
(\$) Model 478A Thermistor Mount

GENERAL INFORMATION

1. INTRODUCTION.

2. The 8 Model 478 A Coaxial Thermistor Mount is designed tor use with $\$$ Model 431 Power Meters to measure microwave power from $1 \mu \mathrm{w}$ to 10 mw. Design of the mount minimizea adverse effects trome eyirommontal temperature changes during meaaurement. For increased measurement accuracy, Effective Efficiency and Calibration Factor are measured for each twoust, and at selected trequencies across the operatiog range the results are marked on the label of the tnatrument (see Paragraph 30). The Model 478A can be used over the $10-\mathrm{Mc}$ to $10-\mathrm{Ge}$ Erequency range. Throughout tho range, the mount terminates the coaxial input in a 50 -ohm impedance, and has an SWR of not more than 1.6 without external toning.
3. Each mount contains two aeries jairs of thermistors, which are matched for cancellation of the effects of drift with amotent temperature change. Thermal stahility is accomplished by mourting the leads of all four thermistors on a common thermal conductor to ensure a common thermal environment. This conductor is thermally saaulated from the main body of the mount so that thermal noise or shocka applled exterrally to the moent, such as those from handling the mount manually, cannot stgniticantly penetrate to disturb the thermistors. This tbermal immunity enables the thermistora to be uaed in the measurement of mierowave power down to the microwatt region.

Table 1. Specifications
Frequency Range: 10 Mc to 10 Gc .
SWR: 10 to 25 Mc :
1.6, max

25 Mc to 7 Ge : 1.3, max

7 to 10 Gc :
1.5. max

Power Ranget 1 uw to 10 mw .
Max Energy per palse: $10 \mathrm{w}-\mu \mathrm{sec}$, PRF $>1 \mathrm{kc}$;
5 w -मaec, PRF <1 kc.
Elements: Four permanently installed thermistors. Operating Resistance: 200 obms $+1 \%$.

Mount Callbration: Caljbration Factor and Effective Effictency furnished at $s i x$ frequenctes between 1 and 10 Gc . Maximum ancertainty of data:

Calibration Factor	Effective Effictency	431 Power Range (mw)
$\pm 1.5 \%$	$\pm 2.5 \%$	10
$\pm 1.5 \%$	$\pm 2.5 \%$	3
± 1.55	$\pm 2.5 \%$	1
$\pm 1.5 \%$	$\pm 2.5 \%$	0.3
$\pm 2 \%$	$\pm 3 \%$	0.1
$\pm 3 \%$	$\pm 4 \%$	0.03
$\pm 4 \%$	$=5 \%$	0.01

plus uncertainty of reference standard. * See text for metboda of obtatning increased accuracy.

RF Connector: Type N_{y} male.
Bridge Connector: Mates with cable supplied with the \& Model 431 type Power Meters.

Dimensions: $2-19 / 16$ in long (72 mm); $1-9 / 8 \operatorname{in}(35 \mathrm{~mm})$ maxtmum diameter.

Net Weight: S oz (140 grams).
*Directly traceable to National Bureau of Standards at those freguencies at which the Bureau offers calibration gervice.

4. INCOMING INSPECTION.

5. Inapect the Model 47 BA upon recelpt for mechanical damage. Also check it electrically; if the mount waa subjected to severe mechantcal shock during sblpment, the match between the thermistors may be affected. To check thermistor match, proceed as described in Paragraph 51.
6. If any damage is found, Inform the carrier and your neareat \& Sales and Service Office immediately,

OPERATION

7. PRECAUTIONS.

B. MECHANICAL SHOCK.
9. DO NOT DROP OR SUBJECT TO SEVERE MECHANICAL SHOCE. SHOCK MAY DESTROY THE MA TCH BETWEEN THEHMISTORS AND INCHEASE SLSCEPTIBLLITY TO DRIFT.

10. BIASING THERMISTORS.

CAUTION: Before conmecting the Model 478 BA to $\$$ Model 431 Power Meters, sec MOUNT RES switch to 200 obm position. CONNECTING A 200-OHM MOUNT TOA POWER METER SET FOR A 100 -OHM MOUNT CAS RESULT IN THERMISTOR DAMAGE.

