Mini TL866 Universal Programmer ->AVR microcontroller software encryption

AVR microcontroller has an RC Calibration (calibrate bytes). Only one of dozens of chips may have the same bytes value and it cannot be modified. Microcontroller software can read this value and determine whether the code is used by other chips. Through custom encryption algorithm, it can stop those who decrypt chips with ulterior motives from directly using. The encryption algorithm is so complex that it is not easy to decrypt. But, about "encryption", there is a problem for developers - each chip is different - it is impossible to manually calculate one by one and respectively compile source code if the algorithm is complex. This programmer can automatically read into RC bytes before programming. The developer can get the bytes value of the chip in the DLL dynamic function and then automatically calculate the encrypted data according to the request and put it in the memory, efficiently completing mass production.

(A detailed encrypted instance of the ATMEGA8 in the installation package is available for reference)

The operation is the same as **<Set Auto Serials>**,

view > Set Auto Serials

The contents of instance: By encryption algorithm, programmed chip can be normally run. While the copied program from the chip to another chip cannot be run. The function of this programmer is that the chip can be quickly encrypted in mass production.

Related Topics:

- > Quick Guide
- > Complete Operations Guide

http://www.autoelectric.cn China Hainan

TEL: 0898 68681816 FAX :0898-68681815 Mobile: 13198907988 The Haikou Xingong Electronics Co., Ltd. Copyright @ 2009 Translator's eBay ID: sunwenjun, PayPal Email: <u>yanyan.816@163.com</u>

Mini TL866 Universal Programmer -> Set Auto Serials

<Set Auto Serials>: A IC serial number is automatically added to a certain buffer when programming. It is convenient to the chip programming settings, time settings or unique serial number settings at factory. The programmer has many kinds of numbering algorithms that can meet the needs of users.

Click <main menu>--- <Device> --- <Serials Number> to pop up the following dialog box:

AutoInc. mode	Operations		
 Default INC 	Start Addr:0x	00000000	SN.Length: 16
C Time Mode	original value:		0000035
C Radom	Inc.Step(10):	1	
C User Define	CODE	-	Inc.Format
Region	• HEX C	ASCII	• HEX C DEC
CODE Memory			Inc.from high address
C DATA Memory			, menten mgn avarent
C USER.ROW	Record:		
C USERID	Note: Save Serial	s to end of this	

Firstly select the Auto Inc. mode. There are four algorithm modes to choose from the dialog box and the detailed instructions are as below:

1. The default increment algorithm < Default INC.>

This algorithm interface is shown above, a set length of number is placed in the start address and the number will be increased according to the <Inc. Step>. After setting the parameters, click <Test> to start testing and check the change regularity of different set parameters. <original Value> and <Inc. Step> can be set in the above dialog box.

You can set <record> file after the parameters are set and the testing result is correct. If blank, the record file is invalid and the data cannot be recorded into the file when programming; If the <record>file is set, the set serial number will be added at the end of the record file after programming.

Finally, tick off <Enable Auto. SN> and click <Save> button.

2. time algorithm <Time Mode>

Time algorithm dialog interface is as shown below:

utoInc. mode	- Operations			
C Default INC	Start Addr:0x	00000000	SN.Length:	16
Time Mode	original value:			
C Radom			Inc.Step	(10):
C User Define	Char Format	M-DD 00-00		
	1 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	M-DD +5 bytes II	۷C.	
egion	C YYYY-MI	M-DD 00:00+8 by	rtes INC.	
CODE Memory	C YYYY-MI	M-DD 00:00+161	oytes Radom	
DATA Memory				
C USER.ROW	Record:			
C USERID	Note: Save Serial	s to end of this fi	le	
	Enable Auto.8	IN Test	Save	Car

There are four time encoding format as below:

(1) date + time Total Length: 16 bytes

The date and time will be added in the specified place, total length is 16bytes.

(2) The date +5 bytes increment Total Length: 16 bytes The incremental parts can be set original value and step.

(3) Date + time + 8 bytes increment Total Length: 24 bytes The incremental parts can be set original value and step.

(4) Date + time + 16 bytes random number Total Length: 32 bytes

The16 bytes are random and it can generate a unique product serial number. In this way, the <Record> file must be set so that the generated code can be recorded in the file. Otherwise, your don't know what is the product serial number.

The following operating steps are the same as the above <Default INC.>

3. the random sequence number algorithm <Random>

The algorithm generates a specified length of random number, as shown below:

AutoInc. mode	Operations
C Default INC	
C Time Mode	Start Addr:0x 0000000 SN.Length: 16
Radom	
C User Define	CODE
	C HEX C ASCII
Region	
CODE Memory	
C DATA Memory	
C USER.ROW	Record:
O USERID	Note: Save Serials to end of this file

4. user-defined algorithm <user define>

This user-defined algorithm has great flexibility. You can set any ways of numbering algorithms, for the detailed usage, see the directory:

MiniPro\Serialnumber\SOURCE_DLL. The interface is as below:

For AVR Microcontroller, encryption of RC verified byte can be fully achieved by invoking the DLL dynamic link library. Here are all source program and testing ways, see the directory: MiniPro\ATMEGA8_LED

AutoInc. mode	Operations User algorithm Serial_PIC18F4550_TEST.dll
C Time Mode	Note:Copy the file to \SERIALNUMBER
C Radom User Define	[DEVICE] Microchip PIC18F4550 [Description]
Region	DDL×Ô¶-ÔàĐôÁĐ°Å°àÊÔ 2009-12-25
C CODE Memory	original value: 00000035
C USER.ROW	Record:
C USERID	Note: Save Serials to end of this file

After making DLL file, you copy them to the application directory : MiniPro\Serialnumber, that's OK. You can select your algorithm file in the <user algorithm> list.

The following operating steps are the same as other algorithms.

------ Important note: ------ -

1. After setting the above, the programmer will not automatically add the serial number you set to the chip when programming, unless you tick off <Auto Serials No.> in the main interface Options.

2.Please firstly set algorithm and tick off<Enable Auto SN> (setting path: <main menu>-<Device>-<serials number>) and then the <Auto Serials No.> option can be ticked off.

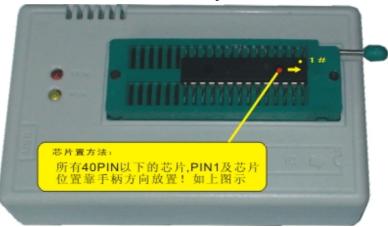
3. After <Auto Serials No.> option is ticked off, if you reset the numbering algorithm, in main interface <Auto Serials No.> option must be ticked off again.

4. You must reset the numbering algorithm if the chip model is changed.

5. In the project mode, the algorithm can be saved in the

project file. You can directly open the project file, and automatically invoke the automatic numbering algorithm. Therefore, it is easier and more convenient to use for the mass production in the project mode.

