

Wireless LAN DSSS PC Card
Reference Design

Application Note

Publication# 20575 Rev: B Amendment/0
Issue Date: April 1997

This document contains information on a product under development at Advanced Micro Devices. The information
is intended to help you evaluate this product. AMD reserves the right to change or discontinue work on this proposed
product without notice.

Refer to AMD’s Website (www.amd.com) for the latest information.

Wireless LAN DSSS PC Card
Reference Design

Application Note

This application note describes the connection of the PCnet™-Mobile Wireless LAN Media Access
Controller (Am79C930) to the HARRIS Semiconductor Direct Sequence Spread Spectrum (DSSS)

PRISM™ chipset.

INTRODUCTION

The PCnet-Mobile Wireless LAN Media Access
Controller (Am79C930) functionality has been defined
to allow for connection to various PHY types. This ap-
plication note describes one possible connection of the
Am79C930 device to an IEEE 802.11 Direct Sequence
Spread Spectrum (DSSS) PHY. The 802.11-compliant
DSSS PHY used in this application example is the HAR-
RIS Semiconductor PRISM chipset, consisting of the
HARRIS HFA3524, HFA3624, HFA3724, HSP3824,
and HFA3925 devices. The complete solution is con-
nected to a PC CARD bus connector and is intended to
be built onto a TYPE II PC Card (formerly PCMCIA Type
II card). A few additional supporting devices are re-
quired in order to complete the system, e.g., Am29F010
flash memory and 32K SRAM device.

SYSTEM BLOCK DIAGRAM

A complete 802.11 PC CARD TYPE II PC Card
includes the following functional blocks:

■

Am79C930 MAC device

■

Flash memory

■

SRAM memory

■

Oscillators

■

PRISM chipset and antenna(s)

■

PC CARD connector

These devices need to be interconnected as shown in
the block diagram below.

BLOCK DIAGRAM

Spread

Tx/Rcv
Data I/O

FL1

FL2

FL3

FL4

FL5

FL6

LNA
HFA3424

HFA3624
RF/IF

Converter

HFA3925
RF Power

Amp. and Tx/Rx
Switch

P
A
D

VCO OSC OSC

I/Q LO

HFA3524 Dual
Synthesizer

5th Order
Butterworth
Low-Pass

Filter

HFA3724
QModem

Quadrature
Demod.

Quadrature
Modulator

Filter Cutoff
Select

22 MHZ 22 MHZ

ADC CCA

I ADC

Q ADC

HSP3824
Baseband
Processor

De-
Modulate

128K
FLASH

32K
SRAM

De-
Spread

Control
Test I/O

Modulate
Encode

VCO

Data

Control

Am79C930
PCnet™
Mobile

Wireless
LAN
MAC

To HOST
COMPUTER

LPFs TX

LPFs RX

Tx/Rx
Select

Clk

Limiting IF/RSSI

20575B-1

2

TABLE OF CONTENTS

INTRODUCTION . 1
SYSTEM BLOCK DIAGRAM. 1

Parts List . 4
Substitution List . 4

PIN CONNECTIONS . 5

Am79C930 Operational Modes . 9
Am79C930 Register Settings . 11

MIR8[1:0] FLASHWAIT[1:0] . 11
MIR9[5:4] SRAMWAIT[1:0] . 11
TIR2[2] SDC . 11
TIR3[7:0] Fast Serial Port . 11
TIR26[3] ANTSEN . 13
TCR7[7:0] User Pins Control . 13
TCR8[7:0] Start Delimiter LSB . 13
TCR9[7:0] Start Delimiter CSB . 14
TCR10[7:0] Start Delimiter MSB . 14
TCR13[7:0] Pin Configuration A . 14
TCR14[7:0] Pin Configuration B . 14
TCR15[7:0] ANTSLTLEN . 14
TCR27[7:0] TIP LED Scramble . 14
TCR28[7:0] CCA Configuration . 14
TCR30[7] Pin Function and Data Rate . 15
NC Pins Configured As Output .15

Am79C930 Register Settings Summary . 16
Host PC/Adapter Card Interaction . 16
TX Flow . 16

TX SEQUENCE for the Am79C930 Device Generates and Strips PHY Fields. 16
Interface Timing . 17

Initialization to Receive (RX) . 17
Receive to Transmit to Receive (RX to TX to RX) . 17
Receive (RX) to Sleep. 17

RX Flow . 19
RX SEQUENCE for the Am79C930 Device Generates and Strips PHY Fields 19