11. MAXIMUM INPUT.

12. The Model 478A/431 combination responds to the average RF power applied. The maximum signal applied to the thermistor mount should not exceed the limitations for 1) avorage power, 2) pulse oborgy, and 3) peak pulse power. Excessive inpot can permavently damage the Model 478 A by altering the match between the RF and compensation thermistora (resulting in excessive drift or zero shift) or cause error in indicated power.
13. AVERAGE PONER. The $47 B A / 431$ combluation can measure average power up to 10 cww. To measure power in excess of 10 mw , insert a calibrated directhonal coupler such as one of the 0 Model TTO serlea or 7B0 sertes between the mount and the acurce. UNDER NO CIRCUMSTANCES APPLY MORE THAN 30 mw average to the molnt.
14. PLLSE ENERGY AND PEAK POWER In meas uring pulse power, thore is a limit on the onergy per pulse which may be applied to the mount. For a pulae repetition frequenç (PRF) less than 1 kc , energy per poulse can be up to 5 watt- -4 sec; for a PRF 1 kc and above, up to 10 watt- -2 sec (for lack of space, only the lower 1 m it in shown on the mount name plate). However, this energy limit applies only to pulses shorter than $250 \mu \mathrm{sec}$. In Figore 1, the pulse energy limit is translated lato a maximum power-meter reading for any PRF, For puises in this category, allowabie peak power ta inveraely proportlonal to pulse width but should never exceed 200 watts.

PULSE REPETITDON FREQUENCY (KC) sW*-*-
Figure 1. Maximum Power Meter Reading vs PRF for Pulses Shorter than 250 usec
15. For pulses looger than 250 usec, the peak limitation can be expressed in terms of PRF: 10 mw for a PRF below $1 \mathrm{kc}, 40 \mathrm{mw}$ for a PRF 1 kc or above, provided 30 mw average is not exceeded. In Figure 2, the peale power limit is translated into power-meter reading versus duty cycle.

Figure 2. Maximum Power Meter Reading vs Duty Cycle for Pulses Longer than 250 isec
16. Square-wave modulation is a special case of pulse modulation, and maximum power-meter reading versus square-wave frequency is illustrated in Figure 3. Thes figure also holda for sine-wave modulation.

Figure 3. Maximum Power Meter Reading vs Square and Sine-Wave Frequency
17. In the diacussions above, the primary consideration ta maximum power or energy. Howevor, for roodulation frequencies less than 100 cps , the low repetition frequency itself causea errors in indicated power. These errors may be as large as 2 s , regardless of range or reading.
18. When RF is switched by pulse-kating (coaxial solid state awitches), conaidoration muat be given to RF energy contained in the switching pulse itself. And this energy must be added to actual RF pulse power when estimating the RF power dissipated in the thermistor mount. PIN diode modulators of $\overline{5}$ Model B714A/B716A Modulators and 8614A/8616A signal Generators, however, are not subject to thila considoration because output filtering preventa transmission of modulating signals.

10. DRIFT PRECAUTION.

20. Thermistors are inherently temperaturesengitive devices. A coid thermistor mount conuweted to a warm plece of equipment, or vice veraa, produces rapid drift. FOR MINIMLM DRIFT ON SENSITIVE RANGES, MAKE SURE THAT THE MOUNT AND THE EQUIPMENT CONNECTED TO TT ARE AT NEARLY THE SAME TEMPERATURE BEFORE MAKING A MEASUREMENT.
21. ZERO-SET.
22. It is necessary to electrically zero-set the Model 431 Power Mater before maklig a gower meakure ment. To preserve the same gero referencethroughouk the measurement, maintain the same thermal environmentwhen RF power is applied. Two recommended setups for zero-aet are preaented below:
23. RF POWER TLIRNED OFF FOR ZERO-SET.
24. There is minimum zero drift when the zero is set with the RF system connected to the thermistor mount and the RF power swicehed off or greatly uttenuated by the generator attenuator. The several methods used in the 各 aignal generators to switch uff the RF ourput are listed in Table 2. After allowing time for the mount to stabilize thormally, follow the steps for zero-set described in the Model 431 Puwer Moter manual and then turn on the RF aource.