Related Topics:


- Quick Guide
- > Complete Operations Guide

http://www.autoelectric.cn China Hainan TEL: 0898 68681816 FAX :0898-68681815 Mobile: 13198907988 The Haikou Xingong Electronics Co., Ltd. Copyright @ 2009 Translator's eBay ID: sunwenjun, PayPal Email: yanyan.816@163.com

Be ready for the hardware

Please make sure properly installed the application software and USB driver of the universal programmer before connecting the USB communication line. At this time, the red power supply indicator shows proper connection (lights up) and the yellow power supply indicator goes out waiting for programming. (If the yellow power supply indicator flashes at all times, it indicates that the USB driver installation is wrong or there is no installation of the USB programmer device driver). You can continue to do the next one if the programmer application software displays the firmware version number in the lower right.

Chip Place Way : PIN1 of the within-40-pins chips should be placed near the ZIF socket handle, just as illustrated:

select the programmed chip

Click "Select IC" to select the present chip model you need to program, as below:

elect IC-		IC Information(No Project opene	d) ———		
S	elect Device				ectri
	Search Device	Manufactory	Device		
roduct hipID:		ADVANCE GROUP	AM2716B	@DIP24	▲ Confi;
mpib.		AiT Semi	AM2732B	@DIP24	
Addres	Туре	ALI (Acer)	AM2764A	@DIP28	
00000		ALLIANCE	AM2764A	@PLCC32	
00001	C ALL	AMD	AM27128A	@DIP28	
00002	ROM/FLASH/NVRAM	AMIC	AM27128A	@PLCC32	
00003	C MCU/MPU	ANACHIP	AM27256	@DIP28	
00004		APLUS FLASH	AM27256	@PLCC32	
00005	C PLD/GAL/CPLD	ARTSCHIP	AM27512	@DIP28	
00006	C SRAM/DRAM	ASAHI KASEI (AKM)	AM27512	@PLCC32	
00007	C Logie IC	ASD	AM27C64	@DIP28	
00008	in any in the	ASI	AM27C64	@PLCC32	
00009		ATC	AM27C010	@DIP32	
0000A	1	ATMEL	AM27C010	@PLCC32	
0000B		BELLING	AM27C020	@DIP32	
00000		BJX	AM27C020	@PLCC32	
0000D		BMT	AM27C040	@DIP32	
0000E		BOOKT V MTCDO	AM27C040	@PLCC32	
0000F			22-		
otions-	Advanced Micro Devices Inc.	IC Total: 12811	Select	Cancel	
Erase					
1 S.S. 10 S.S.	after 🥅 Auto Serials NO.				

Please note: if some type of packages are not listed in the menu or the present chips are non-DIP packages, you can program by checking the IC product instruction and directly connecting the one-to-one pin.

Load the buffers data

Programming operation can be performed only when the present chip data is loaded to the buffers. Click "Open file" and open the present chip data file and then bring out the dialogue box as below:

1. select the file you want to program

🖬 18F86J50.mp	1	111.HEX.HEX	🕖 aechip1301.hex
18F87J50.he	x	🛅 123.BIN	AT8958253CFG.
18F2480_int3	32.hex	E 222.HEX	AT8958253COD
27C010_FF.H	IEX .	222.HEX.HEX	AT8958253EED4
27C020_FF.H	IEX	🚾 aaa.BIN	AT8958253USEF
🗐 111.HEX		🕗 aaa.dat	at_TEST.mpj.ba
4			2

2. Select the load mode: generally, specifying the buffer is okay if there are multiple buffers, others are default.

Load all the data to the specified buffer in the same way.

For Microchip PIC microcontroller, HEX file can be once loaded to all buffers if it is in accord with MICROCHIP IDE environment, including configuration information.

C BINARY	
• INTEL HEX	Normal
	From File Start Addr(Hex): 00000
To Region	TO Buffer Strat Addr(HEX): 00000
Code Memory	Clear Buffer when loading the file
	Clear buffer with default

set chip configuration information and lock option

Please press "CONFIG" button in the Buffer select if you need to protect the chip or do other config operations. And then bring out the config dialogue box. The config information is different from the chip model. For example, if you select as AT89S8253, the below dialogue box will be brought out:

	uff select User.Row Code Meno Data Meno CO
ck Byte	
NO Lock Bit	C Lock LB1 LB2
C Lock LB1	C Lock LB1 LB2 LB3
nfig Byte	
🔽 SerialPrgEnable	✓ UsrRowPrgEnable
x2 ClockEnable	External Clock En

Do the next one after setting up the configuration information and protection option

programming set

In most cases, the Default Settings is ok. You can tick off "Auto Serials No." if you need to number chip.

The specific method reference: <programming details> - <set IC serials number>

Please note: these options, such as "Erase Before", "Blank Check", "Skip 0xFF", "Check device ID", can be ticked off according to your needs.

"Verify After": most of programmers contain the inner verify check, but you'd better perform the "Verify After" operation in order to make sure the proper programming.

Program: click "Read" button to bring out the dialog box, as show below:

A B	
續程芯片內容 编程范围	
CODE Memory FORTA Memory Con.FUSE Bit F LOCK Bit	C
结束地址: 00001FFF ATMEGA8535(L)	
正在校验CODE MEMORY Check Device ID: 0x 1E 93 08OK!	Ð
Erase chipElapsed time: 141ms programming code MemoryElapsed time: 1938ms	Ē
編程 退出	

- A. select programming buffer, default as all buffers
- B. Present operating state prompt area
- C. Present chip model

D. Programming operation information: you can see the programming time of every step. Units: MS

E. progress bar

Prompt: the above-mentioned operation is indispensable to programming a chip. The operations are different from the chip model.

Related Topics:

- Quick Guide
- > Complete Operations Guide

http://www.autoelectric.cn Hainan China TEL: 0898 68681816 FAX :0898-68681815 Mobile: 13198907988 The Haikou Xingong Electronics Co., Ltd. Copyright @ 2009 Translator's eBay ID: sunwenjun, PayPal Email: yanyan.816@163.com

Mini TL866 Universal Programmer -> Detailed Description

This chapter mainly describes the features and the specific operation of MiniPro programmer programming software.

Menu command
 <u>File menu</u> Open, save, buffer operation functions, exit
 <u>Chip-select menu</u> select programmed chip according to menu list
 Project menu Open Project, Save Project, Save Project As, close project, project attrib, modify password
◆ <u>Device menu</u> Read, Read ID, Verify, Program, Erase, Blank Check, Serials Number, Testing
 <u>System Tools menu</u> Calculator, System Self- check, Refresh flash firmware
♦ <u>Help menu</u> Help files, About MiniPro
detailed description of editing buffer
 <u>Edit buffer</u> Find the corresponding hexadecimal value or ASCII character strings in the buffer, data, copy, paste, fill, Block Save As
detailed operating description
 <u>Select chip</u> select programmed chip according to menu list
♦ <u>Read the chip</u> Read into the chip to the PC buffer.
 Program chip Cure the contents of buffer into the chip.
◆ Erase chip

Completely erase the data of the chip (Some microcontroller clock calibration bytes can be erased according to the needs, the default is not erased).

• Chip Blank

Check whether the current chip is programmed

• <u>Chip Verify</u>

Verify whether the chip data is the same as the buffer, can be marked "verify in a different place".

Set the chip configuration information

mainly set the microcontroller fuse byte, lock bit byte, etc.

