nexti commands step in units of machine instructions instead of in lines of code.

The formats of the nexti and stepi commands are:

nexti [integer] Executes the specified number of machine instructions, stepping over
procedures. If you do not provide an argument, nexti executes one
instruction. If nexti encounters any breakpoints, even in procedures that
it steps over, it immediately stops execution.

stepi Single steps one machine instruction, stepping into procedures (as
called by jal and jalr). If stepi encounters any breakpoints, it immediately
stops execution.

stepi  [n] Executes the specified number of machine instructions, stepping into
procedures (as called by jal and jalr).

The value of the dbx variable $stepintoall affects the stepi and nexti commands just as it
does the step and next commands. See the section “Stepping Through Your Program” in
Chapter 6 for a discussion.

If your program has DSOs, set the environment variable LD_BIND_NOW to 1 before you
run your program. This forces complete run-time linking when your program starts.
Otherwise, you could accidentally step into the run-time linker, rld(1), which becomes
part of your program at run time.

119






Chapter 8

Multiple Process Debugging

This chapter explains multiprocess debugging procedures, including:

“Listing Available Processes”

< “Adding a Process to the Process Pool”
« “Deleting a Process From the Process Pool”
= “Selecting a Process”

 “Suspending a Process”

e “Resuming a Suspended Process”

= “Waiting for a Resumed Process”
 “Waiting for Any Running Process”

« “Killing a Process”

« “Handling fork System Calls”

« “Handling exec System Calls”

« “Handling sproc System Calls and Process Group Debugging”

Processes and Threads

dbx supports debugging multiprocess applications, including processes spawned with
either the fork(2) or sproc(2) system calls. You can attach child processes automatically
to dbx. You also can perform process control operations on a single process or on all
processes in a group.

121



Chapter 8: Multiple Process Debugging

122

dbx provides commands specifically for seizing, stopping, and debugging currently
running processes. When dbx seizes a process, it adds it to a pool of processes available
for debugging. Once you select a process from the pool of available processes, you can
use all the dbx commands normally available.

Once you are finished with the process, you can terminate it, return it to the pool, or
return it to the operating system.

dbx also provides limited support for the IRIX pthreads library. You can obtain
information about threads, but cannot specify threads in program-control commands.

Using the pid Clause

Many dbx commands allow you to append the clause pid pid (where pid is a numeric
process ID or a debugger variable holding a process ID). Using the pid pid clause means
you can apply a command to any process in the process pool even though it is not the
active process.

For example, to set a breakpoint at line 97 of the process whose ID is 12745, enter:

(dbx) stop at 97 pid 12745
Process 12745: [3] stop at "/usr/demol/test.c":97

Commands that accept the pid pid clause include:

active edit resume wait
addproc file return whatis
assign func showpoc when, when[i]
catch goto status where

cont, cont[i] ignore  step, step[i} whereis

delete kill stop, stop[i] which

delproc next suspend
directory  print trace, traceli]
down printt  up

dump printregs use



Processes and Threads

Using the pgrp Clause

Many dbx commands allow the pgrp clause as a way to apply a command to several
processes. For information, see “Handling sproc System Calls and Process Group
Debugging” on page 132.

Using the thread Clause

You can append the clause thread tid (where tid is a numeric thread ID, a debugger
variable holding a thread ID, or the qualifier all ) to some dbx commands that provide
program information. You cannot use the thread tid clause with program-control
commands such as stop, trace, when or continue. Using the thread tid clause means you
can apply acommand to any thread even if it is not current or in the current process.The
current thread is defined to be the thread that is running in the current process. Examples
of the thread tid clause are:

(dbx)  where thread
(dbx)  where thread $no
(dbx) print x thread all

The outputs of these commands are respectively: a stack trace of the current thread, a
stack trace of the thread whose ID is stored in $no, and the values of all instances of the
program variable x in all threads.

The showthread command provides status information about the threads in your
program. In one dbx session, you cannot debug more than one program that uses threads.

The syntax of the showthread command is:

showthread [ full]
Prints brief status information about the current thread. If the full
qualifier is included, prints full status information.

showthread [ full] [ thread] { number| $no| all}
Prints brief status information about the thread identified by number or
the value of $no, or all threads associated with the debug session. If the
full qualifier is included, prints full status information. The thread
gualifier does not affect the output, but it is allowed so the syntax can be
the same as that for other commands that use the thread clause.

123



Chapter 8: Multiple Process Debugging

Using Scripts

Additionally, dbx provides two variables that you can use when writing scripts to debug
multiprocess programs:

$lastchild Always set to the process ID of the last child process created by a fork or
sproc.
$pido Always set to the process ID of the process started by the run command.

See the dbx online help file section on hint_mp_debug for sample multiprocessing
debugging scripts.

Listing Available Processes

124

Use the showproc command to list the available processes:

showproc Shows processes already in the dbx process pool or processes that dbx
can control. Without any arguments, dbx lists the processes it already
controls.

showproc all Lists all the processes it controls as well as all those processes it could

control but that are not yet added to the process pool.

showproc pid  Shows the status of the process ID.

For example, to display all processes in the process pool, enter:

(dbx)  showproc
Process 12711 (test) Trace/BPT trap [main:14 ,0x40028c]
Process 12712 (test) Trace/BPT trap [main:18 ,0x4002b4]



Adding a Process to the Process Pool

To display only process 12712, enter:

(dbx)  showproc 12712
Process 12712 (test) Trace/BPT trap [main:18 ,0x4002b4]

To display all processes that dbx can control, enter:

(dbx)  showproc all

Process 12711 (test) Trace/BPT trap [main:14 ,0x40028c]
Process 12055 (tcsh)

Process 12006 (clock)

Process 12054 (tcsh)

Process 12673 (zipxgizmo)

Process 12672 (zip)

Process 11974 (4Dwm)

Process 12712 (test) Trace/BPT trap [main:18 ,0x4002b4]
Process 12708 (dbx)

Process 12034 (xlock)

Adding a Process to the Process Pool

The addproc command adds one or more specified processes to the dbx process pool. This
allows you to debug a program that is already running. The syntax of the addproc
command is:

addproc pid[ ... ]
addproc var

For example:

(dbx) addproc 12924

Reading symbolic information of Process 12924 . . .
Process 12924 (loop_test) added to pool

Process 12924 (loop_test) running

Equivalently, you can enter either of the following:

(dbx) set $foo = 12924
(dbx) addproc $foo

125



Chapter 8: Multiple Process Debugging

Deleting a Process From the Process Pool

Selecting a Process

The delproc command removes a process or variable from the process pool, freeing it from
dbx control. When you delete a process from the process pool, dbx automatically returns
the process to normal operation. The syntax of the delproc command is:

delproc pid[...]
delproc var

For example:

(dbx)  delproc 12924
Process 12924 (loop_test) deleted from pool

Equivalently, you can enter either of the following:

(dbx) set $foo = 12924
(dbx) delproc $foo

The dbx command has the ability to control multiple processes. However, dbx commands
(by default) apply to only one process at a time, the active process. To select a process from
the process pool to be the active process, use the active command:

active [pid] Selects a process, pid, from dbx process pool as the active process. If you
do not provide a process ID, dbx prints the currently active process ID.

For example, to determine which process is currently active, enter:

(dbx) active
Process 12976 (testl) is active

To then select process 12977 as the active process, enter:

(dbx) active 12977
Process 12977 (testl) after fork [.fork.fork:15 +0x8,0x4005e8]

Suspending a Process

126

The suspend command allows you to stop a process in the dbx process pool:



Resuming a Suspended Process

suspend Suspends the active process if it is running. If it is not running, this
command does nothing.

suspend all
Suspends all the processes.

suspend pid  pid
Suspends the process pid if it is in the dbx process pool. If it is not
running, this command does nothing.

suspend pgrp
Suspends all the processes in the pgrp.
For example, to stop the active process, enter:

(dbx) suspend
Process 12987 (loop_test) requested stop [main:10 +0x8,0x400244]
10 i=i%10;

Then to stop process 12988, enter:

(dbx) suspend pid 12988
Process 12988 (test3) requested stop [main:29 +0x4,0x400424]
10 j=k/100;

Resuming a Suspended Process

To resume execution of a suspended dbx controlled process, you can use either the cont
command or the resume command. If you use cont, you do not return to the dox command
interpreter until the program encounters an event (for example, a breakpoint). On the
other hand, the resume command returns immediately to the dbx command interpreter.

The syntax of the resume command is:

resume Resumes execution of the program, and returns immediately to the dbx
command interpreter.

resume [signal] Resumes execution of the process, sending it the specified signal, and
returns immediately to the dbx command interpreter.

Because the resume command returns you to the dbx command interpreter after restarting
the process, it is more useful than using the cont command when you’re debugging

127



Chapter 8: Multiple Process Debugging

multiple processes. With resume, you are free to select and debug a process while another
process is running.

If any resumed process modifies the terminal modes (for example if it uses curses(3X)), dbx
can’t correctly control the modes. Intercept programs using curses by typing dox —p (or
dbx —P ).

For example, if you are debugging multiple processes and want to resume the active

process, enter:

(dbx) resume

dbx restarts the active process and returns the dbx prompt. You can then continue
debugging, for example by switching to another process.

To resume all the processes in pgrp 2 and send a SIGINT signal to the process when dbx
resumes, enter:

(dbx) resume SIGINT 2

Waiting for a Resumed Process

128

To wait for a process to stop for an event (such as a breakpoint), use the wait command.
This is useful after a resume command. Also refer to the description of the waitall
command, described in “Waiting for Any Running Process” on page 129.

The syntax of the wait command is:

wait Waits for the active process to stop for an event.

wait pid pid Waits for the process pid to stop for an event.



Waiting for Any Running Process

For example, assume that you want to wait until process 14280 stops, perhaps at a
breakpoint you have set. To do so, enter:

(dbx)  wait pid 14280

After you enter this command, dbx waits until process 14280 stops, at which point it
displays the dbx prompt.

Waiting for Any Running Process

Killing a Process

To wait for any process currently running to breakpoint or stop for any reason, use the
waitall command. It causes dbx to wait until a running process in the process list stops, at
which point it returns you to the dbx command interpreter.