25. THERMISTOR MOUNI DISCONNECTED FOR ZERO-SET.

26. Whon it is inconvenient to turn off the RF powor In the RF system, connect the Model 478A mount to the RF ayatem and set RANGE on the Model 431 Power Meter for an approximate midscale reading. When the readins no longer drifts, disconnoct the mount from the source, fmmediately terminate the mount, if necesaary, as described in Paragraph 2T, and then immediately zaro-set the power meter. Immediately reconnect the mount to the RF source for the power measurement.
27. With the Model 478A mount connected to the RF syatem, the source impedance shunts one of the RF thermistors (bee Figure 4); when the Model 47BA mount is disconnected, the acurce impedance is removed. Unlesa source impedance is high, this varistion in impedance affects the RF bridge 10 -ke feedback loop in the power meter, and the zero-level abtting obtained with the source disconnected is no tonger zera for the measurement. This errar can be eliminated by terminating the mount in an impedance which approximately matches the generator impedance at 10 ke ; the termination shouid be connected while the mount is disconvectad (see Paragraph 26) from the source. For example, it the impedance preaented by the RF system to 10 kc is 10 w (1 K ohm or less) terminate the thermiator mount in a 50 -ohm resistor or a short. Or the other hand, if the impedunce of the RF' system ar 10 kc is high $(100 \mathrm{~K}$ ohms or more) leave the thermistor mount unterminated during gero-set.

Figure 4. Source Impedance Sbunting One RF Thermistor

Table 2. Methodis of Switching OUI RF output of Various hp Signal Generators

hy Generator	Frequency Range	Procedure to Switch Oft RF Output
Model (60B	50 ke to 65 Mc	Increase the generator cutput atteruation 30 or more do
Model AB14A/B616A Model 614/616 Model 618/620	B00 to $2400 \mathrm{Me} / 1800$ to 4500 Mc $B 00$ to $2100 \mathrm{Mc} / 1800$ to 4200 Mc 3.8 to $7.6 \mathrm{Gc} / 7$ to 11 Gc	Release RFF pushbutton Set modulation selector to OFF Set modulation selector to OFF
Mcdel 608 Model 682/887	10 to $480 \mathrm{Mc} / 10$ to 420 Mo 1 to $2 \mathrm{Gc} / 12.4$ to 18.0 Gc	Sot MOD SELECTOR to PULSE, but do not apply modulation stgnal to modulation input termitual
Moxlet 812	450 to 1230 Mc	Set MOD SELECTOR to PULSE 2, but do not apply modulation signal to modulation input terminal
Model 690, 8600 series	1 to 40 Gc	Set LINE to STANDBY

Note

In the proximity of a bigh RF field, shield the discomected thermistor mount from possible stray RF pick-up during the zero-set.
28. Note that some 10 -ke blas aigoal is coupled into tho RF tranamiasion syatem by C2 (Figure 5). It the RF source output impedance at 10 kc is 15 K ohms or greuter, 10 -ke blas voltage is typically 1.3 v RMS and could equal 1.5 v RMS. For an RF source output impedance of 50 ohms at 10 kc , bias signal voltage is typically 5 mv RMS.
29. The presence of this $10-\mathrm{ke}$ bias signal may affect solid state RF sources and RF voltmeter measurements. To minimize or eliminate theae effecta, use an additional blocking capacitor at the Model 478A or a high-pass filter at the RF source output,

30. MOUNT CALIBRATION DATA;

31. The calibration points imprinted on the label of each 478 A allow power measurements to be made with increased accuracy, Values of Calibration Factor and Effective Efficiency are given at alx frequencles be tween 10 Mc and 10 Gc . The soounts are tested on a swept-frequency basis to assure accurate interpolation between calibratton points. Calibration Factor and Effective Efficiency values are traceable to the National Bureau of Standards to the extent allowed by the Bureau's callbration facilities.
32. CALIBRATION FACTOR, Callbration Factor is the ratio of substituted audio or DC power in a ther mistor mount to the microwave RF power incident upon the mount.

$$
\text { Calibrution Factor }=\frac{\text { PDC Substituted }}{P_{\mu} \text { wave Incident }}
$$

39. Caltbracion Factor is a figure of mertt asstgned to a thermistor mount to correct for the following soorces of error: 1) RF reflected by the mount due to mismatch, 2) RF loss caused by absorption within the mount bat not in the detection thermistor elements, and 3) DC-to-mlcrowave power substitution error. Callbration Factor ts applied as a correction factor to all measurements made without a cuner. When these factors and thermoelectric effect (refer to Paragragh 38) are taken tnto conalderation, the power Indicated is the power that prould be delivered by the RF source to the ebaracteristic impedance of the transmission itne. The total SWR in the transmission line determines a region of uncertainty about the measured power. This subject is discussed in Application Note 64, available from ang Hewlett - Packard Sales and Service Office.
40. EFFECTIVE EFFICIENCY. Effective Effleiency is the ratio of substituted audlo or DC power in a thermistor mount to the micrownve RF jower disstpated within the mount.