Set Chip Serial number

a variety of file format can be opened

Programmer self-test

check whether the programming port function is normal.

◆ <u>ICSP programming</u>

ICSP serial programming function interface, and the usage

RAM test

Test the common static RAM chips

Digital logic circuit test

Test 54 74 series, CMOS4000/MC14xxx series digital integrated circuit

Related Topics:

- Quick Guide
- > Complete Operations Guide

http://www.autoelectric.cn Hainan China

TEL: 0898 68681816 FAX :0898-68681815 Mobile: 13198907988 The Haikou Xingong Electronics Co., Ltd. Copyright @ 2009 Translator's eBay ID: sunwenjun, PayPal Email: yanyan.816@163.com

MiniPro programmer -> Menu -> File menu

File menu items are as follows:

Open(O)	Ctrl+O
Save(S)	Ctrl+S
Сору	Ctrl+C
Paste	Ctrl+V
Block Save As(S)	txt
Define Block	Ctrl+B
Fill Block(F)	
Clear current buffe	r(C)
Clear all buffer(A)	
	CHUC
Find	Ctrl+F
5657	F3
Find Find Next Goto(G)	

Open file

Load the hexadecimal file or binary file to the specified buffer, GAL chip should be loaded JED format file.

♦ Save file

Save the present buffer as the HEX file of hexadecimal format or BIN file of binary format. Save as JED format file when programming GAD chip.

Note: MICROCHIP MCU can be loaded the HEX file generated by MICROCHIP IDE development environment to all buffers and all the buffers can be saved to HEX file. At the same time it is fully compatible with MICROCHIP IDE development environment.

◆Copy, Paste, Block Save As, Define Block, Fill Block, Clear current buffer, Clear all buffer

You can use shortcut keys or right-click menu to realize these menu functions.

See the detailed functions of editing file --->Edit buffer

Find, Find Next, address, Goto

You can use shortcut keys or right-click menu to realize

these menu functions.

See the detailed functions of editing file --->Edit buffer

♦Exit

Exit MiniPro programming application program

Related Topics:

Quick Guide

Complete Operations Guide

http://www.autoelectric.cn Hainan China

TEL: 0898 68681816 FAX :0898-68681815 Mobile: 13198907988

The Haikou Xingong Electronics Co., Ltd. Copyright @ 2009 Translator's eBay ID: sunwenjun, PayPal Email: yanyan.816@163.com

Mini TL866 Universal Programmer -> Chip select menu

Directly select the chip you want to program according to the IC type that is easy and convenient to operate.

4 Confi
4 Conf
4
4
8
:32
8
8
8
8
2
2
Cancel

Note: For the IC with same model but different package, if all of the packages (no including DIP package) cannot be listed, you can directly connect the corresponding pins to program by referring to the IC product manual.

Related Topics:

- <u>Quick Guide</u>
- > Complete Operations Guide

TEL: 0898 68681816 FAX :0898-68681815 Mobile: 13198907988 The Haikou Xingong Electronics Co., Ltd. Copyright @ 2009 Translator's eBay ID: sunwenjun, PayPal Email: <u>yanyan.816@163.com</u>

Mini TL866 Universal Programmer -> Project menu

In order to make the chip programming process more reliable, the project file needs to be set up. This file has the current buffer data and working environment settings, including the current device information, all Options settings and related settings of automatic numbering. It is convenient to use for daily mass production. The password-protected project can be set, that can protect the security of the product program to some extent.

Project menu items are as follows:

Save project

Select [Project] - [Save Project] to set up a project after setting parameters of the chip in the application program. The project information can be shown. Click [Save Project], input the project name and then click OK. The following dialog box will be popped up:

Project Name:	C:\Program F	iles\MiniH	Pro/test.mj	pj
Device Type:	AM27	16B @I	DIP24	
Project Desc:				
CRC 32bits:	0x 0ACC43A3			
Create Time:	2012-06-30 04:40	Modi:	2012-06	5-30 04:40
assword length<8:				
onfirm password:				

1. The password can be emptied, that means the passwordprotected project is not set.

2. The password must be inputted if the project is set as protected mode. The related data of the project cannot be modified after setting protected mode. In addition, partial functions of programmer are not allowed to use.

♦ Open Project

Open an current project, select [Project] - [Open Project], select the project name in the window and click OK. If the project is password-protected, the following dialog box will pop up. (the project can be directly opened if no password)

Password			-	×
Project is Encrypted!				
Input PASS:				
OK	Can	cel		

♦ Save Project As:

Save the current project as another project name. Refer to [Save project].

Close project

Close the current project. Switch to the normal

programming mode and clear the current buffer data.

♦ Project Attrib

Select [Project] - [Project Attrib], project attribute dialog box pop up.

Project Name:	C:\Program Files	MiniPro\test.mpj	
Device Type:	AM2716E	3 @DIP24	
Project Desc:			
CRC 32bits:	0x 0ACC43A3	Ī	
Create Time: 2	012-06-30 04:41	Modi: 2012-06-30 0	4:4

The Project attribute dialog box can change the project description and project protection mode. The project password needs to be inputted when saving.

modify password

oject pass	sword
	×
Save	Cancel

Prompt:

 An exact description of the project can distinguish from a large number of projects. The project mode is suitable for mass production.
 The project file has been encrypted. Proper protection of the project password can stop from copying. It can protect data to some extent.

3. The project file includes 32-bit

CRC check information when saving or opening. It can avoid damage of the file or other uncertainties.

Related Topics:

- Quick Guide
- > Complete Operations Guide

http://www.autoelectric.cn Hainan China TEL: 0898 68681816 FAX :0898-68681815 Mobile: 13198907988 The Haikou Xingong Electronics Co., Ltd. Copyright @ 2009 Translator's eBay ID: sunwenjun, PayPal Email: yanyan.816@163.com

Mini TL866 Universal Programmer -> Device menu

The menu functions are for the chip programming operation.Device menu items are as follows:

Read(R) Read ID(I) Verify (V)
Program(P) Erase (E) Blank Check(B)
Serials Number
Testing

Read...: View: <detailed description> -<<u>Read the chip></u>

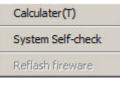
♦ Read ID: simply read the chip ID and display information in the ID display area.

- Verify: View: <detailed description> -<<u><Check chip></u>
- Program: View: <detailed description> -<Program>
- Erase: View: <detailed description> -<<u>Chip Erase></u>
- Blank Check: View: <detailed description> -<Blank check>
- Serials Number: View: <detailed description> -<Serials</p>

Number>

Testing: View: <detailed description> -<Testing>

Related Topics:


- Quick Guide
- Complete Operations Guide

http://www.autoelectric.cn Hainan China TEL: 0898 68681816 FAX :0898-68681815 Mobile: 13198907988 The Haikou Xingong Electronics Co., Ltd. Copyright @ 2009 Translator's eBay ID: sunwenjun, PayPal Email: yanyan.816@163.com

Mini TL866 Universal Programmer -> Tools menu

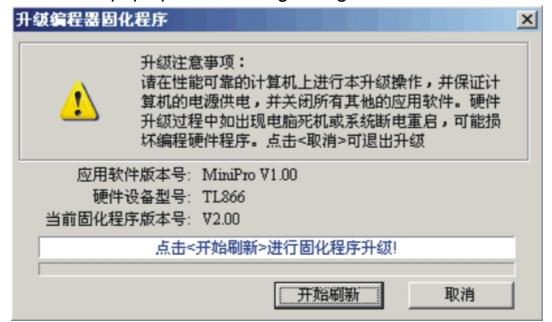
The menu functions are for the chip programming operation.