API REQUIREMENTS . 20

API Procedures . 20
Enable_tx() . 20
uint8 Enable_TX if Good(uint16 good length, uint8 dma length). 20
Disable_TX() .20
reset_CCA() .20
Enable_RX() . 20
Sleep (uint8 Sleep_Lvl) . 20
Wake() . 20
Initialize (uint8 Domain) .20
Preset_channel (uint8 Channel) . 20
Change_Channel () . 21
Force_Channel (uint8 Channel) . 21
Set_Power (uint8 Power_Lvl) . 21
uint8 Get_PHY_Type() .21
uint8 Get_Tx_Preamble_Len(uint8 rate) . 21
uint8 Get_Rx_PLCP_Header_Len() .22
uint8 Get_Rx_Rate(uint8* PLCP_ptr) . 22
uint8 Get_Tx_PLCP_header_len(uint8 rate) . 22
uint8 Get_RSSI() . 22
BOOLEAN Is_PLCP_Header_Good(uint8* PLCP_ptr) . 22
uint16 Get_Length(uint8* PLCP_ptr). 22
Build_PLCP_Header(uint8* PLCP_start, uint16 length, uint8 rate) 22

3

uint8* Get_Tx_Preamble(uint8 rate) . 22
Set_PHY_Rate(uint8 rate). 22
User_Function(). 22
Unsigned16 rel_time_to_

µ

sec_est() .22
Unsigned32 rel_time_to_

µ

sec() .22
Unsigned32

µ

sec_to_rel_time() . 22
pgm_clkgt20() . 23
set_wait_states() . 23

4

Parts List

The following is a list of the major components for this
application:

Substitution List

The following list indicates acceptable device
substitutions:

Part Number Description Manufacturer Quantity

Am79C930 WLAN MAC controller AMD 1
HFA3624 2.4 GHz RF to IF Converter HARRIS Semiconductor 1
HFA3724 400 MHz Quadrature IF Modulator/

Demodulator
HARRIS Semiconductor 1

HSP3824 Direct Sequence Spread Spectrum
Baseband Processor

HARRIS Semiconductor 1

HFA3424 Low Noise Amplifier HARRIS Semiconductor 1
HFA3925 2.4 GHz Power Amplifier HARRIS Semiconductor 1
HFA3524 Dual frequency synthesizer HARRIS Semiconductor 1
Am29F010-90EC or
Am29F010-90FC or
Am29F010-45EC or
Am29F010-45FC
E and F give normal or
reverse pinout choice

128Kx8 5-V only flash memory AMD 1

TC55257BFTL-10 or
TC55257BTRL-10
Choice is normal or
reverse pinout

32K SRAM - 100 ns Toshiba 1

LFJ30-03B2442BA84 -3dB/50 ohm BPF 2450 MHz muRata 2

Recommended Part Number Substitute Part Number Manufacturer

Am79C930 None AMD
HFA3624 None HARRIS Semiconductor
HFA3724 None HARRIS Semiconductor
HSP3824 None HARRIS Semiconductor
HFA3925 None HARRIS Semiconductor
Am29F010 None AMD
TC55257BFTL-10 or
TC55257BTRL-10
Choice is normal or reverse pinout

Toshiba

LH52B256T-10LL or LH52B256TR-10LL Sharp
KM681000B-55T
KM681000B-55R
KM681000B-10T
KM681000B-10R
Note that these are 1M devices (128Kx8), because
smaller devices are not availabe in TSOP from
Samsung

Samsung

5

PIN CONNECTIONS

The pin connections among the Am79C930 device, the
HARRIS PRISM™ chipset, Flash memory, SRAM and
oscillator are given in Table 1.

Note:

The pin connections for a PC CARD design are
different from the pin connections that would be used
for an ISA Plug and Play design. This application note
covers only the PC CARD case.

Table 1. Am79C930 Pin Connections

AMD
Am79C930
Pin Name

Pin
No. I/O

AMD Am 79C930
Pin Function

802.11 HARRIS DS PHY PC
CARD System Connections I/O

802.11 HARRIS DS
PHY PC CARD

System Function

USER2 1 I/O

API

 will determine signal
timing

NC I

USER3 2 O API will determine signal
timing

Radio to Power Enable Radio Power Enable

USER4 3 O API will determine signal
timing

HFA3524 to SYNTH.LE (Pin
13)

I Synthesizer serial bus
latch enable

VDDM 4, 16,
29

I 5-V supply (VCC) 5-V supply

XCE 5 O Chip enable for extra
peripheral on memory
bus

NC

MA[16:0] O Address bus for memory
devices

MA[16:0] to FLASH.A[16:0] I Address bus for
FLASH device

MA[14:0] to SRAM.A[14:0] I Address bus for
SRAM device

VSSM 7, 21,
32

I GND GND

MWE 11 O Write enable for memory
devices

FLASH.WE I Write enable for
FLASH device

SRAM.WE I Write enable for
SRAM device

VCC 17, 89 I 3.5-V supply (VCC) 3.5-V supply

MD[7:0] I/O Data bus for memory
devices

FLASH.D[7:0] I/O Data bus for FLASH
device

SRAM.D[7:0] I/O Data bus for SRAM
device

MOE 38 O Output enable for
memory devices

FLASH.OE I Output enable for
FLASH device

SRAM.OE I Output enable for
SRAM device

SCE 39 O Chip enable for SRAM
device

SRAM.CE I Chip enable for
SRAM device

FCE 40 O Chip enable for FLASH
device

FLASH.CE I Chip enable for
FLASH device

D[7:0] I/O Data bus for PC CARD PC CARD.D[7:0] I/O Data bus for PC
CARD

VSSP 44, 76 I GND GND

STSCHG 45 O PC CARD STSCHG
function

NC (PC CARD optional - not
used in this implementation)

6

* The symbol X in the direction field (I/O column) denotes that this pin is the “output” side of a crystal oscillator amplifier.