Note: When you return to the dbx command interpreter after a waitall command, dbx
does not make the process that stopped the active process. You must use the active
command to change the active process.

For example, to wait until one of your processes under dbx control stops, enter:
(dbx)  waitall

After you enter this command, dbx waits until a process stops, at which point it indicates
which process stopped and displays the dbx prompt. For example:

Process 14281 (loop_test) Terminated [main:10 +0x8,0x400244]
10 i=i% 10;
(dbx)

To Kill a process in the process pool while running dbx, use the kill command:
kill Kills the active process.

kil pid[..] Kills the specified process(es).

129



Chapter 8: Multiple Process Debugging

For example, to Kill process 14257, enter:

(dbx)  kill 14257
Process 14257 (fork_test) terminated
Process 14257 (fork_test) deleted from pool

Handling fork System Calls

130

When a program executes a fork system call and starts another process, dbx allows you
to add that process to the process pool. (See also “Stopping at System Calls” on page 96.)

The dbx variable $promptonfork determines how dbx treats forks. Table 8-1 summarizes its
effects.

Table 8-1 How the $promptonfork Variable Affects dbx’s Treatment of Forks

$promptonfork Effect on dbx’s Treatment of Forks

Value

0 (default) dbx does not add the child process to the process pool. Both the
child process and the parent process continue to run.

1 dbx stops the parent process and asks if you want to add the child
process to the process pool. If you answer yes, then dbx adds the
child process to the pool and stops the child process; if you
answer no, dbx allows the child process to run and does not place
it in the process pool.

2 dbx automatically stops both the parent and child processes and

adds the child process to the process pool.

Note: “Handling sproc System Calls and Process Group Debugging” on page 132
provides additional information on debugging multiprocessing programs; some of the
material in that section can apply also to programs that use the fork system call.

Consider a program named fork that contains these lines:
main(argc, argv)

int argc;

char *argv;



Handling exec System Calls

{
int pid;
if ((pid = fork()) == -1)
perror(“fork™);
else if (pid == 0)
printf("child\n");
else { printf("parent\n™);

}

If you set $promptonfork to 1 and run the program, dbx prompts you whether it should
add the child process to the process pool:

(dbx) set $promptonfork = 1

(dbx) run

Process 22661 (fork) started

Process 22662 (fork) has executed the “fork” system call

Add child to process pool (n if no)? y

Process 22662 (fork) added to pool

Process 22662 (fork) stopped on sysexit fork [_fork:28 ,0x40643a4]

Process 22661 (fork) stopped on sysexit fork [_fork:28 ,0x40643a4]
Source (of /shamul/lib/libc/libc_64/proc/fork.s) not available

for Process 22661

Handling exec System Calls

The exec system call executes another program. During an exec, the first program gives
up its process number to the program it executes. When a program using DSOs executes
an exec() call, dox runs the new program to main. When a program linked with a
non-shared library executes an exec() call, dbx reads the symbolic information for the new
program and then stops program execution. In either case, you can continue by entering
a cont or resume command.

131



Chapter 8: Multiple Process Debugging

For example, consider the programs execl.c and exec2.c:

/* execl.c */
main()

{

printf("in exec1\n");

/* Invoke the "exec2" program */
execl("exec2", "exec2", 0);
/* We'll only get here if execl() fails */

perror("execl");

}

/* exec2.c */
main()

{

printf("in exec2\n");

}

You can enter cont to continue executing exec2. For example:

(dbx) cont
inexec2
Process 14409 (exec?2) finished

Handling sproc System Calls and Process Group Debugging

The process group facility allows a group of processes to be operated on simultaneously
by a single dbx command. This is more convenient to use when dealing with processes
created with the sproc system call than issuing individual resume, suspend, or breakpoint
setting commands. This facility was created to deal more conveniently with parallel
programs created, for example, by the Power Fortran Accelerator (PFA).

132



Handling sproc System Calls and Process Group Debugging

The dbx variable $mp_program determines how dbx treats sproc system calls. Table 8-2
summarizes its effects.

Table 8-2 How the $mp_program Variable Affects dbx’s Treatment of sprocs
$mp_program Effect on dbx’s Treatment of sproc

Value

0 (default) dbx treats calls to sproc in the same way as it treats calls to fork.
1 Child processes created by calls to sproc are allowed to run; they

block on multiprocessor synchronization code emitted by mp
Fortran or C code. When you set $mp_program to 1, multiprocess
Fortran or C code is easier to debug.

Whenever a process executes a sproc, if dbx adds the child to the process pool, dbx also
adds the parent and child to the group list. The group list is simply a list of processes. If
you set the dbx variable $groupforktoo to 1, then forked processes are added to the group
list automatically just as sproced processes are. (By default, $groupforktoo is 0.)

You can explicitly add one or more processes to the group list with the addpgrp command
(you can add only processes in the process pool to the group list):

addpgrp pid[...]

You can remove processes from the group list with the delpgrp command:

delpgrp pid[...]

The showpgrp command displays information about the group list. The showpgrp
command shows the process group numbers and all the stop, trace, or when events in

each. These events are created by stop[i], when[i] ... pgrp (which create multiple stop, trace,
or when events) and by delete pgrp commands, which delete them.

133



Chapter 8: Multiple Process Debugging

134

The following example shows the output of the showpgrp command with two processes
in the group list:
(dbx)  showpgrp

2 processes in group:
14559 14558

Once you add processes to the group list (by adding the keyword pgrp to the end of
certain dbx commands), you can apply that command to all processes in the group. The
commands to which you can append pgrp are: delete, list, next[i], resume, status, stop[i],
suspend, trace[i], and when.

The breakpoints and traces set by the stop[i], trace[i], and when commands, when used
with the pgrp keyword, are also added to the group history. This group history is
displayed as a numbered list when you execute showpgrp.

To delete breakpoints from multiple processes with a single command, use the group
history number with the delete command. For example, to delete the history entry 7 for
the process group, enter:

(dbx) delete 7 pgrp

The dbx variable $newpgrpevent stores the group history number of the most recent pgrp
event. This can be useful when writing a script, for example:

set $myevent = $newpgrpevent
delete $myevent pgrp

Breakpoints set on the process group are recorded both in the group and in each process.
Deleting breakpoints individually (even if set by a group command) is allowed.

For example, the following command sets a breakpoint at line 10 in all processes in the
group list:

(dbx) stop at 10 pgrp
Process 14558: [6] stop at "/usr/demo/pgrp_test.c":10
Process 14559: [7] stop at "/usr/demo/pgrp_test.c":10

If you now enter a status command, only those breakpoints associated with the active
process are displayed:

(dbx) status
Process 14559: [7] {pgrp 269011340} stop at "/usr/demo/pgrp_test.c":10



Handling sproc System Calls and Process Group Debugging

By appending the keyword pgrp, you can display the breakpoints for all processes in the
group list:

(dbx) status pgrp
Process 14558: [6] {pgrp 269011276} stop at "/usr/demo/pgrp_test.c":10
Process 14559: [7]{pgrp 269011340} stop at "/usr/demo/pgrp_test.c":10

Use the showpgrp command to display the group history:

(dbx) showpgrp

2 processes in group:

14559 14558

Group history number: 10
Process 14558 Process 14558: [6] stop at "/usr/demo/pgrp_test.c:10
Process 14559 Process 14559: [7] stop at "/usr/demo/pgrp_test.c:10

You can delete the breakpoints in both processes by deleting the associated group history
entry. For example, enter:

(dbx) delete 10 pgrp
(dbx)  showpgrp

2 processes in group:
14559 14558

135






Appendix A

dbx Commands

All dbx commands are listed below along with a brief description. For more information
about a command, refer to its description in the main text of this guide.

: Use the semicolon (;) as a separator to include multiple commands on
the same command line.

\ Use the backslash (\) at the end of a line of input to dbx to indicate that
the command is continued on the next line.

A Repeats the previous examine command by incrementing the address.

/ [reg_exp] Searches forward through the current source file from the current line

for the regular expression reg_exp. If dbx reaches the end of the file
without finding the regular expression, it wraps around to the beginning
of the file. dbx prints the first source line containing a match of the search
expression.

If you do not supply reg_exp, dbx searches forward, based on the last
regular expression you searched for.

2 Repeats the previous examine command by decrementing the address.

?[reg_exp] Searches backward through the current source file from the current line
for the regular expression reg_exp. If dbx reaches the beginning of the file
without finding the regular expression, it wraps around to the end of the
file. dbx prints the first source line containing a match of the search
expression.

If you do not supply a regular expression, dbx searches backward,
based on the last regular expression you searched for.

Il Repeats the previous command. If the value of the dbx variable
$repeatmode is set to 1, then entering a carriage return at an empty line is
equivalent to executing !! . By default, $repeatmode is set to 0.

I string Repeats the most recent command that starts with the specified string.
I integer Repeats the command associated with the specified integer in the history
list.

137



Appendix A: dbx Commands

138

I- integer

active

[pid]

Repeats the command that occurred integer times before the most recent
command. Entering !-1 executes the previous command, !-2 the
command before that, and so forth.

Selects a process, pid, from dbx process pool as the active process. If you
do not provide a process ID, dbx prints the currently active process ID.

addpgrp pid[...]

Adds the process IDs specified to the group list. Only processes in the
process pool can be added to the group list.

addproc pid[...]

Adds the specified process(es) to the pool of dbx controlled processes.

address / count format

Prints the contents of the specified address or disassembles the code for
the machine instruction at the specified address. Repeats for a total of
count addresses in increasing address—in other words, an examine
forward command. The format codes are listed in Table 7-2.

address ? count format

Prints the contents of the specified address or disassembles the code for
the machine instruction at the specified address. Repeats for a total of
count addresses in decreasing address—in other words, an “examine
backward” command. The format codes are listed in Table 7-2.

address / count L value mask

alias
alias

alias

alias

name

Examines count 32-bit words in increasing address and print those 32-bit
words which, when ORed with mask, equal value. This command
searches memory for specific patterns.

Lists all existing aliases.