◆ Tools menu items are as follows:

◆ Calculator: This is a calculator that comes with Windows and the scientific model calculation is very convenient for a variety of formats.

								e
0000 00 63 0000 00 31			0000 0000	0000 47 0000 15	000 000		00 00	0000 32 0000 0
C Hex		Mod	A	MC	MR	MS	M+	M-
Dec O Oct	()	В	←	CE	с	±	1
C Bin	RoL	RoR	С	7	8	9	1	%
Qword	Or	Xor	D	4	5	6	*	1/x
C Dword		-						

 Programmer Self-Check: self-test on the programmer hardware


Click to pop up the following dialog box:

No.23#	OK!		
No.24#	OK!		
No.25#	-OK!		
VPP Overcurrent	Protection Test	ing OK!	
VCC Overcurren	t Protection Test	ing OK!	
<test fi<="" td=""><td>NISHEDSU</td><td>CCESSFUL!></td><td></td></test>	NISHEDSU	CCESSFUL!>	

Note: Please remove the IC in the 40-PIN socket and ICSP cable before programmer begins to self-check. The IC may be damaged if no removing. Because when self-checking, programmer will test by applying VPP, VCC and GND to all pins and will perform an inside short-circuit overcurrent test (at the same time apply VPP, VCC and GND to the same pin). The testing information will be shown in the dialog box.

◆ Firmware FLASH refresh: Refresh and upgrade the firmware program

After you upgrade the application, if there is an upgrading need, the application will prompt to refresh the firmware; otherwise his refresh function is disabled. Click <Refresh firmware > to pop up the following dialog box:

Refresh Note: Please make sure the reliable performance of your PC and the uninterrupted electricity supply to your PC. At the same time, please close other application programs. The programming firmware program may be damaged if there is a computer crash or power failure in the process of upgrade. Click <Cancel> to exit upgrade.

Close all other programs, and ensure reliable computer power!

Click <Refresh> to begin, the refresh total time is about 30 seconds. Click <Cancel> to exit refresh.

Related Topics:

- Quick Guide
- Complete Operations Guide

http://www.autoelectric.cn Hainan China TEL: 0898 68681816 FAX :0898-68681815 Mobile: 13198907988 The Haikou Xingong Electronics Co., Ltd. Copyright @ 2009 Translator's eBay ID: sunwenjun, PayPal Email: yanyan.816@163.com

Mini TL866 Universal Programmer -> Help menu

◆ Help menu items are as follows:

♦ Help: Shortcut keys F1 or click <help> to pop up the help files

◆ About MiniPro: The programmer information is shown

below:

	MiniPro U	niversal Programmer	OK
dî tan	Copyright	(C) 2009.5-2012.01	
pp Software	Ver: 5.50	Fireware Ver: 03.2.56	MODEL: TL866CS
EV Code: 12		I: ABCDEFGHIJKLMN	OPQRSTUVWX
ISOP48/44 I	Detect Adapter Type:		TSOP48 Detect

As shown above, "DEV Code" and "Serial" are the unique number of each programmer and this encrypted serial number is randomly generated 24 digits within the programmer hardware. The pirates cannot copy all of the serial number. You can verify whether the product you bought is original according to the number in order to protect users' rights.

◆ Update online: Open this Programmer manufacturer's website to see if there is the upgrade version.

Related Topics:

- Quick Guide
- > Complete Operations Guide

http://www.autoelectric.cn Hainan China TEL: 0898 68681816 FAX :0898-68681815 Mobile: 13198907988 The Haikou Xingong Electronics Co., Ltd. Copyright @ 2009 Translator's eBay ID: sunwenjun, PayPal Email: yanyan.816@163.com

Mini TL866 Universal Programmer ->Edit buffer

Define Block Fill Block Copy, Paste Block Save As Clear current buffer Find, Find Next Go to

Define Block

Define block in two ways:

1. The first method: press the mouse left key and move the mouse to select a block of buffer data, right click to pop up the dialog box as shown below:

					401	auapt	ei 🗸	TOOL	Por c		TOOL	_100	ntraor	5			
	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F	ASCII
	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
	FF	FF	FF	FF	FF	C	ору			c	trl+C	F	FF	FF	FF	FF	
1	FF	FF	FF	FF	FF		aste				trl+V	F	FF	FF	FF	FF	
	FF	FF	FF	FF	FF		Block Save As(S)				xt	F	FF	FF	FF	FF	
1	FF	FF	FF	FF	FF		efine		,(2)		trl+B	F	FF	FF	FF	FF	
	FF	FF	FF	FF	FF		enne	DIOCK			итъ	F	FF	FF	FF	FF	
	FF	FF	FF	FF	FF	F	ill Bloc	k(F)				F	FF	FF	FF	FF	
	FF	FF	FF	FF	FF	C	lear c	urrent	buffer	(C)	a F	F	FF	FF FF	FF	FF	
	FF	FF	FF	FF	FF	c	lear a	l buffe	er(A)	<u>.</u>		F	FF	FF	FF	FF	
	FF	FF	FF	FF	FF							—F.	FF	FF	FF	FF	
2	FF	FF	FF	FF	FF	F	ind			C	trl+F	F	FF	FF	FF	FF	
	FF	FF	FF	FF	FF	F	ind Ne	xt		F	3	F	FF	FF	FF	FF	
	FF	FF	FF	FF	FF	G	ioto(G)		C	trl+G	F	FF	FF	FF	FF	
	EE	CC	CC	EE	CC	TE	EE	EE	E E E	EE	EE	EC.	EE	CC	CC	EE	

2. The second method: Select 【Define block】 in 【Main menu】 or mouse 【Right-click menu】 or direct press shortcut keys "CTRL + B" to pop up the following dialog box, input a start address and end address, and then press "OK" to complete the block definition.

ock define	_	1
Start Addr:	0	
End Addr:	0	
	OK	Cancel

You can follow-up operation for the defined data block: Copy Block, Fill Block, Block Save As TXT file

Fill Block

Fill Block it means replacing a certain period of data that includes consecutive addresses with a fixed value.

To fill the buffer, a certain period of data $\,$ consecutive addresses in the code buffer replaced with a fixed value $_{\circ}$

In 【Right-click menu】, Select 【Fill Block】 to pop up the following dialog box:

允绩入区				
Region — © Cod	le Memory C	Data Memory	C User.R	ow
Stard_Ad	dr: 0x 00000003	\vee		
	dr: 0x 00000094			
Value(F	ĮEX): E			
• BYTE	C WORD C	Tri_byte C	DWORD C I	Random
	OK		ancel	

A. Select the filled buffer region, the default value is the current buffer in the window.

B. Set the start and end address. If you do not define the block, the default value will be all the area of the current buffer.