AMD
Am79C930
Pin Name

Pin
No. I/O

AMD Am79C930 Pin
Function

802.11 HARRIS DS PHY PC
CARD System Connections I/O

802.11 HARRIS DS
PHY PC CARD

System Function

A[14:0] I Address bus for PC
CARD

PC CARD.A[14:0] O Address bus for PC
CARD

REG 48 I PC CARD signal PC CARD.REG (Pin 61) O PC CARD signal

INPACK 50 O PC CARD signal PC CARD.INPACK (Pin 60) O PC CARD signal

WAIT 52 O PC CARD signal PC CARD.WAIT (Pin 59) O PC CARD signal

VDDP 55 I 5-V supply (VCC) 5-V supply

VSS 57 I GND GND

RESET 58 I PC CARD reset PC CARD.RESET (Pin 58) O PC CARD reset

IREQ 61 O PC CARD signal PC CARD.IREQ (Pin 16) I PC CARD signal

WE 62 I PC CARD signal PC CARD.WE (Pin 15) O PC CARD signal

IOWR 66 I PC CARD signal PC CARD.IOWR (Pin 45) O PC CARD signal

IORD 67 I PC CARD signal PC CARD.IORD (Pin 44) O PC CARD signal

OE 70 I PC CARD signal PC CARD.OE (Pin 9) O PC CARD signal

CE1 72 I PC CARD signal PC CARD.CE1 (Pin 7) O PC CARD signal

VSSP 44, 76 I GND GND I Ground

PC CARD 79 I Mode selection pin 5 V supply I Power

CLK20 80 I Digital Clock 40 MHz oscillator input O Clock source

TEST 81 I Test mode select pin 5 V supply

PMX2 82 X*

PMX1 83 I Clock input for sleep
function

32.768 kHz crystal with 20

 Ω

shunt and 10 pF loads

TCK 84 I JTAG test pin VCC 3.5-V supply

TDO 85 O JTAG test pin NC

TMS 86 I JTAG test pin NC

TRST 87 I JTAG test pin PCCARD. RESET (Pin 58)

TDI 88 I JTAG test pin VCC 3.5-V supply

USER0 90 O API will determine signal
timing

NC

USER1 91 O API will determine signal
timing

NC

USER7 92 I API will determine signal
timing

VCO startup circuit 1 VCO enable circuit

VSSU1 93 O GND GND

RXC 94 I RX clock output for test
purposes

NC

USER6/
EXTSDF

95 I Used to start RX state
machine

HSP3824.MD_RDY (Pin 34) O Asserted on last bit of
Unique word (UW)

USER5/
EXTCHBSY

96 I Accepts external channel
busy indication

HSP3824.CCA (Pin 32) O Gives channel busy
or idle indication

VDDU1 97 I 3.5-V supply (VCC) 3.5-V supply

Table 1. Am79C930 Pin Connections

7

Table 1. Am79C930 Pin Connections

AMD
Am79C930
Pin Name

Pin
No. I/O

AMD Am79C930 Pin
Function

802.11 HARRIS DS PHY PC
CARD System Connections I/O

802.11 HARRIS DS
PHY PC CARD

System Function

ACT 98 O LED output, controlled by
firmware

Yellow LED Indicates currrent RX
or TX activity

VSST 99 I GND GND

LNK 100 O LED output, controlled by
firmware

Green LED I Indicates a current
association with a
BSS

SDCLK 101 O Note that this pin is
shared by both serial
busses (i.e., synthesizer
chip serial bus and
baseband chip serial
bus)

HFA3524.SYNTH_CLK (Pin
11)

I Synthesizer serial bus
clock input

HSP3824.SCLK I Control register serial
bus clock input

SDDATA 102 I/O Note that this pin is
shared by both serial
busses (i.e., synthesizer
chip serial bus and
baseband chip serial
bus)

HFA3524.SYNTH_DATA (Pin
12)