Lists the alias definition for name.

name command

Defines name as an alias for command.

name “string”

Defines name as an alias for string. With this form of the alias command,
you can provide command arguments in the alias definition.



alias name(argl[, ... argN]) “string”
Defines name as an alias for string. argl through argN are arguments to
the alias, appearing in the string definition. When you use the alias, you
must provide values for the arguments, which dbx then substitutes in
string.

assign register = expression
Assigns the value of expression to register. You must precede the name of
the register with a dollar sign ($).

assign variable = expression
Assigns the value of expression to the program variable, variable.

catch Prints a list of all signals caught.

catch {signal | all }
Instructs dbx to stop your program whenever it receives the specified
signal. If you use the keyword all rather than giving a specific signal, dbx
catches all signals.

ccall func(argl, arg2, ..., argn)
Calls a function with the given arguments.

clearcalls Clears all stopped interactive calls.
cont Continues execution with the current line.

cont {at | to}line
Sets a temporary breakpoint at the specified source line, then resumes
execution with the current line. When your program reaches the
breakpoint at line, dbx stops your program and deletes the temporary
breakpoint. The keywords at and to are equivalent.

contin procedure
Sets a temporary breakpoint to stop execution upon entering the
specified procedure, then resumes execution with the current line. When
your program reaches the breakpoint in procedure, dbx stops your
program and deletes the temporary breakpoint.

cont [signal] Continues execution with the current line and sends the specified signal
to your program. If you do not provide a signal, but your program
stopped because dbx caught a signal intended for your program, then
dbx sends that signal to your program when you continue execution.

139



Appendix A: dbx Commands

cont [signal] {at ] to }line
Sets a temporary breakpoint at the specified source line, then resumes
execution with the current line and sends the specified signal to your
program. If you do not provide a signal, but your program stopped
because dbx caught a signal intended for your program, then dbx sends
that signal to your program when you continue execution.

cont [signal]in procedure
Sets a temporary breakpoint to stop execution upon entering the
specified procedure, then resumes execution with the current line and
sends the specified signal to your program. If you do not provide a
signal, but your program stopped because dbx caught a signal intended
for your program, then dbx sends that signal to your program when you
continue execution.

conti [signal] Continuesexecution with the current machine instruction. If you specify
a signal, dbx sends the signal to your program. If you do not provide a
signal, but your program stopped because dbx caught a signal intended
for your program, then dbx sends that signal to your program when you
continue execution.

conti [signal] {at | to } address
Sets a temporary breakpoint at the specified address, then resumes
execution with the current machine instruction. When your program
reaches the breakpoint at address, dbx stops your program and deletes
the temporary breakpoint.

If you specify a signal, then dbx sends the signal to your program. If you
do not provide a signal, but your program stopped because dbx caught
a signal intended for your program, then dbx sends that signal to your

program when you continue execution.

conti [signal]in procedure
Sets a temporary breakpoint to stop execution upon entering the
specified procedure, then resumes execution with the current machine
instruction. When your program reaches the breakpoint in procedure,
dbx stops your program and deletes the temporary breakpoint.

If you specify a signal, then dbx sends the signal to your program. If you
do not provide a signal, but your program stopped because dbx caught
a signal intended for your program, then dbx sends that signal to your

program when you continue execution.

140



corefile  [file]

delete {item [, i

If you provide a filename, dbx uses the program data stored in the core
dump file.

If you do not provide a filename, dbx displays the name of the current
core file.

tem..]]all }

Deletes the item(s) specified. If you use the keyword all instead of listing
individual items, dbx deletes all breakpoints, traces, and conditional
commands.

delpgrp pid[...]

Deletes the process IDs specified from the group list.

delproc pid[...]

dir [dir...]

disable item [,

down [num]

duel

duel alias
duel clear
dump

dump procedure

dump .

Deletes the specified process(es) from the pool of dbx controlled
processes.

If you provide one or more directories, dbx adds those directories to the
end of the source directory list.

If you do not provide any directories, dbx displays the current source
directory list.

item ... ]

Disables the item(s) listed. The specified breakpoint(s), trace(s), or
conditional command(s) no longer affect program execution. This
command has no effect if the item you specify is already disabled.

Moves down the specified number of activation levels in the stack. The
default is one level.

Invokes duel, the high-level debugging tool.

Shows are current duel aliases.

Deletes all duel aliases.

Prints information about the variables in the current procedure.

Prints information about the variables in the specified procedure. The
procedure must be active.

Prints information about the variables in all procedures currently active.

141



Appendix A: dbx Commands

142

edit [file | procedure]

edit pid  pid

Edits afile. If you set the dbx variable $editor to the name of an editor, the
edit command invokes that editor on the source file. If you do not set the
dbx variable $editor, dbx checks whether you have set the environment
variable EDITOR and, if so, invokes that editor. If you do not set either
the dbx variable or the environment variable, dbx invokes the vi editor.
When you exit the editor, you return to the dbx prompt.

If you supply a filename, edit invokes the editor on that file. If you

supply the name of a procedure, edit invokes the editor on the file that
contains the source for that procedure. If you do not supply a filename
or a procedure name, edit invokes the editor on the current source file.

Edits the process ID pid clause.

enable item [, item ... ]

file [file]

func

Enables the item(s) specified. This command activates the specified
breakpoint(s), trace(s), or conditional command(s), reversing the effects
of a disable command, so that they affect program execution.

Changes the current source file to file. The new file becomes the current
source file, on which you can search, list, and perform other operations.

Displays the name of the procedure corresponding to the current
activation level.

func {activation_level | procedure}

givenfile [file]

hed

hed numl

Changes the current activation level. If you specify an activation level by
number, dbx changes to that activation level. If you specify procedure,
dbx changes to the activation level of that procedure. If you specify a
procedure hame and that procedure has called itself recursively, dbx
changes to the most recently called instance of that procedure. If you
specify procedure, dbx changes the current source file to be that
procedure, even if the procedure is not active.

If you provide a filename, dbx kills the currently running processes and
loads the executable code and debugging information found in file.

If you do not provide a filename, dbx displays the name of the program
that it is currently debugging.

Edits only the last line of the history list (the last command executed).

Edits line numl in the history list.



hed numl, num2
Edits the lines in the history list from num1 to num2.

hed all Edits the entire history list.
help Shows the list of available help sections.
help all Displays the entire dbx help file. dbx displays the file using the command

name given by the dbx $pager variable. The dbx help file is large and can
be difficult to use if you use a simple paging program like more(1). A
useful technique is to set the $pager variable to a text editor like vi(1).

help help Explains how to display the help file in your favorite editor.

help section  Shows this help section. dbx displays the file using the command name
given by the dbx $pager variable. (By default, it uses more.) A useful
technique is to set the $pager variable to a text editor like vi(1).

history Prints the commands in the history list.
ignore Prints a list of all signals ignored.
intercept {all] item}

Stops on all C++ exceptions, or exceptions that throw the base type item.

intercept unexpected {[ all]| [item [, item] ]}
Stops on all C++ exceptions that have either no handler or are caught by
an “unexpected” handler. You may omit all. If you specify item, stops on
exceptions that throw the base type item.

intercept ... if expression
You can append the if clause to all intercept commands. Your program
stops only if expression is hon-zero. Note that the context for evaluation
of expression is the C++ runtime library, not that of the throw, so use
global variables or fully qualified names in expression.

ignore {signal | all }
Instructs dbx to ignore the specified signal. All ignored signals are
passed to your program normally. If you use the keyword all rather than
giving a specific signal, dbx ignores all signals.

kill Kills the active process.
kil pid ... Kills the active process(es) whose PIDs are specified.
list exp Lists $listwindow lines starting with the line number given by the

expression exp. The expression may be any valid expression that
evaluates to an integer value.

143



Appendix A: dbx Commands

144

list
list
list func

list

expl: exp2 Lists exp2 lines, beginning at line expl.

expl, exp2 Lists all source between line expl and line exp2 inclusive.

Lists $listwindow lines starting at procedure func.

func: exp Lists exp2 lines, beginning at func.

list func, exp Lists all source between func and exp, inclusive.

listclones

Lists all the root functions and their derived clones.

listclones func

listinlines

listinlines

listobj

listregions

next [n]

nexti [n]

pixie clear

pixie write

playback input

Lists the root and all derived clones for func.
Lists all of the inlined routines with their start and end addresses.

func
Lists all of the inlined versions of func with their start and end addresses.

Lists dynamic shared objects being used. The base application is first in
the list.

Lists all the memory regions being used by the application. Any object
region with debugging information is marked with a “Y.”

Executes the specified number of lines of source code, stepping over
procedures. If you do not provide an argument, next executes one line.
If next encounters any breakpoints, even in procedures that it steps over,
it immediately stops execution.

Executes the specified number of machine instructions, stepping over
procedures. If you do not provide an argument, nexti executes one line.
If nexti encounters any breakpoints, even in procedures which it steps
over, it immediately stops execution.

Clears the basic block counts for the current execution.

Writes the counts file with the current basic block counts. The counts
reflect the exectuion of the program since the run command or since the
last pixie clear command, whichever is more recent.

[file]
Executes the commands from file. The default file is the current
temporary file created for the record input command. If the dbx variable
$pimode is nonzero, the commands are printed out as they are played
back.



playback output

[file]
Prints the commands from file. The default file is the current temporary
file created for the record output command.

print  [expl[, exp2, ...1]

printd  [expl [,

printenv

printf  string [,

printo  [expl [,

printregs

printx  [expl [,

quit
record

record input

record output

Prints the value(s) of the specified expression(s).

exp2, ...11]
Prints the value(s) of the specified expression(s) in decimal.

Prints the list of environment variables affecting the program being
debugged.

expl [, exp2, ...11]

Prints the value(s) of the specified expression(s) in the format specified
by the string, string. The printf command supports all formats except
“%s”. For a list of formats, see the printf(3S) reference page.

exp2, ...11]
Prints the value(s) of the specified expression(s) in octal.

Prints all register values.

exp2, ...11]
Prints the value(s) of the specified expression(s) in hexadecimal.

Quits dbx.

Displays the current input and output recording sessions.

[file]

Records everything you type to dbx in file. The default file is a temporary
dbx file in the /tmp directory. The name of the temporary file is stored in
the dbx variable $defaultin.