C. Value (HEX): to be allowed a maximum of 4 bytes. If the fill mode is random, this value can be ignored.

D. Fill Format, the default format: the default is single-byte if the

chip is programmed in 8-byte way; the fault is double-byte if the chip is programmed in 16-byte way. It is up to you.

Copy

After defining the data block, you can select 【Copy】 in 【Right-click menu】 and then the contents of the block has been copied to the WINDOWS clipboard.

Also you can press shortcut key <CTRL + C to complete the copy.

Paste

Function: fill the buffer with the copied block

Operation: move the cursor to allow the buffer to the start address and press <CTRL + V> shortcut key to complete the paste.

A region data is copied to B region as below:

数据地址	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	7	ASCII	•
000000:	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF		_
000010:	0C	16	A4	Εó	8E	BB	74	70	FB	2B	48	Dó	A9	20	5D	8F	t[.+H,].	
888828:	D7	D8	F5	30	F9	A1	4D	53	51	93	CE	89	BF	D9	87	78	ØHSQz	
000030:	DA	83	DB	CB	3F	86	77	45	2A	84	88	B 3	43	CE	28	8B	?.wE+C.+.	
000040:	BA	28	23	51	95	CC	D1	89	140	31	61	90	88	90	42	40	.(#QI1aBL	
000050:	5B	18	0.0	9B	70	12	77	59	85	FF	FF	FF	FF	FF	FF	FF	[p.wY	
000060:	FF	FF	FF	A.F.	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF		
888878:	FF	FF	FF	(FF	FF	FF	FF	FF	FF	FF	B	FF	FF	FF	FF		
888888:	FF	FF	FF	10	FF	FF	FF	FF	FF	FF	FF	V.P	FF	FF	FF	FF		
888898:	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	/FF	FF	FF	FF	FF		
0000A0:	FF	FF	FF	FF	FF	90	16	<u>A4</u>	Eó	8E	26	74	70	FB	2B	48	t[.+H	
000080:	D6	A9	20	5D	8F	D7	D8	F5	30	F.9	A1	чD	53	51	93	CE	,]0MSQ	
000000:	89	BF	D9	87	7A	DA	83	DB	CB,	3F	86	77	45	28	04	88	z?.wE*	
0000D0:	83	43	CE	2A	ØB	BA	28	23	51	95	CC	D1	89	49	31	61	.C.*(#QI1a	
0000E0:	0C	88	00	42	40	5B	18	D9	9B	70	12	77	59	85	FF	FF	BL[p.wY	
0000F0:	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF		-

Note: In order to speed up the paste, the clipboard data format is binary format this programmer exclusively uses, so other WINDOW applications can not directly use the copied data in the clipboard. If you want to copy the block of data to other applications, please use 【Blocks Save As】 TXT file function.

Block Save As

You can output the defined data block as TXT files to enable designers to conveniently use when programming. The text format can be automatically arranged in 16-byte or 8-byte way.

Operation: After the definition of buffer block, click the mouse right key to pop up context menu, select 【Block Save As】.

Clear current buffer:

Function: Clear the current buffer that application window displays.

Clear all buffer:

Function: Clear all chip buffer as the default value.

Find, Find Next:

Function: Find HEX or ASCII character strings in the current buffer.

Operation: Press <CTRL + F> shortcut key or click 【Find】 in right-click menu to pop up the following dialog box:

nd		
FI	ND:	Find next
	Format	Cancel
	• HEX C ASCII	

Input the HEX value or ASCII character strings you want to find and click "Find" button in the dialog box. When there is matching hexadecimal data or character string in program code buffer, the cursor will be positioned to the first matching address found. Press F3 key to continue to find the next until the search in the whole buffer is completed.

♦Go to Address:

Function: Move the cursor to the address specified by the current buffer.

Operation: Click shortcut key <CTRL + G> or select 【Go to】 in the right-click menu to pop up the following dialog box:

Goto					×
Goto Address 0x:	0000000				
		OK	Car	ncel	

Enter the address, press OK button and then the cursor will move to the specified address.

Related Topics:

Quick Guide

> Complete Operations Guide

http://www.autoelectric.cn Hainan China TEL: 0898 68681816 FAX :0898-68681815 Mobile: 13198907988 The Haikou Xingong Electronics Co., Ltd. Copyright @ 2009 Translator's eBay ID: sunwenjun, PayPal Email: yanyan.816@163.com

Mini TL866 Universal Programmer -> Chip select

Directly select the chip you want to program according to the IC type that is easy and convenient to operate.

lect IC-		IC Information(No Project open	ned)		
50	ect Device				ectr
	Search Device	Manufactory	Device		CCM
oduct		ADVANCE GROUP	AM2716B	@DIP24	
hipID:	I	AiT Semi	AM2732B	@DIP24	Conf
Addres	Type	ALI (Acer)	AM2764A	@DIP28	
00000		ALLIANCE	AM2764A	@PLCC32	
00001	O ALL	AMD	AM27128A	@DIP28	
00002	ROM/FLASH/NVRAM	AMIC	AM27128A	@PLCC32	
00003	C MCU/MPU	ANACHIP	AM27256	@DIP28	
00004		APLUS FLASH	AM27256	@PLCC32	
00005	C PLD/GAL/CPLD	ARTSCHIP	AM27512	@DIP28	
00006	C SRAM/DRAM	ASAHI KASEI (AKM)	AM27512	@PLCC32	
00007	C Logic IC	ASD	AM27C64	@DIP28	
00008		ASI	AM27C64	@PLCC32	
00009		ATC	AM27C010	@DIP32	
0000A		ATMEL	AM27C010	@PLCC32	
0000B		BELLING	AM27C020	@DIP32	
00000		BJX	AM27C020	@PLCC32	
0000D		BMT	AM27C040	@DIP32	
0000E		BOOKTY MTCDO	AM27C040	@PLCC32	
0000F	Advanced Micro Devices Inc.	IC Total: 12811			
tions-	Advanced Micro Devices Inc.	IC 10tal: 12811	Select	Cancel	
Erase					

Note: For the IC with same model but different package, if all of the packages (no including DIP package) cannot be listed, you can directly connect the corresponding pins to program by referring to the IC product manual.

Related Topics:

- > Quick Guide
- > Complete Operations Guide

TEL: 0898 68681816 FAX :0898-68681815 Mobile: 13198907988 The Haikou Xingong Electronics Co., Ltd. Copyright @ 2009 Translator's eBay ID: sunwenjun, PayPal Email: <u>yanyan.816@163.com</u>

Mini TL866 Universal Programmer -> Chip Read

Read the chip data to the buffer. May be different chip reads in different window. Taking the AT89S8253 chip for example to explain how to read the chip. Click [Read] Button in the toolbar to pop up the following dialog box:

ip Read Read Range		-Location in Scoket	
CODE Memory	🔽 DATA Memory 🔽 User.Row	0	
Start Adr:	Con.FUSE Bit 🔽 LOCK Bit		
End Adr:	AT89LS8253		
Phys IC in)	a 400DN soulast Clink (Read) Button		
Plug IC int	o 40PIN socket,Click- <read>-Button</read>		
£			
1	Cancel Cancel		

[Read Range], at first set the range, including [CODE] [DATA] [FUSE] [LOCK], and it's invalid when reading start address and end address. Press [Read] button to start reading the chip data. Note: If the chip is encrypted, all the value read out shows 0xFF.