I Synthesizer serial bus
data pin

HSP3824.SDATA (Pin 25) I/O Control register serial
bus clock input

SDSEL3 103 O API will determine signal
timing

HSP3824.RW (Pin 8) I Control register serial
bus read-write select

VDDT 104,
125

I 3.5-V supply 3.5-V supply

SDSEL2 105 O API will determine signal
timing

HSP3824.AS (Pin 23) I Selects between
address and data
registers in the
HSP3824

SDSEL1 107 O API will determine signal
timing

HSP3824.CS (Pin 9) I Selects the HSP3824
device for register
access

SAR[6:0] O A/D converter output NC

TXC 115 I TX clock - controls
delivery of TXDATA

HSP3824.TXCLK (Pin 4) O TX clock - controls
delivery of TXDATA

LFCLK 117 O Buffered clock output NC

LFPE 118 O Enables LFCLK HSP3824.RESET (Pin 28) I Reset input for
HSP3824 device

HFCLK 119 O Buffered clock output NC

HFPE 120 O Enables HFCLK NC

TXDATA 121 O TX output data HSP3824.TXD (Pin 3) I TX input data

RXPE 122 O API will create timing HSP3824.RX_PE (Pin 33) I Baseband processor
RX enable input.

RXDATA 123 I RX input data HSP3824.RXD (Pin 35) O RX output data

RXCIN 124 I RX clock input for
incoming RX frames

HSP3824.RXCLK (Pin 36) O RX clock decoded
from channel activity

8

AMD
Am79C930
Pin Name

Pin
No. I/O

AMD Am79C930 Pin
Function

802.11 HARRIS DS PHY PC
CARD System Connections I/O

802.11 HARRIS DS
PHY PC CARD

System Function

TXCMD 126 O Signals beginning of
Am79C930 transmission
sequence

HFA3724.LPFRXPE (Pin 21)
HFA3724.MODRXPE (Pin 43)
HFA3724.LIM1PE (Pin 74)
HFA3724.LIM2PE Pin 54)
HFA3624.RXPE (Pin 28)

I IF/RF modulator/
demodulator RX
enable inputs, IF/RF
converter RX enable
input

FDET 128 O Indicates that UW has
been located

NC

TXPE 129 O Timing is generated by
state machine per API
programming

NC

TXMOD 131 O Begins second stage of
Am79C930 transmission
power ramp sequence

HSP3824.TX_PE,
HFA3925.PIN11 (Pin 11)
HFA3925.PIN18 (Pin 18),
HFA3925.PIN23 (Pin 23)

I Standby mode for TX
circuitry - also initiates
TX state machine and
freezes antenna
selection for
transmission, and
enables power to
transmitter

ANTSLT 132 O Effectively a DC level set
by an API module

HFA3724.LPFSEL0 (Pin 17) I Filter select control

PWRDWN 133 O NC

ADIN1 134 I Ground

ADIN2 135 I Ground

ADREF 137 I Ground

AVDD 138 I 5-V supply (VCC) 5-V supply

VDD5 139 I 5-V supply (VCC) 5-V supply

VDDU2 140 I 3.5-V supply (VCC) 3.5-V supply

ANTSLT 141 O Effectively a DC level set
by an API module

HFA3724.LPFSEL1 (Pin 16) I Filter select control

TXCMD 142 O Timing is generated by
state machine per API
programming

HFA3624.TXPE (Pin 15)
HFA3724.LPFTXPE (Pin 22)
HFA3724.MODTXPE (Pin 41)

I TX enables for RF/IF
converter and
modulator/
demodulator

TXDATA 143 O Inverted TX data output NC

LLOCKE 144 O API will determine signal
timing

NC

Table 1. Am79C930 Pin Connections

9

Am79C930 Operational Modes

The Am79C930 device offers a very flexible MAC/
PHY interface, just as the HARRIS PRISM chip
chipset does. There are mode options for many of the
functions of the Am79C930 device. The following sec-
tions describe the mode options that must be invoked
in order for the Am79C930 device to interoperate with
the HARRIS PRISM chipset.

The operational modes of the Am79C930 device are set
by modifying control bits in the device’s register sets, in-
cluding bits contained in the MIR, TIR, and TCR register
sets. MIR registers are only visible to the 80188 embed-
ded core; TIR and TCR registers are accessible by both
the 80188 core and the host system. However, since the
MAC firmware must use TIR and TCR registers in order
to perform the required MAC protocol operations, and
since it is most convenient and straightforward to keep
all TIR and TCR operations within a single piece of code
(i.e., the MAC firmware), it is recommended that only the
MAC firmware (

not

 the driver software) modify TIR and
TCR settings to accommodate the needs of a particular
PHY implementation.

An API has been defined and is described in another
section of this application note, which allows the user to

create the appropriate calls required in order to allow
the MAC firmware to set up the proper configuration for
any particular Am79C930 application. Other API calls
are needed in order to translate low-level radio instruc-
tions into the particular signalling that is required for the
HARRIS PRISM chipset. A complete description of API
functionality can be found in a later section.