[file]

Records all dbx output in file. The default file is a temporary dbx file in
the /tmp directory. The name of the temporary file is stored in the dbx
variable $defaultout. If the dbx variable $rimode is nonzero, dbx also
records the commands you enter.

rerun run-arguments

Without any arguments, repeats the last run command, if applicable.
Otherwise, rerun is equivalent to the run command without any
arguments.

145



Appendix A: dbx Commands

146

resume

resume [signal]

return

return  proc

Resumes execution of the program, and returns immediately to the dbx
command interpreter.

Resumes execution of the process, sending it the specified signal, and
returns immediately to the dox command interpreter.

Continues execution until control returns to the next procedure on the
stack.

Continues execution until control returns to the named procedure.

run run-arguments

set

set var = exp

Starts your program and passes to it any arguments that you provide.
All shell processing is accepted, such as unglobbing of * and ? in
filenames. Redirection of the program’s standard input and standard
output, and/or standard error is also done by the shell. In other words,
the run command does exactly what typing target run-arguments does.
You can specify a target, either on dbx invocation or in a prior givenfile
command. dbx passes ./target as argv[0] to target when you specify itas a
relative pathname. You can specify target either on dbx invocation or in
a prior givenfile command. dbx passes ./target as argv[0] to target when
you specify it as a relative pathname.

A run command must appear on a line by itself and cannot be followed
by another dbx command. Terminate the command line with a return
(new-line). Note that you cannot include a run command in the
command list of a when command.

Displays a list of predefined and user defined variables.

Defines (or redefines) the specified dbx variable, setting its value to that
of the expression you provide.



setenv

setenv VAR

Prints the list of environment variables for the program being debugged.

Sets the environment variable VAR to an empty value.

setenv VAR value

Sets the environment variable VAR to value, where value is not a dbx
variable.

setenv VAR $var

Sets the environment variable VAR to $var, where $var is a dbx variable.

setenv VAR “charstring”

sh

sh com

showpgrp
showproc [pid |

Sets the environment variable VAR to charstring.

Invokes a subshell. To return to dbx from the subshell, enter exit at the
command line, or otherwise terminate the subshell.

Executes the specified shell command. dbx interprets the remainder of
the line as a command to pass to the spawned shell process, unless you
enclose the command in double-quotes or you terminate your shell
command with a semicolon (;).

Shows the group process list and the group history.

all]

Shows processes already in the dbx process pool or processes that dbx
can control. If you provide no arguments, dbx lists the processes it
already controls. If you provide a pid, dbox displays the status of the
specified process. If you use argument “all,” dbx lists all the processes it
controls as well as all those processes it could control but that are not yet
added to the process pool.

showthread [ full]

Prints brief status information about the current thread. If the full
qualifier is included, prints full status information.

showthread [ full] [ thread]{ number| $no| all}

source [file]

status

Prints brief status information about the thread identified by number or
the value of $no, or all threads associated with the debug session. If the
full  qualifier is included, prints full status information. The thread
qualifier does not affect the output, but it is allowed so the syntax can be
the same as that for other commands that use the thread clause.

Executes dbx commands from file.

Displays all breakpoints, traces, and conditional commands.

147



Appendix A: dbx Commands

148

step [n] Executes the specified number of lines of source code, stepping into
procedures. If you do not provide an argument, step executes one line. If
step encounters any breakpoints, it immediately stops execution.

stepi Single steps one machine instruction, stepping into procedures (as
called by jal and jalr). If stepi encounters any breakpoints, it immediately
stops execution.

stepi  [n] Executes the specified number of machine instructions, stepping into
procedures (as called by jal and jalr).

stop at Set a breakpoint at the current source line.
stopat line Sets a breakpoint at the specified source line.

stop expression
Inspects the expression. If the expression is type pointer, checks the data
being pointed at. Otherwise, checks the 32 bits at the address given by
the expression.

stopin procedure
Sets a breakpoint to stop execution upon entering the specified
procedure. Execution will stop in all inlined or cloned instances of the
procedure.

stop [expression|variable]
Inspects the value before executing each source line. If the expression is
of type pointer, look at the data pointed to and watch until it changes.

If the expression is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

stop [expression]variable] at line
Inspects the value at the given source line. Stops if the value has
changed.

If the expression is of type pointer, look at the data pointed to and watch
until it changes. If the expression is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

stop [expression]variable] in procedure
Inspects the value at every source line within a given procedure. Stops
if the value has changed.

If the expression is of type pointer, look at the data pointed to and
watch until it changes.



If the expression is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

stopif expression
Evaluates the expression before executing each source line. Stops if the
expression is true.

stopat lineif expression
Evaluates the expression at the given source line. Stops if the expression
is true.

stop in procedure if expression
Evaluates the expression at every source line within a given procedure.
Stops if the expression is true.

stop [expressionl]variable]if expression2
Tests both conditions before executing each source line. Stops if both
conditions are true.

If expressionl is of type pointer, look at the data pointed to and watch
until it changes. If expressionl is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

stop [expressionl]variable] at lineif expression2
Tests both conditions at the given source line. Stops if both conditions
are true.

If expressionl is of type pointer, look at the data pointed to and watch
until it changes. If expressionl is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

stop [expressionl]variable] in procedureif expression2
Tests both conditions at every source line within a given procedure.
Stops if both conditions are true.

If expressionl is of type pointer, look at the data pointed to and watch
until it changes. If expressionl is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

stopi at Sets an unconditional breakpoint at the current machine instruction.

stopiat  address
Sets an unconditional breakpoint at the specified address (for
machine-level debugging).

149



Appendix A: dbx Commands

150

stopi in

procedure

Sets an unconditional breakpoint to stop execution upon entering the
specified procedure (for machine-level debugging).

stopi  [expression | variable]

Inspects the value before executing each machine instruction and stops
if the value has changed.

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

stopi [expression|variable] at address

stopi

stopi if

stopi at

stopi in

Inspects the value when the program is at the given address and stops if
the value has changed (for machine-level debugging).

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

[expression | variable] in procedure

Inspects the value at every machine instruction within a given
procedure and stops if the value has changed.

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

expression

Evaluates the expression before executing each machine instruction and
stops if the expression is true.

address if expression

Evaluates the expression at the given address and stops if the expression
is true (for machine-level debugging).

procedure if expression

Evaluates the expression at every machine instruction within a given
procedure and stops if the expression is true.



stopi [expressionl]variable] if expression2

Tests both conditions before executing each machine instruction. Stops
if both conditions are true.

If expressionl is of type pointer, look at the data pointed to and watch
until it changes. If expressionl is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

stopi [expressionl]variable] at addressif expression2

Tests both conditions at the given address (for machine-level
debugging). Stops if both conditions are true.

If expressionl is of type pointer, look at the data pointed to and watch
until it changes. If expressionl is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

stopi [expressionl]variable]in procedureif expression2

suspend

suspend pgrp

suspend pid

syscall

syscall catch

Tests the expression each time that the given variable changes within the
given procedure.

If expressionl is of type pointer, look at the data pointed to and watch
until it changes. If expressionl is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

Suspends the active process if it is running. If it is not running, this
command does nothing. If you use the keyword all, suspends all active
processes.

Suspends all the processes in pgrp.

pid

Suspends the process pid if it is in the dbx process pool. If it is not
running, this command does nothing.

Prints a summary of the catch and ignore status of all system calls. The
summary is divided into four sections: 1) caught at call, 2) caught at
return, 3) ignored at call, and 4) ignored at return.

[{call | return 1}]

Prints a list of all system calls caught upon entry (call) or return (return).
If you provide neither the call nor return keyword, dbx lists all system
calls that are caught.

151



Appendix A: dbx Commands

152

syscall ignore

syscall catch

syscall ignore

tag procedure

trace variable

[{call ] return }]
Prints a list of all system calls not caught upon entry (call) or return
(return). If you provide neither the call nor return keyword, dbx lists all
system calls that are ignored.

{call | return }{system_ call | all }

Sets a breakpoint to stop execution upon entering (call) or returning
from (return) the specified system call. Note that you can set dbx to catch
both the call and the return of a system call.

If you use the keyword all rather than giving a specific system call, dbx
catches all system calls.

{call ] return }{system call | all }
Clears the breakpoint to stop execution upon entering (call) or returning
from (return) the specified system call.

If you use the keyword all rather than giving a specific system call, dbx
clears the breakpoints to stop execution upon entering (call) or
returning from (return) all system calls.

Searches the tag file for the given procedure.

Whenever the specified variable changes, dbx prints the old and new
values of that variable.

trace procedurePrints the values of the parameters passed to the specified procedure

whenever your program calls it. Upon return, dbx prints the return
value.

trace [expression|]variable] at line

Whenever your program reaches the specified line, dbx prints the value
of the variable if its value has changed.

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

trace [expression|]variable]in procedure

Whenever the variable changes within the procedure, dbx prints the old
and new values of that variable.



trace

trace

tracei

tracei

tracei

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

[expressionl]variable] at lineif expression2

Prints the value of the variable (if changed) whenever your program
reaches the specified line and the given expression is true.

If expressionl is of type pointer, look at the data pointed to and watch
until it changes. If expressionl is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

[expressionl]variable] in procedure if expression2

Whenever the variable changes within the procedure that you specify,
dbx prints the old and new values of that variable, if the given expression
is true.

If expressionl is of type pointer, look at the data pointed to and watch
until it changes. If expressionl is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

[expression | variable]

Whenever the specified variable changes, dbx prints the old and new
values of that variable. (For machine-level debugging.)

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

procedure

This command is equivalent to entering trace procedure. (For
machine-level debugging.)

[expression | variable] at address

Prints the value of the variable whenever your program reaches the
specified address. (For machine-level debugging.)

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

153



Appendix A: dbx Commands

154

tracei [expression]variable] in procedure

Whenever the variable changes within the procedure that you specify,
dbx prints the old and new values of that variable. (For machine-level
debugging.)

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

tracei [expressionl]variable] at addressif expression2

Prints the value of the variable whenever your program reaches the
specified address and the given expression is true. (For machine-level
debugging.)