$$
\text { Effective Efficiency }=\frac{\mathrm{P}_{\mathrm{DC}} \text { Substituted }}{\mathrm{P}_{\text {Hwave }} \text { Dissipated }}
$$

35. Effective Efficiency corrects for power abaorbed in parts of the mount other than the detection ther mistor elements and DC-to-microwave power subatitution error in the thermistor mount. Effective Efficiency to mplied as a correction factor when a tuner is used to match the thermistor mount to the transmisgion Ine or RF source. In thls case, all of the RF power incident upon the mount is absorbed in the mount. Since all power ia absorbed in the mount, measurement uncertainty due to mount SWR is eliminated.

36. CALIBRATION DATA APPLICATION,

37. When the 478A is usedwith the Model 431C Power Moter, Calibration Factor or Effective Efficiency correction can be made by the secting of a front panel awitch. With the proper aetting, the 481C compensates for the Callbration Factor or Effective Effictency of the 478 A . If the 478 A is used with a power meter other than the 431C, Callbration Factor or Effective Efficiency correction canbe made by dividing the measured power by the Callbration Factor or Effective Efficiency value respectively.

38. THERMOSLECTRIC EFFECT.

39. Mount calibration uncertainties given in Table 1 include inaccuracles caused by thermoelectric effect error. Calibration Factor uncertainty of $=1.5 \%$ and Effective Efficiency uncertainty of $\pm 2.5 \%$ can be maintained on the three lowest power ranges of the Model 431 -series Power Meters by correcting for the measurement error introduced by thermoelectric effect. An error correction procedure is given in Paragrapb 43.
40. A mild thermocouple exista at each point of contact where the connecting wires join to the thermiator elements. Each thermocouple creates a DC voltage. Thus, two thermocouple voltages of opposite relative polarity are formed, one at each function to each thermistor element.
41. Ideally, each thermocouple voltage would be equal in magnitude so that they cancel with no resultant effeet on the wecuracy of power measurement. In practice however, each point of contact does not have identical thermocouple charactoristics, and in addition, the temperatures at each junction may not be the same. These differences cause an incomplete cancellation of the thermoelectric voltages, resulting in a voltage that causes a thermoelectric effect error. The magnitude of the error is important when making DC substitution measurements on the $0.1 \mathrm{mw}, 0.03 \mathrm{mw}$, and 0.01 mw ranges with one of the Model 431 -serles Power Metera. On other ranges, the effect is oegligible. Maximum error introduced by thermoelectric effect is about $0.3 \mu \mathrm{w}$ and ts typically $0.1 \mu \mathrm{w}$ on the .01 mw range.

42. THERMOELECTRIC EF FECT ERROR CORFECTION.

43. Use the following technique to correct for thermoelectric effect orror.
a. Measure power,

- b. Connect un hp Model 8402 Puwer Meter Calibravor to the power miter DC CALIBRATION AND SUBSTITUTION cosaector.
c. Zero and sull power meter.
d. By DC Subationtion (refer to procecture to 431 Mamal), duplicate power measurement made in step a. Calculato and record substituted power is P_{1}.
๔. Reverae connection polarity hetween the calibrator and power meter.
f. Re-zero and re-imill power moter, if necessury,
g. By DC Substitution, duplicate power measurement mude tristep) a. Catculate and record substituted power as P_{2}.
h. Calculute urithmetic mean of the iwo substitution porers P_{1} and p_{2}. Tbis miean power includes a correction for thermaelectric offect orror.

$$
\text { Power }=\frac{P_{1}+P_{2}}{2}
$$

OPERATING PRINCIPLES

44. CIRCUIT DESCRIPTION,

45. Two macched serios thermistor pairs are mounted on a commten thormal conducting block, represented by the shaded rectangle in Figure 5. One pair, marked D for detection, is mutused belween the end of a coaxial cable and a cylindrical casity: These thermistors are exposed to incoming RF power which beats them, lowering their reaistances. The other pair, marked C tor compensation and situated immediately outaide the cavity. lo completely ahielded from RF, Wth. then Model 4'tss attached to a Mocel 431 Power Meter, the dotection thermistors are part of the RF bridge und the compensation chermistor sare part of the metering bridge. Since the two pairs of thermistors alare the same thermal envirooment, any charge to temperature which aftects the RFF bridge almultaneousis affects the metertug bridge, thereby allowing the power mater circuit to compensate for charges in temperature, and thua to mialmize detfe.