The remainder of this section describes the bit loca-
tions that modify the operational modes of the
Am79C930 device and describes the mode affected by
each bit. The material contained within this section is
intended to serve as a guide in generating the proper
code for each of the API calls that must be written in
order to allow the Am79C930 device and its MAC firm-
ware to communicate with the HARRIS PRISM chipset.
In particular, the API calls that will be affected by the
descriptions in this section are those calls that initialize
the configuration of the Am79C930 device and those
that initialize the configuration of the HARRIS PRISM
chipset.

A summarized version of the register bit locations and
the required register settings for this application are
given in Table 2.

10

Table 2. HSP3824 Register Setting Summary

Register
Number Register Description Type Address

Required
Setting

CR0

Modem configuration register A

R/W 00h 1Ch

CR1

Modem configuration register B

R/W 04h 02h

CR2

Modem configuration register C

R/W 08h 27h

CR3 Modem configuration register D R/W 0Ch 00h
CR4 Internal test register A R/W 10h 00h
CR5 Internal test register B R/W 14h 40h
CR6 Internal test register C R 18h NA
CR7 Modem status register A R 1Ch NA
CR8 Modem status register B R 20h NA
CR9 I/O definition register R/W 24h 00h
CR10 RSSI status register R 28h NA
CR11 A/D Calibration positive R/W 2Ch 01h
CR12 A/D calibration negative R/W 30h FDh
CR13 TX spread code(high) R/W 34h 05h
CR14 TX spread code (low) R/W 38h B8h
CR15 Scramble seed R/W 3Ch 70h
CR16 Scramble tap R/W 40h 48h
CR17 CCA timer threshold R/W 44h 2Ch
CR18 CCA cycle threshold R/W 48h 03h
CR19 RSSI threshold R/W 4Ch 3Fh
CR20 RX de-spread code (high) R/W 50h 05h
CR21 RX de-spread code (low) R/W 54h B8h
CR22 RX bit sync signal quality for acquisition threshold (high) R/W 58h 02h
CR23 RX bit sync signal quality for acquisition threshold (low) R/W 5Ch 10h
CR24 RX bit sync signal quality for acquisition (high) R 60h NA
CR25 RX bit sync signal quality for acquisition (low) R 64h NA
CR26 RX bit sync signal quality for data threshold (high) R/W 68h 0Fh
CR27 RX bit sync signal quality for data threshold (low) R/W 6Ch FFh
CR28 RX bit sync signal quality for data (high) R 70h NA
CR29 RX bit sync signal quality for data (low) R 74h NA
CR30 RX frequency error signal quality for acquisition threshold (high) R/W 78h 00
CR31 RX frequency error signal quality for acquisition threshold (low) R/W 7Ch 90h
CR32 RX frequency error signal quality for acquisition (high) R 80h NA
CR33 RX frequency error signal quality for acquisition (low) R 84h NA
CR34 RX frequency error signal quality for data threshold (high) R/W 88h 09h
CR35 RX frequency error signal quality for data threshold (low) R/W 8Ch 80h
CR36 RX frequency error signal quality for data (high) R 90h NA
CR37 RX frequency error signal quality for data (low) R 94h NA
CR38 RX bit sync signal quality for 802.11 R 98h NA
CR39 Reserved R/W 9Ch NA
CR40 Reserved R/W A0h NA
CR41 Unique word search timeout length R/W A4h 90h
CR42 DBPSK modulation type field value R/W A8h 0Ah

CR43

DQPSK modulation type field value

R/W ACh 14h

CR44

RX service field of 802.11

R B0h NA

CR45

RX MPDU length field (high)

R B4h NA

CR46

RX MPDU length field (low)

R B8h NA

CR47

RX PLCP CRC16 field (high)

R BCh NA

CR48

RX PLCP CRC16 field (low)

R C0h NA

11

Note:

The basic operational mode (PC CARD system
interface bus mode) is selected with a pin-strapping op-
tion through the PCMCIA pin. For this Am79C930/
HARRIS PRISM PC CARD application, the PCMCIA
pin should be connected to VCC.

MIR, TIR, and TCR bit locations not mentioned in this
section are controlled by the MAC firmware that is
shipped with the Am79C930 device. These bit
locations do not need to be altered by API code, hence,
they are excluded from this section.

Register
Number Register Description Type Address

Required
Setting

CR49

Unique Word (high)

R/W C4h F3h

CR50

Unique Word (low)

R/W C8h A0h

CR51

TX service field of 802.11

R/W CCh 00h

CR52

TX MPDU length field (high)

R/W D0h NA

CR53

TX MPDU length field (low)

R/W D4h NA

CR54

TX PLCP CRC16 field (high)

R D8h NA

CR55

TX PLCP CRC16 field (low)

R DCh NA

CR56

TX preamble length

R/W E0h 80h

Table 2. HSP3824 Register Setting Summary

12

Am79C930 Register Settings

MIR8[1:0] FLASHWAIT[1:0]

The FLASHWAIT bits of MIR8[1:0] should be set to
a value that is appropriate for the FLASH being used
in the design. With a 40-MHz signal at the CLKIN

input, the FLASHWAIT bits are interpreted as follows
in Table 3.