If expressionl is of type pointer, look at the data pointed to and watch
until it changes. If expressionl is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

tracei [expressionl]variable]in procedureif expression?2

unalias  alias

Whenever the variable changes within the procedure that you specify,
dbx prints the old and new values of that variable, if the given expression
is true. (For machine-level debugging.)

If expressionl is of type pointer, look at the data pointed to and watch
until it changes. If expressionl is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

Removes the specified alias.

unrecord sessionl [, session2...]

unrecord all

unset var

unsetenv VAR

up [num]

Turns off the specified recording session(s) and closes the file(s)
involved.

Turns off all recording sessions and closes all files involved.

Removes the specified dbx variable.
Removes the specified environment variable.

Moves up the specified number of activation levels in the stack. The
default is one level.



use [dir ...]

wait
wait pid pid

waitall

whatis name

If you provide one or more directories, dbx replaces the source directory
list with the directories that you provide.

If you do not provide any directories, dbx displays the current source
directory list.

Waits for the active process to stop for an event.
Waits for the process pid to stop for an event.

Waits for any process currently running to breakpoint or stop for any
reason.

Prints the type declaration for name.

when [expression | variable] { command-list}

Inspects the value before executing each source line. If it has changed,
executes the command list.

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

when [expression | variable] at line { command-list}

Inspects the value at the given source line. If it has changed, executes the
command list.

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

when [expression | variable] in procedure { command-list}

Inspects the value at every source line within a given procedure. If it has
changed, executes the command list.

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

when if expression { command-list}

Evaluates the expression before executing each source line. If it is true,
executes the command list.

155



Appendix A: dbx Commands

156

when at lineif expression { command-list}

Evaluates the expression at the given source line. If it is true, executes the
command list.

when in procedure if expression { command-list}

Evaluates the expression at every source line within a given procedure.
If it is true, executes the command list.

when [expressionl|variable] if expression2 { command-list}

Checks if the value of the variable has changed. If it has changed and the
expression is true, executes the command list. If expressionl is of type
pointer, look at the data pointed to and watch until it changes. If
expressionl is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

when [expressionl]variable] at lineif expression2 { command-list}

Checks if the value of the variable has changed each time the line is
executed. If the value has changed and the expression is true, executes
the command list. If expressionl is of type pointer, look at the data
pointed to and watch until it changes. If expressionl is not of type
pointer, look at the 32 bits at that address (assume the expression
evaluates to an address).

when [expressionl]variable] in procedureif expression2 { command-list}

wheni if

wheni at

wheni in

Checks if the value of variable has changed at each source line of the
given procedure. If the value has changed and the expression is true,
executes the command list. If expressionl is of type pointer, look at the
data pointed to and watch until it changes. If expressionl is not of type
pointer, look at the 32 bits at that address (assume the expression
evaluates to an address).

expression { command-list}

Evaluates the expression before executing each machine instruction. If
the expression is true, executes the command list.

address if expression { command-list}

Evaluates the expression at the given address. If the expression is true,
executes the command list. (For machine-level debugging.)

procedure if expression { command-list}

Evaluates the expression in the given procedure. If the expression is
true, executes the command list. (For machine-level debugging.)



wheni variable at address if expression { command-list}

Tests both conditions at the given address. If the conditions are true,
executes the command list. (For machine-level debugging.) If the
expression is of type pointer, look at the data pointed to and watch until
it changes. If the expression is not of type pointer, look at the 32 bits at
that address (assume the expression evaluates to an address).

wheni variable in procedure if expression { command-list}

where

whereis  name

which name

Tests both conditions at every machine instruction within a given
procedure. If they are true, executes the command list.

Print a stack trace. t is an alias for the where command.

Prints the fully qualified names of all versions of name. The range of
objects examined is determined by $whereisdsolimit.

Prints the fully qualified name of the active version of name.

whichobj variable

Lists the dynamic shared objects that contain variable.

157






Appendix B

Predefined Aliases

Table B-1 lists all predefined dbx aliases. You can override any predefined alias by
redefining it with the alias command or by removing it with the unalias command.

Table B-1 Predefined Aliases

Alias Definition Description

a assign Assigns the specified expression to the
specified program variable or register.

b stop at Sets a breakpoint at the specified line.

bp stop in Sets a breakpoint in the specified procedure.

c cont Continues program execution after a
breakpoint.

d delete Deletes the specified item from the status list.

dir directory Displays the current source directory list. If
you specify one or more directories, those
directories are added to the end of the source
directory list.

e file Displays the name of the currently selected
source file. If you specify a file, this command
makes the specified file the currently selected
source file.

f func Moves to the specified procedure (activation
level) on the stack. If you specify no procedure
or expression, dbx prints the current activation
level.

g goto Goes to the specified source line.

h history Lists all the items currently in the history list.

159



Appendix B: Predefined Aliases

160

Table B-1 (continued)

Predefined Aliases

Alias Definition Description

j status Lists all the currently set stop, trace, and when
commands.

| list Lists the next $listwindow lines of source code
beginning at the current line.

li $curpc/10i; \ Lists the next 40 bytes of machine instructions

set $curpc=$curpc+40 (approximately 10 instructions).

n next Executes the specified number of lines of
source code, stepping over procedures. If you
do not provide an argument, dbx executes only
one line.

ni nexti Executes the specified number of lines of
machine code, stepping over procedures. If
you do not provide an argument, dbx executes
only one instruction.

p print Prints the value of the specified variable or
expression.

pd printd Prints the value of the specified variable in
decimal.

pi playback input Replays dbx commands saved in the specified
file. If you do not specify a file, dbx uses the
temporary file specified by $defaultin.

po printo Prints the value of the specified variable or
expression in octal.

pr printregs Prints values contained in all registers.

pX printx Prints the value of the specified variable or
expression in hexadecimal.

q quit Quits dbx.

r rerun Runs the program again using the arguments

specified for the last run command executed.




Table B-1 (continued)

Predefined Aliases

Alias

Definition

Description

ri

ro

Si

Si

source

record input

record output

step

next

stepi

nexti

playback input (pi)

where

list $curline-9:10

Records to the specified file all the input you
give to dbx. If you do not specify a file, dbx
creates a temporary file. The name of the file is
specified by $defaultin.

Records all dbx output to the specified file. If
no file is specified, records output to a
temporary file. The name of the file is specified
by $defaultout.

Executes the specified number of lines of
source code, stepping into procedures. If you
do not provide an argument, dbx executes only
one line.

Executes the specified number of lines of
source code, stepping over procedures. If you
do not provide an argument, dbx executes only
one line.

Executes the specified number of lines of
machine code, stepping into procedures. If
you do not provide an argument, dbx executes
only one instruction.

Executes the specified number of lines of
machine code, stepping over procedures. If
you do not provide an argument, dbx executes
only one instruction.

Replays dbx commands saved in the specified
file. If no file is specified, dbx uses the
temporary file specified by $defaultin.

Does a stack trace to show the current
activation levels.

Lists a window of source code showing the
nine lines before the current code line and the
current code line. This command does not
change the current code line.

161



Appendix B: Predefined Aliases

162

Table B-1 (continued) Predefined Aliases
Alias Definition Description
w list $curline-5:10 Lists a window of source code around the

current line. This command shows the four
lines before the current code line, the current
code line, and five lines after the current code
line. This command does not change the
current code line.

w list $curline-10:20 Lists a window of source code around the
current line. This command shows the nine
lines before the current code line, the current
code line, and 10 lines after the current code
line. This command does not change the
current code line.

Wi $curpc-20/10i Lists a window of assembly code around the
program counter.




Appendix C

Predefined dhx Variables

Predefined dbx variables are listed in Table C-1. The predefined variable names begin

with “$” so that they do not conflict with variable, command, or alias names.

Table C-1

Predefined dbx Variables

Variable

Default

Description

$addrfmt

$addrfmt64

$assignverify

$casesense

$ctypenames

$curevent

$curline

“Ox%Xx”

“0x%lIx”

Specifies the format for addresses. This can be
set to any format valid for the C language
printf(3S) function.

Specifies the format for 64-bit addresses. This
can be set to any format valid for the C
language printf(3S) function.

If nonzero, the new value of a program
variable will be displayed after the assign
command.

If 0, symbol names are case sensitive. If 1,
symbol names are not case sensitive. If 2, the
case sensitivity of symbol names depends on
the case sensitivity of the language in which
the symbol was defined.

If 1, the words “unsigned,” “short,” “long,”
“int,” “char,” “struct,” “union,” and “enum”
are keywords usable only in type casts. If 0,
“struct,” “union,” and “enum?” are ordinary
words with no predefined meaning (in C
modaules, the others are still known as C

types).

7 6 7

The last event number as seen by the status
command.

The current line in the source code being
executed.

163



Appendix C: Predefined dbx Variables

Table C-1 (continued)

Predefined dbx Variables

Variable

Default

Description

$curpc
$cursrcline

$defaultin

$defaultout

$editor

$fp_precise

$framereg

$groupforktoo

$hexchars

vi

The current program counter.
The current source listing line plus one.

The name of the file that dbx uses when the
record input or the playback input command is
executed with no argument.

The name of the file that dbx uses when the
record output or the playback output command
is executed with no argument.

The name of the editor to invoke (with the edit
command). Default value is set to the value of
the EDITOR environment variable. If EDITOR
missing, it defaults to vi.

When nonzero, dbx runs programs on R8000
processors in floating point precise mode,
allowing accurate floating point exceptions.
By default, R8000 floating point interrupts are
asynchronous and reported program counter
values are useless for debugging. For more
information about floating point precise
mode, see the syssgi(2) reference page section
on SGI_SET_FP_PRECISE.

If 1, all references to registers are to the
registers of the current activation level. If 0, all
references are to the hardware registers (the
registers of activation level 0).

If 0, adds only processes created with the
sproc(2) system call to the process group list
automatically. If 1, then adds processes
created with either the fork(2) or sproc system
calls to process group list.

If nonzero, outputs characters in hexadecimal,
using C format “%x”. This affects char type
variables, including those in structures. It
does not affect arrays of characters, which are
printed using the “%.*s” format.