Figure 5. Schematte Diagram Moxel 478A Thermistor Monet
46. During operation, surfletent amounta of DC and 10-kc blas currents are supplied from the Model 431 Power Meter to heat the thermintors until thele resistances are reduced to approximately 200 ohms per serlea pair. Capacitor C1 offors high impedance to 10 kc , but ts practically a short to RF. This causes D to appear serivs-comiected to 10 kc ; but parallelconnected to RF. In this marnor, D appeara to the audio bridge of the Model 431 Power Meter as a 200 olum resistance, but terminates the coastal cable in 50 obms. Capacitor C2 blocks any DC and audio power that might be present in the incoming signal, ard passes only RF power.

47. POWER DETECTION.

48, Under rormal operation, the total power aupplted to beat thermistor pair D (see Figure 5) consists of: 1) RF signal, 2>10-kc blas, and 3) hout from the epyjromment. The total power supplied to heat thermistor pair C consiats of: 1) DC bias, 2) an equal amount of 10-ke blas, and 3) beat from the same environment. As D and C are matched thermally, the total amounts of heat applied to reduce their series renistancea equally must be equal. Restating the foregoing algebraically: under normal operation

$$
P_{\text {total to } D}=P_{\text {total to } C}
$$

$P_{\text {total to }} \mathrm{D}^{-\mathrm{P}_{\text {RF }}}$ to $\mathrm{D}^{-\mathbf{P}_{\text {io ke to }} \mathrm{D}^{+\mathrm{P}_{\text {ens }}} \text { heat to } \mathrm{D}}$ and

$$
\mathrm{P}_{\text {total to }} \mathrm{C}^{=\mathrm{P}} \mathrm{DC} \text { to } \mathrm{C}^{+\mathrm{P}} 10 \mathrm{ke} \text { to } \mathrm{C}^{+\mathrm{P}} \text { env heat to } \mathrm{C}
$$

Since the thermistors are mounted on tho same thermal block,
${ }^{P}$ env heac to D^{-P} env heat to C
and aince
$P_{10 \text { ke to [B }}$ ts made $=P_{10 \mathrm{kc} \text { to } \mathrm{C}}$
this teaves

$$
P_{R F} \text { to } D^{-P} \mathrm{DC} \text { to } \mathrm{C}
$$

$P_{D C}$ to C^{15} monitored by the Model 431 Power Meter.

MAINTENANCE

49. MECHANICAL SHOCK.

60. The Moxel 47BA in a preciston thatrument. Avoid dropping or other mechartcal ahocks. Such shocks can descroy the match becween the thermistors,

51. CHECK ON THERAIBTOR MATCH.

52. Macch between the thermistora maybe checkedby comparing the thermistor resistances under simutaced operatirg coaditions. Equipment required ia andioned in Figure 6. Make connections to the comsector at the
rear ofthe Uhermistor mount; pins are shown In Fligure 6. Note that the small battery in aeries with the 6t Model 405 Digitat Voltmeter is connected in opposition to the power supply. The value of this backing voltage sicuid be such that voltmeter resolution down to 0.001 volt is obtataed, Take readings with switcb S comeeted to pin 1 and then to pln 3. Thermistor match is satisfactory it the two readings do not differ by more than 0.030 volt. Nor-operating mounts with readirgs as htgh an 0.150 volt can probably be repalred as outlined to the succeeding paragraplas.