Note:

Each wa i t s ta te on the asynchronous
Am79C930 memory interface bus is two CLKIN peri-
ods in length (i.e., at CLKIN = 40 MHz, then two CLKIN
periods = 2*25 ns = 50 ns.)

MIR9[5:4] SRAMWAIT[1:0]

The SRAMWAIT bits of MIR9[5:4] should be set to a
value that is appropriate for the SRAM being used in the

design. With a 40-MHz signal at the CLKIN input, the
SRAMWAIT bits are interpreted as follows in Table 4.

Note:

Each wa i t s ta te on the asynchronous
Am79C930 memory interface bus is two CLKIN peri-
ods in length (i.e. at CLKIN = 40 MHz, then two CLKIN
periods = 2 x 25 ns = 50 ns.)

Additional memory parameter restrictions are as follows
with CLKIN = 40 MHz.

TIR2[2] SDC

TIR2[7:0] should be set to 40h.

The SDC bit of TIR2 determines the polarity of the clock
pulse that will appear on the SDCLK output pin of the
Am79C930 device. A setting of 0 yields a positive going
pulse when the TIR3 register is used for serial commu-
nications. A setting of 1 yields a negative going pulse
when the TIR3 register is used for serial communications.

For RADIO API calls that access the HSP3824, it is
required that the SDC bit of TIR2 be set to 1, in order to
provide the necessary setup and hold time of the serial
data with respect to the serial clock from the Am79C930
device. For RADIO API calls that access other devices
within the PRISM subsystem (such as the HFA3524
dual synthesizer), it is required that the SDC bit of TIR2
be set to 0 in order to provide a positive clock for the
serial data transfer. The switching of the SDC bit of TIR2
from 1 to 0, and vice versa, should occur within the
respective RADIO API calls.

TIR3[7:0] Fast Serial Port

The Fast Serial Port is used for serial communications
with the HSP3824 baseband processor and the
HFA3524 frequency synthesizer devices. The serial
data transferred through this means is used to program
the initial operating state of the HSP3824 device and is
used to program the operating frequencies of the syn-
thesizers in order to tune the radio to the proper channel.
Channel switching is required for periodic scanning op-
erations in order to locate access points for potential
connections, for changing associations from one ac-
cess point to another and for creating

ad hoc

 network
connections. Channel switching is generally automati-
cally performed as part of the MAC management func-
tion and, therefore, is generally transparent to the user.
However, the specific signalling sequence required to

Table 3. FLASHWAIT Bits

FLASHWAIT[1:0] Programmed Value
Number Of Wait States Created On
Am79c930 Memory Interface Bus

Maximum Guaranteed tmAA Access
Time Allowed For Flash Device

11 (RESET default) 3 205 ns
10 2 155 ns
01 1 105 ns
00 0 55 ns

Table 4. SRAMWAIT Bits

SRAMWAIT[1:0] Programmed Value
Number Of Wait States Created On
Am79c930 Memory Interface Bus

Maximum Guaranteed Access tmAA
Time Allowed For SRAM Device

11 (RESET default) 3 205 ns
10 2 155 ns
01 1 105 ns
00 0 55 ns

Table 5. Memory Parameter Restrictions with
CLKIN = 40 MHz

Memory Speed WAIT States

t

ACC

 55 ns MAX, t

CE

 55 ns MAX,
t

OE

 30 ns MAX
0

t

ACC

 105 ns MAX, t

CE

 105 ns MAX,
t

OE

 80 ns MAX
1

t

ACC

 155 ns MAX, t

CE

 155 ns MAX,
t

OE

 130 ns MAX
2

13

program these devices must be coded into an API in
order to allow the MAC code to be independent of PHY
implementation. Therefore, system integrators will write
API code that accesses TIR3 for the purpose of
executing a channel reprogramming operation. This API
routine will be called at the appropriate time and with
the appropriate arguments by the MAC code. The
HSP3824 and frequency synthesizer programming op-
erations are performed through the TIR3 fast serial port.

There are two other modes for operating the serial com-
munications link with the HSP3824 and frequency syn-
thesizer devices. Both of these modes are controlled
with the bits in the TIR2 register and are slower than the

mode that uses the fast serial port (TIR3 register).
Therefore, the TIR3 method of serial transfer has been
chosen. This minimizes code execution time for API
modules that include serial communications between
the Am79C930 and the PHY-layer devices.

Note:

The proper use of the TIR3 register is found in the
Am79C930 data sheet. The description in the data sheet
should be used when writing API modules that require
serial communications with the HARRIS devices.

The HARRIS PRISM chip requires the following timing
to appear on the serial port lines during read and write
operations (see Figures 1 and 2, respectively).