164



Table C-1 (continued)

Predefined dbx Variables

Variable

Default

Description

$hexdoubles

$hexin

$hexints

$hexstrings

$historyevent

S$lastchild

$lines

$listwindow

$maxstrlen

$mp_program

0

100
10

128

If nonzero, dbx displays floating point and
double-precision variables both as literals and
as hexadecimal representations of the bit
pattern.

If nonzero, input constants are assumed to be
in hexadecimal. This overrides $octin.

If nonzero, outputs integers in hexadecimal
format. This overrides $octints.

If nonzero, outputs strings and arrays in
hexadecimal. For character arrays, if nonzero,
the null byte is not taken as a terminator.
Instead, prints the entire array (or $maxlen
values, whichever is less). If 0, then a null byte
in a C or C++ character array is taken as the
end of the array (the length of the array and
$maxstrlen can terminate the array printing
before a null byte is found).

The current history line number.

The process ID of the last child process created
by a fork or sproc system call.

The number of lines in the history list.

Specifies how many lines the list command
lists.

Maximum length printed for zero-terminated
char strings and arrays. Prints char arrays for
array-length, $maxstrlen bytes, or up to a null
byte, whichever comes first (see $hexstrings).

If 0, dbx treats calls to sproc in the same way as
it treats calls to fork. If 1, child processes
created by calls to sproc are allowed to run;
they block on multiprocessor synchronization
code emitted by mp Fortran code. When you
set $mp_program to 1, mp Fortran code is
easier to debug.

165



Appendix C: Predefined dbx Variables

166

Table C-1 (continued)

Predefined dbx Variables

Variable

Default

Description

$newevent

$newpgrpevent

$nonstop

$octin

$octints

$page

$pager

$pagewidth

$pagewindow

0

more

80

23

After every command creating an event, this
variable is set to the event’s number. The
$newevent variable is useful in writing scripts
that do not use hard-coded event numbers.

Stores the number of the latest pgrp event
created by stop[i], trace[i], and whenl[i]... pgrp.
Useful when writing scripts .

Only used with addproc or with dbx options -p
and -P . If 0, the process that is the argument
of the command is stopped; if 1, the process is
not stopped. In either case the process state is
not changed. If the you start dbx with the —-N
option, then $nonstop = 1.

If nonzero, assumes input constants are in
octal ($hexin overrides $octin).

If nonzero, outputs integers in octal format
($hexints takes precedence).

Specifies whether or not to page when dbx
output scrolls information off the current
screen. A nonzero value turns on paging; a 0
turns it off.

The name of the program used to display
output from dbx.

The width of the window in characters
(assumes a fixed-width font). Used by dbx to
calculate how many screen lines are output.
dbx never inserts newlines; the window
software wraps the lines.

Specifies how many lines print when
information is longer than one screen. This
can be changed to match the number of lines
on any terminal. If set to 0, 1 is used.




Table C-1 (continued)

Predefined dbx Variables

Variable

Default

Description

$pendingtraps

$piaddtohist

$pid

$pid0

$pimode

$printdata

$print_exception_frame

$printwhilestep

$printwide

0

If nonzero, allows traps that cannot be
satisfied immediately to wait until they can be
satisfied. This is useful for debugging
programs that use DSOs, as it allows setting
breakpoints before the dlopen() call. When set
to nonzero, mistyped procedure names are
not flagged and cause a pending trap to be set.

If 1, adds commands read from files using the
playback input command to the command
history. If 0, does not add the commands to the
history.

The current process for kernel debugging

- K).

Set by dbx to the process ID of the running
process (also called the object file).

If 1, dbx prints the commands read from files
using the playback input command. If 0, dbx
does not print the commands. In either case,
dbx prints the output resulting from such
commands.

Used when disassembling. If 1, prints register
contents alongside disassembled instructions.
If 0, just prints disassembled instructions.

If nonzero, the display of a kernel exception
frame by the dump or where commands
includes information that you can use to find
the contents of the kernel registers at the time
of the fault.

If 0, prints only the next line to be executed. If
nonzero, prints each line that is executed
while it single steps.

If 0, prints arrays, unions, structures and
classes one element per line. If nonzero, prints
arrays compactly (wide).

167



Appendix C: Predefined dbx Variables

168

Table C-1 (continued)

Predefined dbx Variables

Variable

Default

Description

$procaddr

$prompt

$promptonfork

$regstyle

$repeatmode

$rimode

$shellparameters

dbx

TR

This variable applies only if you invoke dbx
with the - k option (that is, it is not available
unless you are doing kernel debugging).
Whenever $pid is set, dbx sets $procaddr to the
address of the process table entry for that
process.

The prompt for dbx.

If 0, dbx does not add the child process to the
process pool. Both the child process and the
parent process continue to run.

If 1, dbx stops the parent process and asks if
you want to add the child process to the
process pool. If you answer yes, then dbx adds
the child process to the pool and stops the
child process; if you answer no, dbx allows the
child process to run and does not place it in
the process pool.

If 2, dbx automatically stops both the parent
and child processes and adds the child
process to the process pool.

If 0, dbx uses the alternate form of the register
name (for example, “zero” instead of “r0”” and
“t1” instead of “r9”). If nonzero, dbx uses the
machine name (“r0” through “r31”).

If nonzero, entering a null line (entering a
newline on an empty line) repeats the last
command. If 0, dbx performs no action.

If 1, dbx records commands you enter in
addition to output when using the record
output command. If 0, dbx does not copy the
commands.

A string that is added by run to the command
line it passes to the command interpreter,
SHELL. Use $shellparameters to disable
spawning of subshells by the initialization file
of a non-standard shell.




Table C-1 (continued)

Predefined dbx Variables

Variable

Default

Description

$showbreakaddrs

$showfilename

$sourcepathrule

$stacktracelimit

0

100

If nonzero, show the address of each
breakpoint placed in the code each time it is
placed. Removal of the breakpoints is not
shown. If multiple breakpoints are placed at
one location, only one of the placements is
shown. Since breakpoints are frequently
placed and removed by dbx, the volume of
output can be annoying when tracing.

If 0, step, next, and so on. do not show the
source file name in the dbx message describing
the stopped state.

If 1, prints just the base file name.
If 2, prints the full path.

If $stopformat is 1, $showfilename = 0 is treated
as if $showfilename were 2.

If 0, search for a source file by:

a) using the pathname in the object file’s
debugging information;

if the file is not found, then

b) examine pathnames remapped by the dir or
use command;

if the file is still not found, then

¢) reduce full pathnames to base file names
and search the list of directories created by the
dir or use command.

If 1, permute the default source-file search
sequence to: step b, step c, then step a.

If 2, use only steps b and ¢ of the default
source-file search sequence.

Sets the maximum number of frames that will
be examined by the dump, func, and where
commands.

169



Appendix C: Predefined dbx Variables

Table C-1 (continued)

Predefined dbx Variables

Variable

Default

Description

$stdc

$stepintoall

$stopformat

0

If nonzero, attempts in dbx expressions to
model exactly the promotion rules of ANSI C
and ISO/IEC 9899 C (even to the point of
matching float to float rather than converting
all floating points to doubles).

If 0, promotes variables more like traditional
pcc C (but promotions of 16-bit and 8-bit
unsigned is to int, not unsigned int).

If 0, step steps into all procedures that are
compiled with debugging options —g,-g2, or
—g3 for which line numbers are available in
the symbol table. Note that standard library
routines are excluded.

If 1, in addition to the procedures above, steps
into any procedures for which a source file can
be found. Note that when you debug a source
file compiled without symbols or compiled
with optimization, the line numbers may
jump erratically.

If 2, steps into all procedures. Note that if dbx
cannot locate a source file, then it cannot
display source lines as you step through a
procedure.

If 0, stopping messages appear in the
traditional IRIX dbx format, for example:

stopped at [main:32 , 0x400000
main.c]

If 1, messages appear in a more standard BSD
dbx format:

stopped in main atline 32 infile
“main.c”

See affect on $showfilename also.

170



Table C-1 (continued)

Predefined dbx Variables

Variable

Default Description

S$tagfile

$whereisdsolimit

tags The name of a file of tags, as created by
ctags(1). Used by the tag command.

1 If 1, whereis looks only in main object.
If 0, whereis checks all objects.
If n, whereis checks first n objects.

171






Index

Symbols

I command, 26, 137

l-integer command, 26, 138

linteger command, 26, 137

Istring command, 26, 137

# characters, 7, 35, 39

#define declarations, 40

// (division) operator, 39, 40

; (command separator), 11, 137

? command, 21, 110, 137, 138

\ (command continuation), 12, 137

Numbers

16-bit word, 110
32-bit word, 110
64-bit word, 110

A

activation levels, 64
changing, 69, 142
current, 109
frames, 64
moving down, 67, 141
moving up, 67, 154
printing information, 70, 141
registers and, 109

active command, 126, 138

active process
wait for, 128, 155

adding processes to the process group list, 133, 138

addpgrp command, 133, 138
addproc command, 125, 138

add processes to process pool, 125, 138

address of line numbers, 35, 38, 39
$addrfmt, 163

$addrfmt64, 163

alias command, 29, 138, 159

aliases, 28
creating, 29, 138, 139
deleting, 31, 154
displaying, 29, 138

predefined. See predefined dbx aliases

assign command, 48, 49, 109, 139
assign to register command, 109
$assignverify, 163

B

back quotation marks (* ), 41, 46, 103
basic block counts, obtaining, 75
blocks, counting, 75

breakpoints, 2, 79
and interactive function calls, 74
conditional, 2,79
continuing after, 3, 84, 115

173



Index

disabling, 90, 141

enabling, 91, 142
machine-level, 112, 113, 149, 150
process groups, 134

setting, 3, 80, 148

status, 89, 147

test clause, 83

unconditional, 2, 79

variable clause, 81, 83, 113, 148

C++
considerations, 77, 101
exceptions, 94
global functions, 101
member functions, 101
member variables, 77
non-C++ functions, 101
overloaded functions, 101
static member variables, 77