After reading is completed, in the information column, reading time for each buffer will be shown.

Note: in the process of reading chip, the programmer will not test the error. You can use <verify> function if you want to verify whether the read data is correct. You can get the detailed operation by following <verify> instructions. The programmer will check chip ID before operation.

Related Topics:

- Quick Guide
- > Complete Operations Guide

Mini TL866 Universal Programmer ->Program chip

Program the data in the buffer into the chip. May be different chip programs in different window. Taking the AT89S8253 chip for example to explain how to program the chip.

- 1. Load the programming data to the buffer.
- 2. The programming options are as shown below:

-Options ▼ Erase before	✔ Check device ID
✓ Verify after	Auto Serials NO.
	etRange: 💽 ALL 🔿 Sect
🔚 Blank Check 0	x 00000000 -> 00002FFF

3. Click [Write] Button in the toolbar to pop up the following dialog box:

Program Ran CODE M		DATA M		User.Row	Location in Scoket -
tart Adr:	00000000	Con.FUSE	Bit	LOCK Bit	
End Adr:	00002FFF	A	T89LS8	253	

Firstly set [Program Range], including [CODE] [DATA] [FUSE] [LOCK]. Press [Program] button to start programming the chip.

Tips:

◆After programming, the programming time for each buffer is shown in the information column.

◆ Most of the chips will be automatically checked in the process of programming and the program operation will be immediately terminated if there is an error.

◆ If the user selects "Auto Serials No.", after programming the chip number in the buffer will be automatically increased according to the settings.

◆ To ensure the accuracy of programming data, users are always recommended to perform [Verify After].

Related Topics:

- Quick Guide
- > Complete Operations Guide

Mini TL866 Universal Programmer ->Chip Erase

Chip Erase Erase Range IC MODEL: PIC18F4550 Plug IC into 40PIN socket,Click-<Erase>-Button Erase Cancel

By default, chip ID will be checked before erase. For a small part of the microcontroller, the chip ID cannot be read after encrypted. At that time, don't tick off [check device ID] in the options, otherwise there is an error of checking ID. Click [Erase] button in the dialog box and the erase time will be shown after erase is complete.

Related Topics:

- Quick Guide
- Complete Operations Guide

http://www.autoelectric.cn Hainan China

TEL: 0898 68681816 FAX :0898-68681815 Mobile: 13198907988 The Haikou Xingong Electronics Co., Ltd. Copyright @ 2009 Translator's eBay ID: sunwenjun, PayPal Email: yanyan.816@163.com

For the chip that can be erased electronically, click [Erase] button in the toolbar to pop up the following dialog box:

Mini TL866 Universal Programmer ->Chip Blank Check

Click [Blank Check] Button in the toolbar to pop up the following dialog box:

Blank Range CODE Memory	🔽 DATA Memory 🔲 Con FUSE Bit	Location in Scoket
Start Adr:	User ID PIC18F4550	
heck CODE MEMORY em	uptyElapsed time: 3719ms	
	uptyElapsed time: 3719ms	
Theck USER ID empty	tyElapsed time: 328ms Elapsed time: Oms	

By default, chip ID will be checked before erase. You can select the region you want to check blank and the default is the entire region. And then click [Blank check] button in the dialog box to start checking blank. The spending time for each region will be shown after checking. In the meantime, the operation will be terminated if it is found that the chip is not empty and the address and storing value in non-empty region will be shown.

Related Topics:

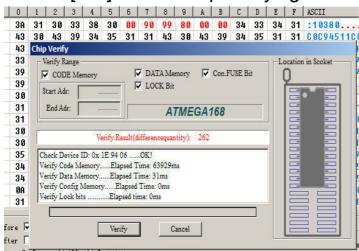
- Quick Guide
- Complete Operations Guide

Mini TL866 Universal Programmer ->Verify chip

Click [Verify] Button in the toolbar to pop up the following dialog box:

Start Adr: ID End Adr: PIC18F4550 ID Error! Check the chip correctly? whether contact good pin? Verify CODE MEMORY Elapsed time: 3719ms Verify data memory Elapsed time: 328ms Verify Config memory Elapsed time: 0ms Verify USER ID Elapsed time: 0ms	/erify Range	12-12 (C22)	Location in Scoket -
Start Adr: ID End Adr: PIC18F4550 ID Error! Check the chip correctly? whether contact good pin? Verify CODE MEMORY Elapsed time: 3719ms Verify Config memory Elapsed time: 0ms Verify USER ID Elapsed time: 0ms Verify USER ID Elapsed time: 0ms Verify Finished! Image: 0ms	CODE Memory	▼ DATA Memory ▼ Con.FUSE Bit	0
End Adr: PIC18F4550 ID Error! Check the chip correctly? whether contact good pin? Verify CODE MEMORY Elapsed time: 3719ms Verify data memory Elapsed time: 328ms Verify Config memory Elapsed time: 0ms Verify USER ID Verify Finished!	tart Adr:	User ID	E. E
ID Error! Check the chip correctly? whether contact good pin? Verify CODE MEMORYElapsed time: 3719ms Verify data memoryElapsed time: 328ms Verify Config memoryElapsed time: 0ms Verify USER IDElapsed time: 0ms Verify Finished!	End Adr:	PIC18F4550	
ID Error! Check the chip correctly/ whether contact good pin/ /erify CODE MEMORY /erify Config memory Elapsed time: 328ms /erify Config memory Elapsed time: 0ms /erify USER ID /erify Finished			
Verify CODE MEMORYElapsed time: 3719ms Verify data memoryElapsed time: 328ms Verify Config memoryElapsed time: Oms Verify USER IDElapsed time: Oms Verify Finished!	ID Error! Check the	chip correctly? whether contact good pin?	
Verify data memory			
Verify USER ID			
Verify Finished			
		time: Ums	
	nify USER IDElapsed	tume: Ums	
	nify USER IDElapsed	time: Ums	

By default, chip ID will be checked before erase. You can select the region you want to verify and the default is the entire region. Click [Verify] button in the dialog box to start. If it is verified that all the chip data is same, the spending time for each region will be shown after verifying, as shown above.


In the meantime, if it is found that the chip data is not same, pop up the following dialog box:

Verify Range CODE Memory	▼ DATA Memory ▼ Con.FUSE Bit	Location in Scoket —
Start Adr:	erify	
Check Device ID: 0x 1E	Memory Area: CODE MEMORY Address: 0x 0000 0006 Buffer Value: 0x 00 Chip Value: 0x 30 Continue Marked Cancel	
	rify Cancel	

Click [continue to verify]: will continue to verify if there are different data, the same prompt dialog box will be popped up.

Click [Mark differences]: the prompt dialog box will not be popped up in the process of verifying until completion. Finally, all the differences will be prompted and the different units will be shown in red font in the buffer, as shown below.

Click [exit]: exit to stop verifying.