Figure 1. HSP3824 Serial Port Timing Diagram (Read Operation)

Figure 2. HSP3824 Serial Port Timing Diagram (Write Operation)

SDSEL1# (CS)

SDSEL2# (AS)

SDSEL3# (R/W#)

SDCLK (SCLK)

SDDATA (SD)

address data

don't care7 6 5 4 3 2 1 7 6 5 4 3 1 0
MSB MSB

2

SDSEL1# (CS)

SDSEL2# (AS)

SDSEL3# (R/W#)

SDCLK (SCLK)

SDDATA (SD)

address data

don't care7 6 5 4 3 2 1 7 6 5 4 3 1 0
MSB MSB

2

14

The HFA3524 synthesizer chip requires the following timing to appear on the serial port lines:

Figure 3. HFA3524 Serial Port Timing Diagram

TIR26[3] ANTSEN

The ANTSEN bit of TIR26 should be set to a 1 at all
times.

The ANTSEN bit is used to determine the nature of the
signalling that will appear on the ANTSLT and ANTSLT
pins of the Am79C930 device. When ANTSEN is reset
to a 0, then the timing of the signals named above will
be determined by the ANT_SEL state machine in the
TAI portion of the Am79C930 device. The setting of
ANTSEN = ZERO should be used whenever the anten-
na selection will be performed by the Am79C930 device.
A setting of ANTSEN = ONE is used when the ANTSLT
and ANTSLT pins are to be used for any other purpose
in the system. A setting of ANTSEN = ONE disables the
Am79C930 internal antenna selection logic.

Note: In the application described herein, the HARRIS
PRISM chipset will perform the antenna selection func-
tion and, hence, a setting of ANTSEN = ONE should be
used.

When ANTSEN is set to a 1, then the timing of the sig-
nals appearing on the ANTSLT and ANTSLT pins will
be determined by firmware manipulation of the
ANTSLTD bit (TIR26[4]) and the ANTSLTLD bit
(TCR7[1]). For the application described in this applica-
tion note, antenna selection will be performed by the
HSP3824 and, hence, the Am79C930 device ANTSLT
and ANTSLT pins will be available for other use. In the
HARRIS PRISM PC CARD application, ANTSLT and
ANTSLT pins will be used to control the filter selection
in the HFA3724 device. The Am79C930 firmware will
create the appropriate signalling through register bit
manipulation that will occur as part of the RADIO API
call “initialize()”.

TCR7[7:0] User Pins Control

TCR7[7:0] should be set to 02h.

TCR7 controls several functions.

TCR7[7] controls the CTS function of the USER1 pin.
The CTS function is not used for the HARRIS PRISM

PC CARD application, and, therefore, TCR7[7] must be
reset to a 0 in order to disable the function.

TCR7[6] controls the function of the USER6 pin when
the Am79C930 device is operating in ISA PnP mode.
PC CARD mode is used for the HARRIS PRISM PC
CARD application and, therefore, TCR7[6] must be re-
set to a 0.

TCR7[5] controls the function of the USER5 pin when
the Am79C930 device is operating in ISA PnP mode.
PC CARD mode is used for the HARRIS PRISM PC
CARD application and, therefore, TCR7[5] must be re-
set to a 0.

TCR7[4:3] controls the active edge for generation of
interrupts from the USER1/INT188 input to the 80188
core. The USER1 INT188 function is not used for the
HARRIS PRISM PC CARD application and, therefore,
TCR7[4:3] must be reset to ZERO-ZERO binary.

TCR7[2] affects the output value at the TXCMD pin. The
TXCMD function is not used for the HARRIS PRISM PC
CARD application and, therefore, TCR7[2] must be re-
set to a 0.

TCR7[1] affects the output value at the ANTSLT pin. For
the HARRIS PRISM PC CARD application, the ANTSLT
output value will be controlled by the RADIO API call
“initialize().” The initial value for TCR7[1] must be a 1,
since this signal will control the characteristics of a tun-
able filter on the HARRIS PRISM PC CARD.

TCR7[0] affects the output value at the TXDATA pin. The
TXDATA function is not used for the HARRIS PRISM PC
CARD application and, therefore, TCR7[0] must be re-
set to a 0.

TCR8[7:0] Start Delimiter LSB

TCR8[7:0] can be set to any value for IEEE 802.11 pro-
tocol operation, since the start delimiter for the 802.11
DS PHY is only two bytes in length.

TCR8[7:0] is used to match the third arriving byte of the
Start of Frame Delimiter (Unique Word) in incoming and
outgoing frames. This information is used to determine

USER4 (LE)

SDCLK (SCLK)

SDDATA (SD) don't care20 19 18 17 3 2 C2 C1
MSB

1

15

when the MAC CRC state machine should begin calcu-
lation.

TCR9[7:0] Start Delimiter CSB

TCR9[7:0] should be set to A0 for IEEE 802.11 protocol
operation.

TCR9[7:0] is used to match the second arriving byte of
the Start of Frame Delimiter (Unique Word) in incoming
and outgoing frames. This information is used to deter-
mine when the MAC CRC state machine should begin
calculation.