$casesense, 50, 163

case sensitivity of program variable names, 50, 163

casts, 31
catch command, 139
catching signals, 92, 139
catching system calls, 96, 152
ccall command, 72, 139
-c flag, 7
changing program variable values, 48, 139
C keyword conflicts, 163
clearcalls command, 73, 139
clones, 20

stopping in, 80
code missing, 4
/ command, 21, 48, 110, 137, 138
command continuation, 12, 137

174

commands
/, 21, 48, 110, 137, 138
126,137
l-integer, 26, 138
linteger, 26, 137
Istring, 26, 137
?, 21,110, 137,138
active, 126, 138
addpgrp, 133, 138
addproc, 125, 138
alias, 29, 138, 159
assign, 48, 49, 109, 139
assign register, 109
catch, 139
ccall, 72, 139
clearcalls, 73, 139
cont, 84, 93, 100, 115, 127, 139
conti, 115, 140
corefile, 9, 141
delete, 80, 85, 91, 112, 116, 141
delpgrp, 133, 141
delproc, 126, 141
dir, 7,16, 17, 141
disable, 80, 85, 90, 112, 116, 141
down, 67, 141
duel, 51, 141
dump, 70, 141
edit, 22,142, 164
enable, 80, 85, 91, 112, 116, 142
file, 18, 142
func, 69, 142
givenfile, 9, 142
goto, 100, 143
hed, 27, 28, 143
help, 11, 143
history, 26, 143
ignore, 92, 143
intercept, 95, 143
kill, 129, 144
list, 19, 144
listclones, 21, 144



Index

listinlines, 21

listobj, 6, 144

listregions, 109, 144

next, 3,97, 100, 144

nexti, 119, 144

pixie, 75, 144

playback input, 32, 35, 145, 163, 167
playback output, 145, 163
print, 3,24, 41, 47, 145
printd, 41, 47, 145
printenv, 51, 145

printf, 43, 47, 145

printo, 41, 47, 145
printregs, 107, 145

printx, 41, 47,145

quit, 13, 145

record, 35, 145

record input, 32, 33, 145, 164
record output, 34, 146, 163
rerun, 3,9, 10, 146
resume, 85, 127, 146
return, 100, 146

run, 3,9, 146

search backward (?), 21, 137
search forward (/), 21, 137
set, 24, 25, 41, 146

setenv, 10, 51, 147

sh, 12, 147

showpgrp, 133, 147
showproc, 124, 147
showthread, 123, 147
status, 33, 89, 147

step, 3, 97, 98, 148

stepi, 119, 148

stop, 3, 80, 81, 83, 148
stopi, 112, 113, 149
suspend, 127, 151

syscall, 96, 151

tag, 152

trace, 4, 85, 152

tracei, 116, 117, 153

unalias, 31, 154, 159

unrecord, 33, 154

unset, 25, 154

unsetenv, 51, 154

up, 67, 154

use, 7,16, 155

wait, 128, 155

waitall, 128, 129, 155

whatis, 64, 155

when, 88, 155

wheni, 118, 156

where, 2, 65, 114, 157

whereis, 43, 45, 63, 157

which, 43, 45, 63, 157

whichobj, 6, 157
command scripts

comments, 35, 39
command separator (;), 11, 137
comments, command scripts, 35, 39
common pitfalls, 4
compiling a program for dbx debugging, 5
conditional breakpoints, 2, 79

setting, 80

test clause, 83

variable clause, 81, 83, 113, 148
conditional commands

deleting, 91, 141

disabling, 90, 141

enabling, 91, 142

setting, 87

status, 89, 147

stop keyword, 87

test clause, 88, 155

variable clause, 88, 155
conflicts between program variable names and C

keywords, 163
conflicts between program variable names and
keywords, 49

constants

175



Index

numeric, 40
string, 40, 41

cont command, 84, 93, 100, 115, 127, 139

conti command, 115, 140

continuing after a breakpoint, 3, 84, 115
continuing after catching signals, 93, 94

core dump, 1,8
corefile command, 9, 141
core files, 1

specifying, 8, 141
C preprocessor, 40
crashes, diagnosing, 1
creating aliases, 29, 138, 139
$ctypenames, 163
$curevent, 163
Scurline, 163
$curpc, 164
current directory, 15
current source file, 18, 68, 137, 142
$cursrcline, 164

D

dbx
-cflag, 7
command scripts, 35
-d flag, 7
-eflag, 7
-1 flag, 7,15
-iflag, 7
invoking, 2, 6
-k flag, 7
-N flag, 7
-P flag, 7
-pflag, 7
quitting, 13, 145
-Rflag, 8

176

-r flag, 8
dbx aliases. See aliases
.dbxinit file, 7, 10
dbx variables, 23, 37
listing, 25, 146

predefined. See predefined dbx variables

removing, 25, 154

setting, 24, 146
debugging

a program, 2

C++ programs, 77,101

Fortran multiprocess programs, 132

high level, 51

multiprocess application. See multiprocess

debugging

running processes, 7
decimal input, 40
decimal output, 40
$defaultin, 33, 145, 164
default input base, 40
$defaultout, 34, 146, 164
default output base, 40

delete command, 80, 85, 91, 112, 116, 141
delete processes from process pool, 126, 141

deleting
aliases, 31, 154
conditional commands, 91, 141

processes from the process group list, 133, 141

tracing, 91, 141
delpgrp command, 133, 141
delproc command, 126, 141

determining scope of program variables, 63, 157

-d flag, 7
dir
alias, 159
path remapping, 17
dir command, 7, 16, 17, 141

disable command, 80, 85, 90, 112, 116, 141



Index

disabling

breakpoints, 90, 141

conditional commands, 90, 141

tracing, 90, 141
disassemble code, 107, 110, 138
display

active process in process pool, 126, 138

processes in process pool, 124, 147
displaying aliases, 29, 138
displaying caught signals, 92, 139
displaying caught system calls, 96, 151
displaying ignored signals, 92, 143
displaying ignored system calls, 97, 152
displaying recording sessions, 35, 145
displaying register values, 66
down command, 67, 141
DSOs, 6, 45

stepping into, 99, 119
duel

C language, 62

debugging, 51

examples, 55

Fortran array subscripts, 60

Fortran language, 63

language differences, 62

operators, 54, 58

quick start, 52

semantics, 57

duel command, 141
dump command, 70, 141

E

edit command, 22, 142, 164
edit history list, 27, 143
editing files, 22, 142
Seditor, 22, 28, 142, 164

EDITOR environment variable, 22, 28, 142, 163
-eflag, 7
enable command, 80, 85, 91, 112, 116, 142

enabling
breakpoints, 91, 142
conditional commands, 91, 142
tracing, 91, 142

ending recording, 33, 154

environment variables
EDITOR, 22, 28, 142, 163
HOME, 11
LD_BIND_NOW, 99, 119

evaluation stack, increasing, 7
examining a new program, 3
examining core dumps, 1
examining program variables, 3
examining stack, 3
exec, 131
executing a shell command, 12, 147
execv, 97
execve, 97
exit, 97
expressions

printing, 41, 145

printing formatted, 43, 145

F

file command, 18, 142
fork, 97,121, 130, 133, 163
Fortran
dbx array subscripts, 40
duel array subscripts, 60
multiprocess debugging, 132
$fp_precise, 164
$framereg, 164

177



Index

frames, 64

fully, 95

fully qualified names, 43
func command, 69, 142

function calls, interactive, 71, 72, 73, 139

G

-g flag, 2, 4, 5, 15, 66, 98
givenfile command, 9, 142
goto command, 100, 143
$groupforktoo, 133, 164
group history, 134

H

hed command, 27, 28, 143
help, 11, 143, 166

help command, 11, 143
hexadecimal input, 40, 163
hexadecimal output, 40, 107, 163
$hexchars, 164

$hexdoubles, 165

$hexin, 40, 165, 166
$hexints, 40, 107, 165, 166
$hexstrings, 165

history command, 26, 143
history editor, 27
$historyevent, 165

history feature, 25

history list, 26
editing, 27, 143
print, 26
HOME environment variable, 11

178

-1 flag, 7,15
-iflag, 7
ignore command, 92, 143
ignoring signals, 92, 143
ignoring system calls, 96, 152
include files, 4
inlines, 20
stopping in, 80
input
playing back, 32, 33, 145
recording, 32, 145

input base
decimal, 40
hexadecimal, 40, 163
octal, 40, 166

instrumented binary, 75

interactive function calls, 41, 71
breakpoints, 74
calling, 72, 139
clearing, 72, 73, 139
nesting, 74
unstacking, 72

intercept command, 95, 143
invoking a shell, 12, 147
invoking dbx, 2, 6

K

kernel debugging, 7

-k flag, 7

kill active process, 129, 144
kill command, 129, 144

kill process in process pool, 129, 144



Index

L fully qualified, 43, 65, 87
statement labels (__$L_ marker), 45
$lastchild, 124, 165 struct, union, and enum tags (__$T_marker), 45
LD_BIND_NOW environment variable, 99, 119 unnamed program blocks (__$$blk1 marker), 45
line numbers, address, 35, 38, 39 nesting interactive function calls, 74
$lines, 165 $newevent, 166
linked list, 31 $newpgrpevent, 134, 166
listclones command, 21, 144 next command, 3, 97, 100, 144
list command, 19, 144 nexti command, 119, 144
listing dbx variables, 25, 146 -N flag, 7
listinlines command, 21 $nonstop, 166
listobj command, 6, 144 numeric constants, 40

listregions command, 109, 144

$listwindow, 19, 144, 165 o

object files, 15
specifying, 8, 142

machine-level breakpoints, 112, 113, 149, 150 octal input, 40, 166

machine-level debugging, 1 octa_l output, 40, 107, 166

machine-level single-stepping, 119 $octin, 40, 166

macros, 4 Soctints, 40, 107, 166

mapping pathnames, 17 on-line help, 11, 143, 166

$maxstrlen, 165 operators, 37
# operator, 35, 38, 39
memory

print contents, 110, 138 // (division), 39, 40
) precedence, 38
memory, print contents, 110, 138