Related Topics:

- Quick Guide
- Complete Operations Guide

http://www.autoelectric.cn Hainan China

Click **【**CONFIG**】** Button in chip buffer select bar to pop up the following interface (select ID: PIC18F4550):

Product Iden ChipID:		cation		-Set Inte 40P ac	2000	er O ICSP	por	t 🗖 ICS	P_V	CC Enable		utt select	ode	Memo Data	Me	mo Config
	1	BIT7		BIT6		BIT5	1	BIT4		BIT3		BIT2		BIT1		BITO
0X300000:		2		-	1	USBDIV	1	CPUDIV1	1	CPUDIVO	1	PLLDIV2	1	PLLDIV1	•	PLLDIVO
0X300001:	▼	IESO	▼	FCMEN		2		2	▼	FOSC3	Г	FOSC2	$\overline{\mathbf{v}}$	FOSC1	Г	FOSC0
0X300002:		Ξ.		¥	1	VREGEN	Г	BORV1	Г	BORVO	Г	BOREN1	Г	BORENO	Г	/ PWRTEN
0X300003:		-		-		-	Г	WDTPS3	Г	WDTPS2	Г	WDTPS1	Г	WDTPSO	Г	WDTEN
0X300004:		-		-		-				-		-				-
0X300005:	Г	MCLRE		-		-		-		-	2	LPT10SC	Г	PBADEN	Г	CCP2MX
0X300006:	Г	/DEBUG	•	XINST	1	ICPRT		-		-	Г	LVP		-	Г	STVERN
0X300007:		-				-		-		-		-		-		-
0X300008:		2				2			Г	CP3	Г	CP2	Г	CP1	Г	CPO
0X300009:	Г	CPD	Г	CPB		2		12		12		2		2		2
0X30000A:		¥		¥		<u> </u>		i i i	Г	WRT3	Г	WRT2	Г	WRT1	Г	WRTO
0X30000B:	Г	WRTD	Г	WRTB	Г	WRTC		_		-		_		_		-
0X30000C:		-		-		-		_	Г	EBTR3	Г	EBTR2	Г	EBTR1	Г	EBTRO
0X30000D:		-	Г	EBTRB				-				-		-		-

The value of IC config information in the lower right is corresponding to config interface: Click Config interface and the value of the config information will be automatically changed.

1. Different chip has different configuration information, so firstly users should check the IC datasheets in order to properly configure the chip.

2. IC configuration interface is well-designed and users can conveniently check the IC datasheet.

3. Some chips have no configuration information.

4, The common configuration interfaces are shown as below:

◆PIC18FXXX interface is as shown above, ID can be edited in the main screen, different model has different contents in the table.

◆PIC10xxx 12xxx 16xxx configuration interface is generally as below and different chip has different contents.

oduct Identification —— hipID:	Set Inter • 40P ada	face pter 🔿 ICSP por	ŧ ┌┌ ICSP_VCC	Enable Buff sel		de Memo Conf
	BIT11	BIT10	BIT9	BIT8	BIT7	BIT6
CONFIGURATION	-	-	-		-	-
WORD	BIT5	BIT4	BIT3	BIT2	BIT1	BITO
	_	MCLRE	☐ /CP	WDTE		
USER ID		F	Bac	Reset Vector		OFFF
USER ID	WORD			Reset Vector	(0x0FFH):	OFFF
): 0FF			Reset Vector (kup of OSCCAL (mming Reset Ve	(0x104H):	OFFF
USER ID0(0x100): OFF	F	Program	kup of OSCCAL	(0x104H): ctor Byte Di do not nece	OFFF isable ssarily

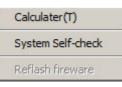
For parts of the PIC chips, by default the programmer will not erase the Reset Vector of the chip when erasing. If you program the verified bytes in configure interface, the Reset Vector will be erased. If the chip has no backup verified value and at the same time you make a mistake with the verified bytes, if you use inside clock, the clock skew may appear and the chip may not be used.

Note: Under normal circumstances, The verified bytes don't need to be changed because it has been verified at factory.

◆ The ATMEGA configuration information is generally as below and different chip has different contents.

ATMEGA168	ChipType: MCU/MPU Cl IC Size: 16384 Bytes	nkSum:0x0041 BEOO + 512 Bytes	Autoelectric
Product Identification — ChipID:	Set Interface • 40P adapter C ICSP port	5.000	f select Code Memo Data Memo Config
Fuse Low Byte	Fuse High Byte	Extended Fuse Byte	Lock Bit Byte
CKDIV8=0	RSTDISBL=0	BOOTSZ1=0	BLB11=0
CKOUT=0	DWEN=0	BOOTSZ0=0	☐ BLB02=0
□ SUT1=0	SPIEN=0	BOOTRST=0	ELB01=0
▼ SUTO=0	WDTON=0		LB2=0
CKSEL3=0	EESAVE=0	Calibration Programmi	
CKSEL2=0	BODLEVEL2=0		nemory C Data Memory
CKSEL1=0	BODLEVEL1=0	Calibration: 0x 00	Memory Address: 00000000
CKSEL0=0	BODLEVEL0=0	Note: The CaliBration byte, by this byte when program	The location value will be replaced

◆ You can test by yourself in applications for other more interfaces. You are sure to use it well.


Related Topics:

Quick Guide

> Complete Operations Guide

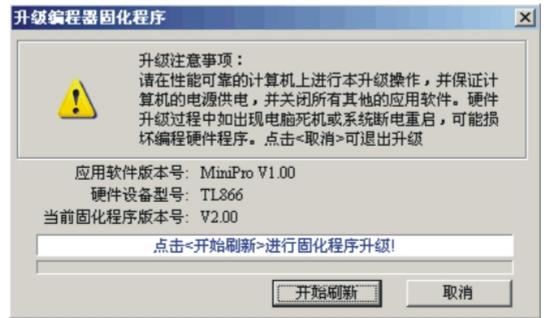
Mini TL866 Universal Programmer -> Programmer Self-Check

The menu functions are for the chip programming operation.Tools menu items are as follows:

◆ Calculator: This is a calculator that comes with Windows and the scientific model calculation is very convenient for a variety of formats.

								0
0000 00 63 0000 00 31			0000 0000	0000 47 0000 15				0000 32 0000 0
C Hex		Mod	A	MC	MR	MS	M+	M-
C Dec	()	В	←	CE	с	±	V
C Bin	RoL	RoR	С	7	8	9	1	%
O DIU	and the second se							
Qword	Or	Xor	D	4	5	6	*	1/x

 Programmer Self-Check: self-test on the programmer hardware


Click to pop up the following dialog box:

No.23#OI	K!		
No.24#OI	K!		
No.25#OI	K!		
VPP Overcurrent Pro	tection Testing	OK!	
VCC Overcurrent Pro	otection Testing	OK!	
<test finis<="" td=""><td>HEDSUCCES</td><td>SFUL!></td><td></td></test>	HEDSUCCES	SFUL!>	

Note: Please remove the IC in the 40-PIN socket and ICSP cable before programmer begins to self-check. The IC may be damaged if no removing. Because when self-checking, programmer will test by applying VPP, VCC and GND to all pins and will perform an inside short-circuit overcurrent test (at the same time apply VPP, VCC and GND to the same pin). The testing information will be shown in the dialog box.