Figure 6. Cheek on Model 478A Thermistor Resistance Match
33. HEPAIR.
54. Exceeding the CW ar pulse power IImits of the Model 478 A Thermistor Mount may result in damare auch that the mount will so longer zero on the Model 431 Power Meter.
55. Before adjusting the mount in uxy way, make aure that the mount aa the cause of the problem, Anopen or short Ladication, using the checks in Paragraph 52 or 58, means chat the socuat is not repairable by the procedure outlined in the following paragraphs. Howover, the mount may be not-operative, but still repairable. Test for this by using the procedure in Piragraph 52, or by comecting the mount to a Model 491 and cable which ard known to be good. A faulty cable will not lave continuity througb the respective conector pina, or may have poor contact at the moune corzector. Poor contact will show upas intermittence or a great deal of alofec (visible on the 431 meter) when the cable ia gentl; tlexed aear the connector end.
66. To truableshoot a damaged mounc, proceed as follows;
a. Connect mount to Model 431.
b. Set: $\begin{aligned} & \text { MOUNT RES . . . } 200 \mathrm{Mhm} \\ & \\ & \\ & \\ & \text { MANGE } 10 \mathrm{MW} \\ & \text { POWER }\end{aligned}$
c. Rotate ZERO from one limit to the other.
57. Il meter romatus pegged upscale, the thermiator elements bave been damaged, However, it may be
posisible to recompensate the thermistors per Paragrapha 60 and 62 and return the mount to operation; otherwise they must be repliced. In oither case, the Effectice Efficiency and Calibration Factor data on the nameplate are no longer valid (aee Paragraph 69),
68. If meter remains pegged downacale, measure resistance between pins 1 and 2, and pins 3 and 4. The resistance should measure between 1000 and 5000 obms. An open or aborted reading indicates the oned for replacement of the thermistors.

WARNING

Under tio conditions should the mount be required to carry a current higher than 14 ma .
59. If the resiatance reading is satisfactory, it may be possible to recompensate the mount, and return it to aervice. The drift with teroperature charges will be higher because of the damage to the thermistora, but it will be posaible to zaro the meter and to make measurements. The Effective Efficiency and Caljbration Factor indicated on the tabel will no longer be valld (aee Paragraph 69), There are two adjuating screws inside the inatrument which permit recompensation within limite. Must instruments with sertals lower than 7663 do not have the adjusting screwa at the time of manufacture, but are modified if the instrument was sent in fur repais after March, 19E'
60. Refer to Figure 7, and proceed as followa:
a. Hemove the three acrews (A).
b. Sude instrument out of jts cover.
c. Plug cover into Model 431.
4. Set: $\begin{aligned} & \text { MOUNT RES : . . } 200 \text { Ohm } \\ & \text { POWER ON }\end{aligned}$

Figure 7. Thermiator Compensation
B1. If meter is pegred downacale:
a. Set RANGE to 10 MW ,
b. Set ZERO and VEHNIER to midd-range.
e. Tura serews (B) clockwise, 1/8 euro alternately.

CAUTION

If there is a sudden jump in meter indication when atvancing bithor acrew, back off $1 / 8$ turn, and do not advance that screw further, Cbeckrosistanceas in Paragraph 58. If elther serew bottorns, do not apply foree. Thermistor replacement (Paragraph 83) is indicated.
d. When meter pointer rises, frim to zero with each adjusting acrevp
e. Replace cover and three screas (A). The instrument is now operative.
62. If meter is pegged upscale:
at. Set ZERO and VERNIER to mid-range.
b. Set RANGE to highest poastion which will not pog the meter.
c. Tura one of the screws (B) counterclockwise to obtain a meler reading half that obaerved in step o.
d. Turn the other screw (B) counterclockwise to zero the meter. If it is imposaioie to zero the meter, replace the thermators (Paragraph B3).
e. Replace cover and three serows (A). The tastrameat is now operative.

63. THERMISTOR ASSEMBLY HEPLACEMENT PROCEDURE.

Notef

Attar replacement of the thermistor adsembly, the Effective Efficioney ard Calibration Factor Indicated on the label of the mount are no longer valld (see Paragraph 69),
64. The procedure constats of remuving the damaged thermistor assembly, the printed circuit assembly, and roplacing them with protested asaemollea Included :a Thermistor Assembly Replacoment Kit, 复 Stock No. 00478-600.

Nate

The damaged thernistor assembly shauld be retarned to Hewlett-Packard for credit.
85. The replacument k asemblioa are pretested at the tactory. However, since the operation of the thermistor mount diepends on proper installation of the aasembly, It may he stesirable to check the SWR and efficieney follonimg replacement, The efficioncy may be checked by compartak agalnat a known mexant. The SWR is checked at 8 Ge and 10 Gc . SWR shouid be approxtmately equal aL B Gc and 10 Ge and shoutd be $L, 5$ or less.

Note

In the lield replaceable thermator assembly connection of IBe RF thermistors to the type N centit: conductor ta made by a beltowa. If the belluws does rot contact the center conductor, SWR will be ubout 2.0 at 10 Gc . The bellows may he lenathened slightly with a pair uf tweezerh.
66. The following special tools may oe required for the mompletion of tais procedure:
a. The small screwamwer, .OTK Lip, sustable for rem日vity a DD-\{10 $\times 1 / \mathrm{B}$ serow.
b. Ohe pair of lyeczera.