M

- output
missing code, 4 playing back, 32, 145
$mp_program, 97, 133, 165 recording, 32, 34, 146
mp Fortran, 132, 163 output base
multiprocess debugging, 121 decimal, 40
mu|tiprocess programs, 85 hexadecimal, 40, 107, 163

octal, 40, 107, 166
overloaded C++ functions, 101

names

179



Index

P

$page, 166
$pager, 11, 143, 166
$pagewidth, 166
$pagewindow, 166
pathnames, 17
path remapping, 17
pd, 41, 47
$pendingtraps, 167
-P flag, 7
-p flag, 7
parp clause, 134
$piaddtohist, 167
pi command, 33
$pid, 167, 168
$pido, 124, 167
pid clause, 122
$pimode, 28, 34, 145, 167
pixie
counting basic blocks, 75
pixie command, 144
playback input command, 32, 35, 145, 163, 167
playback output command, 145, 163
playing back input, 32, 33, 145
playing back output, 32, 145
po, 41, 47
precedence, operators, 38

predefined dbx aliases, 28, 159
a, 159
b, 159
bp, 159
¢, 159
d, 159
dir, 159
e, 159
f, 159

180

g, 159

h, 159

j, 160

I, 160

li, 160

n, 160

ni, 160

p, 160

pd, 41,47, 160

pi, 33, 35, 160

po, 41, 47, 160

pr, 160

px, 41, 47,160

g, 160

r, 160

ri, 161

ro, 161

S, 161

s, 161

Si, 161

si, 161

source, 147, 161

t, 161

u, 161

W, 162

w, 162

wi, 162
predefined dbx variables, 23, 163

$addrfmt, 163

$addrfmt64, 163

$assignverify, 163

$casesense, 50, 163

$ctypenames, 163

$curevent, 163

$curline, 163

$curpc, 164

$cursrcline, 164

$defaultin, 33, 145, 164

$defaultout, 34, 146, 164

$editor, 22, 28, 142, 164

$fp_precise, 164



Index

$framereg, 109, 164
$groupforktoo, 133, 164
$hexchars, 164
$hexdoubles, 165

$hexin, 40, 165, 166
$hexints, 40, 107, 165, 166
$hexstrings, 165
S$historyevent, 165
$lastchild, 124, 165
$lines, 165

$listwindow, 19, 144, 165
$maxstrlen, 165
$mp_program, 97, 133, 165
$newevent, 166
$newpgrpevent, 134, 166
$nonstop, 166

$octin, 40, 166

$octints, 40, 107, 166
$page, 166

$pager, 11, 143, 166
$pagewidth, 166
$pagewindow, 166
$pendingtraps, 167
$piaddtohist, 167

$pid, 167, 168

$pid0, 124, 167

$pimode, 28, 34, 145, 167
$print_exception_frame, 167
$printdata, 167
$printwhilestep, 167
$printwide, 167
$procaddr, 168

$prompt, 8, 168
$promptonfork, 97, 130, 168
$regstyle, 107, 168
$repeatmode, 26, 137, 168
$rimode, 34, 146, 168
$shellparameters, 9, 168
$showbreakaddrs, 169
$showfilename, 169
$sourcepathrule, 18, 169

$stacktracelimit, 65, 169

$stdc, 170

$stepintoall, 99, 119, 170

$stopformat, 170

S$tagfile, 171

$whereisdsolimit, 64, 171
print

byte in octal, 111

word in decimal, 110

word in hexadecimal, 110

word in octal, 110

$print_exception_frame, 167
print command, 3, 24, 41, 47, 145
$printdata, 167

printd command, 41, 47, 145
printenv command, 51, 145
printf command, 43, 47, 145
print history list, 26

printing expressions, 41, 145
printing formatted expressions, 43, 145
printing program variables, 47
printing register values, 66
print memory contents, 110, 138
printo command, 41, 47, 145
printregs command, 107, 145
$printwhilestep, 167

Sprintwide, 167

printx command, 41, 47, 145

problems
confused listing, 4
include files, 4
macros, 4
source and code do not match, 4
variables do not display, 4

$procaddr, 168
procedures, tracing, 4
processes

181



Index

wait for, 128, 129, 155

process group list
adding processes, 133, 138
deleting processes, 133, 141
showing processes, 133, 147
process groups, 132
breakpoints, 134
group history, 134
tracing, 134
process identification number (PID), 122
process pool, 122
add processes, 125, 138
delete processes, 126, 141
display active process, 126, 138
display processes, 124, 147
kill active process, 129, 144
kill processes, 129, 144
resume active process, 127, 146
select active process, 126, 138
suspend active process, 127
suspend processes, 127, 151
program stack. See stack
program variables. See variables, program
$prompt, 8, 168
prompt, 8, 168
$promptonfork, 97, 130, 168
px, 41,47

Q

qualifying program variable names, 43, 65, 87

quick start duel, 52

quit command, 13, 145
quitting dbx, 13, 145
quotation marks, 41, 46, 103

182

R

record command, 35, 145

recording, displaying sessions, 35, 145
recording, ending, 33, 154

recording input, 32, 145

recording output, 32, 34, 146

record input command, 32, 33, 145, 164
record output command, 34, 146, 163
register names, 105, 168

registers, 105
changing values, 109, 139
displaying values, 66
printing values, 66, 107, 145
using values in expressions, 108

$regstyle, 107, 168

removing dbx variables, 25, 154
repeating commands, 25, 26, 137, 138, 168
$repeatmode, 26, 137, 168

rerun command, 3,9, 10, 146
resume active process, 127, 146
resume command, 85, 127, 146
return command, 100, 146

-Rflag, 8

-r flag, 8

$rimode, 34, 146, 168

run command, 3,9, 146

running process, wait for, 129, 155
running programs, 8,9, 10, 146

S

scope of program variables, 46, 65, 68, 69
scripts, 35

search backward (?) command, 21, 137
search forward (/) command, 21, 137



Index

searching source code, 21, 137
select active process from process pool, 126, 138
sending signals, 84, 115, 127, 146
set command, 24, 25, 41, 146
setenv command, 10, 51, 147
setting breakpoints, 3
setting conditional breakpoints, 80
setting conditional commands, 87
setting dbx variables, 24, 146
setting unconditional breakpoints, 80, 148
sh command, 12, 147
shell, invoking from dbx, 12, 147
shell command, executing, 12, 147
$shellparameters, 9, 168
$showbreakaddrs, 169
$showfilename, 169
showing processes in the process group list, 133, 147
showpgrp command, 133, 147
showproc command, 124, 147
showthread command, 123, 147
signals
catching, 92, 139
continuing after catching, 93, 94
displaying caught, 92, 139
displaying ignored, 92, 143
ignoring, 92, 143
sending, 84, 115, 127, 146
single-stepping, 3, 97, 144, 148
single-stepping at the machine-code level, 119
source, 147, 161
source code
searching, 21, 137
source command, 33
source directories
specifying, 15, 16, 17, 141, 155
source files, 15

dbx, 17
editing, 22,142
locating, 17

specifying, 7, 15, 16, 17, 18, 141, 142, 155
source lines, tracing, 4
$sourcepathrule, 18, 169
sproc, 97, 121, 132, 133, 163

stack
examining, 3, 64, 66
printing, 66

trace, 2, 65, 157
$stacktracelimit, 65, 169
standard error, 9, 146
standard input, 9, 146
standard output, 9, 146
status command, 33, 89, 147
$stdc, 170
step command, 3, 97, 98, 148
stepi command, 119, 148
$stepintoall, 99, 119, 170
stop command, 3, 80, 81, 83, 148
$stopformat, 170
stopi command, 112, 113, 149

string constants, 40, 41
escape sequences, 41

stripped symbol table, 2
suspend active process, 127
suspend command, 127, 151
suspend process in process pool, 127, 151
symbol table
stripped, 2
syscall command, 96, 151

system calls
catching, 96, 152
displaying caught, 96, 151
displaying ignored, 97, 152
exec, 131

183



Index

execv, 97

execve, 97

exit, 97

fork, 97,121, 130, 133, 163
ignoring, 96, 152

sproc, 97,121, 132, 133, 163

T

tag command, 152

S$tagfile, 171

thread clause, 123

trace command, 4, 85, 152
tracei command, 116, 117, 153

tracing
deleting, 91, 141
disabling, 90, 141
enabling, 91, 142
procedures, 4, 85, 152, 153
process groups, 134
source lines, 4
status, 89, 147
variables, 4, 85, 116, 117, 152, 153, 154

troubleshooting, 4

type casting, 43

type conversion, 43

type declarations of program variable names, 64, 155

U

unalias command, 31, 154, 159

unconditional breakpoints, 2, 79
setting, 80, 148

unrecord command, 33, 154

unset command, 25, 154

unsetenv command, 51, 154

unstacking interactive function calls, 72

184

up command, 67, 154

use
path remapping, 17

use command, 7, 16, 155

\Y

variables
dbx. See dbx variables
do not display, 4

variables, predefined dbx. See predefined dbx

variables

variables, program, 37, 46
case sensitivity, 50, 163
changing values, 48, 139
determining scope, 63, 157
examining, 3
names and C keyword conflicts, 163
names and keyword conflicts, 49
printing, 47
gualifying variable names, 43, 65, 87
scope, 43, 46, 65, 68, 69
tracing, 4
type declarations, 64, 155

w

W, 162

waitall command, 128, 129, 155
wait command, 128, 155

wait for active process, 128, 155
wait for process, 128, 155

wait for running process, 129, 155
whatis command, 64, 155

when command, 88, 155

wheni command, 118, 156

where command, 2, 65, 114, 157



Index

whereis command, 43, 45, 63, 157
$whereisdsolimit, 64, 171

which command, 43, 45, 63, 157
whichobj command, 6, 157

185



Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

General impression of the document

Omission of material that you expected to find
Technical errors

Relevance of the material to the job you had to do

Quiality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-0906-110.

Thank you!

Three Ways to Reach Us

To send your comments by electronic mail, use either of these addresses:
— On the Internet: techpubs@sgi.com
— For UUCP mail (through any backbone site): [your_site]!sgiltechpubs

To fax your comments (or annotated copies of manual pages), use this
fax number: 415-965-0964

To send your comments by traditional mail, use this address:

Technical Publications

Silicon Graphics, Inc.

2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389