Firmware FLASH refresh: Refresh and upgrade the firmware program

After you upgrade the application, if there is a upgrading need, the application will prompt to refresh the firmware; otherwise his refresh function is disabled. Click <Refresh firmware > to pop up the following dialog box:

Refresh Note: Please make sure the reliable performance of your PC and the uninterrupted electricity supply to your PC. At the same time, please close other application programs. The programming firmware program may be damaged if there is a computer crash or power failure in the process of upgrade. Click <Cancel> to exit upgrade.

Close all other programs, and ensure reliable computer power!

Click <Refresh> to begin, the refresh total time is about 30 seconds. Click <Cancel> to exit refresh.

Related Topics:

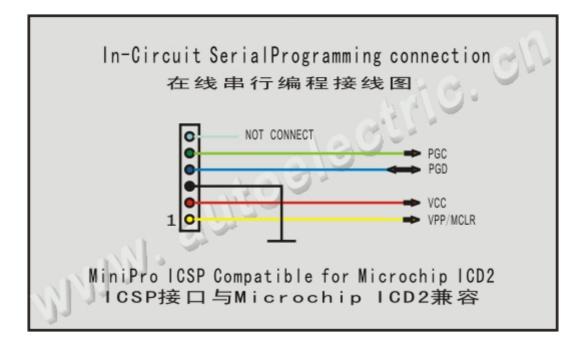
- Quick Guide
- > Complete Operations Guide

Mini TL866 Universal Programmer -> ICSP Program

(only TL866A has this ICSP programming function)

For the serial in-circuit programmed chips, this programmer can program microcontroller on the target board through ICSP port. Firstly select <ICSP port> in the main interface and then by default <ICSP_VCC Enable> is ticked off. That means the target board will be provided VCC power when programming. (Note: The maximum current of programmer VCC power is 120ma. Please use the target board's power supply if larger current is needed. You'd better isolate the CPU power from other high current components on the board and use programmer's power supply that is more convenient.

If the power don't need to be supplied by programmer, don't tick off the **[**ICSP_VCC Enable**]** . Then there is no VCC power in the VCC pin when programming, as shown below:


-Set Interface ℃ 40P adapter ⓒ ICSP port 🔽 ICSP_VCC Enable

The next step: Read, erase, verify, program, etc. Such operations will be finished through the ICSP port. At that time, you are not allowed to put the chip on the 40PIN universal socket. Click 【Write】 button to pop up the following dialog box:

(Note: the dialog box of read, erase, verify, etc. is nearly the same as the 【Write】, just one more ICSP prompt.)

art Adr: 00000000 End Adr: 00007FFF PIC18F4550 SP Option	Start Adr: 00000000 End Adr: 00007FFF PIC18F4550 CSP Option Supply Vcc Power (MAX 120mA)	CODE M	emory	DATA Memory	Con.FUSE Bi
Supply Vcc Power (MAX 120mA)	CSP Option Supply Vcc Power (MAX 120mA)	tart Adr:	00000000	Je Cost ID	
SP Option Supply Vcc Power (MAX 120mA)	CSP Option Supply Vec Power (MAX 120mA)	End Adr:	00007FFF	PIC18	F4550
			nnect <icsp> to</icsp>	target board,Click- <pro< th=""><th>gram>-Button</th></pro<>	gram>-Button
			nnect <icsp> to</icsp>) target board,Click- <pro< td=""><td>gram>-Button</td></pro<>	gram>-Button
			nnect <icsp> to</icsp>) target board,Click- <pro< td=""><td>gram>-Button</td></pro<>	gram>-Button

Click [View ICSP Connection] button to pop up the in-circuit serial programming wiring diagram, as shown below: (Different chip has different ICP connection method)

Note:

1. Now ICSP can in-circuit serial program ATMEL89S51, ATMEL89S52, AT45DBxxx, a whole series of AVR ATMEGAxxx, MICROCHIP PIC10Fxxx 12Fxxx 16Fxxx 18Fxxx, as well as a full serial of SYNCMOS SM59Dxx SM59Rxx. The variety of microcontroller that can be supported in-circuit programming will be continually increased in the future.

2. Under normal circumstances, the 40PIN socket programming is high-speed Parallel Programming and ICSP programming for the target board is serial in-circuit programming.

3. The programmings of the PIC10 12 16 series chips, 40PIN and ICSP port are high-voltage serial programming. Different 18 series chip has different VPP voltage. The programming ways of ICSP port and the 40PIN socket are the same, but Programming rate of ICSP port is a bit slower than which of 40PIN socket.

4. Atmel AT89Sxx ATMEGAxxx SPI programming speeds are very different from the parallel programming. This programmer is one of the highest parallel programming speed and it can fully meet the needs of mass production.
5. TL866CS Model programmer has no this ICSP port and it cannot in-circuit program.

Related Topics:

- Quick Guide
- > Complete Operations Guide

Mini TL866 Universal Programmer ->RAM test

Select IC as RAM chips and click [test] button in the toolbar to pop up the following dialog box:

CODE Memory	Data Bus	☐ Increase ☑ Unit	
End Adr:	6	116	
Plug I	C into 40PIN socket,Click- <te< td=""><td>st>-Button</td><td></td></te<>	st>-Button	

RAM test: There are four methods and the RAM unit can be tested whether the function is normal by these testing methods.

General programmer cannot test whether RAM unit is good or bad because it only read and write the RAM units. For example, if there is a short circuit between two adjacent address lines, it is not possible to check out the problem to simply read and write the RAM units data. So each testing way is not complete.

Insert chip and click [test] button to start testing RAM. Related Topics:

Quick Guide

Complete Operations Guide

http://www.autoelectric.cn China Hainan TEL: 0898 68681816 FAX :0898-68681815 Mobile: 13198907988 The Haikou Xingong Electronics Co., Ltd. Copyright @ 2009

Translator's eBay ID: sunwenjun, PayPal Email: yanyan.816@163.com

Mini TL866 Universal Programmer ->Digital circuit testing

Maybe this is the first development comprehensive programmer to test the common 74 series CMOS4000 series IC and this test can be located the errors of logic gate circuit. After select corresponding 74HC00 IC, click [TLL/CMOS Test] button to pop up the following dialog box:

p Test Test Result	Location in Scoket
Plug IC into 40PIN socket, Click- <test>-Button</test>	
74HC(LS)00 Test Cancel	

Under normal circumstances, testing information of each logical unit with a variety of input combinations will be shown. If there is an error with IC gate circuit, for example, If you disconnect the PIN1 of 74HC00 chip, the testing results will be shown as follows: prompt chip error.

Fest Result	Location in Scoket
Logic Unit 1 Test Error! Logic Unit 2 Test Error! Logic Unit 3 Test Error! Logic Unit 4 Test Error!	
Test Result: Error!	
74HC(LS)00 Test Cancel	

Different chip has different logical unit number. Logical unit numbering is the same as the IC manual.

Related Topics:

- <u>Quick Guide</u>
- > Complete Operations Guide