Table 3. Parta Furnished io Thermistor Assembly Feplacement Kit, 9 0047B-600

Qty	Deacription	4 Stock No.
1	Thermiator Assembly	474A-95A
1	Etched Circuit Board	478A- 85 A
1	Resistor, fixed, composition, 2.7 ohma $+10^{6}+1 / 4 \mathrm{~W}$	0604-0271
1 or 2	Capacitora, ilued, dipped mica	*
- Factory Selected.		

RT. REMOVAL PROCEDURE

a. Femove three $2-56 \times 3 / 14$ acrews holding Terminal Shield (Figure 3). Move Terminal Shield aaide.

CAUTION

Do not breals wires connecting printed circuit assomkly to receptacle conaector.
b. Luoaen lockrut and remove 5:16-32 aet gerew trom lisermistor Assembly,
c. Disconnect the three wires between the printed eircuit assombly and the recoptacle connector from the priz:ied circuit assembly.
d. In =arly Tiermistor Assemblies there ta a $00-70$ x 1.8 screw used to connect the RF Thermistors to the Type N cartor conductor, Remove cha acrew, If present, using small screwdrlser and tweezers.
e. Remove the three $2-58 \times 5 / 8$ jnch nerews holding printed circult and Thermistor Assembliea to the RF Consector Aanembly.

1. Remove pribed circuit and Thermistor Assembliea.
g. Remove the three insulator bushings from. Thermistor Assembiy. Titis completes the removal of the damaged assembly.

68. INSTALLATION PROCEDURE

i. Reterring tu Figure B, comect the three wares trom receptacle connector coprinted circuit assembly.

Note

For strain rediet, the wires should botbrough the holes Indicated and comect from the bottom of the printed circuit assembly.

It, inscall the three insulator byshings in the Thermistor Assembly.
c. Pass the red wire from the Thermistor Asaembly through the bole indicated in Figure 8, Do not connect to printed circuit assembly at this time.

Pigure 8. E Model 47EA Printed Circuit Assy Wiring
d. Mount Thermistor and printed circuit assemblies on RFF Connector Assembly. Use three $2-58 \times 5 / 8$ lach screws and lockwashers. Screws must betightened firmly to thsure proper bellow contact with the Type N Center Conduccor.

Note

Printod eireuit assembly muat be poaitioned so it coes rick coser compensating serews.
0. Connect red and white wires from Thermistor Assembly to printed circuit assembly.
f. Convect Thermistor Mount to an 幕 Model 431 . Cbeck for proper null ard zero.
g. If desired, check SWR and efficiency. The Mount SWR has boen adjusted at the tactory to be about equal at 9 Gc , and 10 Gc . and less than 1.5 . The adjustment is made with the $5 / 10-23$ set serew which is secured by a lock nut. The set screw should not be moved uniess SWR is being recalibrated. Effictency may be checked by comparing to a known good mount.

CAUTION

To prevent pulling wires out of terminal connector, secure terminal shield with one 2-56 $\mathrm{x} 9 / 16$ inch serew while makiox checks.
h. When any tescing or reculibration is completed secure terminal shivid with three $2-56 \times 3 / 16$ inch screws. Th1s completes the Installation Procedure.
69. RECALIBRATION, If recalibration of the mount is desired, the instrument may be sent to the factory for repair and recallbration. Ahy Hewlott-Packard Sales and Service Otfice will arrage for such repair.

Figuro 9. Model 47 BA Thermistor Mount Asaembly

CERTIFICATION

The Hewlett-Pachard Company certifies that this instrument was thoroughly tested and inspected and found to meet its published specifications when it was shipped from the factory. The HewlettPackard Company further certifies that its calibration measurements are traceable to the U.S. National Bureau of Standards to the extent allowed by the Bureau's calibration facility.

WARRANTY AND ASSISTANCE

All Hewlett-Packard products are warranted against defects in materials and workmanship. This warranty applies for one year from the date of delivery, or, in the case of certain major components listed in the operating manual, for the specified period. We will repair or replace products which prove to be defective during the warranty period. No other warranty is expressed or implied. We are not liable for consequential damages.

For any assistance contact your nearest Hewlett-Packard Sales and Service Office.