TCR10[7:0] Start Delimiter MSB

TCR10[7:0] should be set to F3 for IEEE 802.11 protocol
operation.

TCR10[7:0] is used to match the first arriving byte of the
Start of Frame Delimiter (Unique Word) in incoming and
outgoing frames. This information is used to determine
when the MAC CRC state machine should begin calcu-
lation.

TCR13[7:0] Pin Configuration A

TCR13[7:0] should be set to FFh.

The TCR13[7:0] bits are used to determine if the I/O
structure at the pin location specified for each bit loca-
tion is to be enabled to drive output values. For the HAR-
RIS PRISM PC CARD application, each of the following
pins will either be used as an output from the Am79C930
device, or as an NC in the design. Therefore, the I/O
structure associated with the pin needs to be enabled
to drive as an output: LNK, LFPE, HFPE, SDCLK,
SDSEL3, SDSEL2, SDSEL1, and RXPE.

TCR14[7:0] Pin Configuration B

TCR14[7:0] should be set to D8h.

The TCR14[7:0] bits are used to determine if the I/O
structure at the pin location specified for each bit loca-
tion is to be enabled to drive output values. For the HAR-
RIS PRISM PC CARD application, USER7, LLOCKE,
USER4, and USER3 will all be outputs from the
Am79C930 device, or will be NC in the design, hence,
TCR14[7:6] and TCR14[4;3] are set to 1. Note that
TCR14[5] is a reserved location and, therefore, must be
reset to a 0.

TCR15[7:0] ANTSLTLEN

TCR15[7:0] should be set to 82h.

The TCR15[7:1] bits are used to determine if the I/O
structure at the pin location specified for each bit
location is to be enabled to drive output values. For the
HARRIS PRISM PC CARD application, ANTSLT and
ACT are outputs or NC in the design, while TXDATA,
TXCMD, RXC, USER6, and USER5 are inputs.

The TCR15[0] bit is used to determine the functionality
of the STSCHG pin. For the HARRIS PRISM PC CARD
application, this pin is not to be used for STSTCHG
functionality; hence, the TCR15[0] bit should be set to 0.

TCR27[7:0] TIP LED Scramble

TCR27[7:0] should be set to 83h.

TCR27 controls several functions.

TCR27[7] controls the RUNERR function. The
RUNERR function is not used for the HARRIS PRISM
PC CARD application. Therefore, TCR27[7] must be set
to a 1 in order to disable the function.

TCR27[6] is reserved and must be reset to 0.

TCR27[5] controls the use of the input signal at the
USER5 input pin for the EXTCS function. For the HAR-
RIS PRISM PC CARD application, the USER5 input
signal is not used for the EXTCS function. Therefore,
TCR27[5] must be reset to 0.

TCR27[4] controls the drive type on the LNK pin. For
the HARRIS PRISM PC CARD application, the LNK pin
drive should be open drain. Therefore, TCR27[4] must
be reset to a 0.

TCR27[3] controls the drive type on the ACT pin. For
the HARRIS PRISM PC CARD application, the ACT pin
drive should be open drain.Therefore, TCR27[3] must
be reset to a 0.

TCR27[2] controls the polarity of the FDET pin. For the
HARRIS PRISM PC CARD application, the FDET pin
is not used, Therefore, TCR27[2] must be reset to a 0.

TCR27[1] controls the polarity of the TXPE pin. For the
HARRIS PRISM PC CARD application, the TXPE pin is
not used. Therefore, TCR27[1] must be reset to a 1.

TCR27[0] controls the polarity of the TXMOD pin. For
the HARRIS PRISM PC CARD application, the TXMOD
pin polarity should be high assert. Therefore, TCR27[0]
must be reset to a 1.

TCR28[7:0] CCA Configuration

TCR28[7:0] should be set to 20h.

TCR28[7:0] controls several functions.

TCR28[7] controls the RXC pin function. The RXC func-
tion of this pin is not used for the HARRIS PRISM PC
CARD application. Therefore, TCR28[7] must be reset
to a 0 in order to disable the function.

TCR28[6] controls the EXTSDF pin function. The
Am79C930 device will perform the Start Delimiter
Detection (Unique Word Detection) for incoming receive
frames and, therefore, TCR28[6] must be set to a 0 in
order to disable the external input function.

TCR28[5] controls the EXTCHBSY pin function. The
HARRIS HSP3824 chip will perform the Clear Channel

16

Assessment function in this application and, therefore,
TCR28[5] must be set to a 1 in order to enable the func-
tion. (Note that ENXCHBSY (TCR28[5]) must also be
set to a 1 in order for the EXTSDF input to be fully func-
tional.)

TCR28[4] controls the Am79C930 device’s use of its
internal antenna diversity decision to control the transi-
tion of the receive state machine from
RCVR_ENABLED to SFD_SEARCH. For the HARRIS
PRISM PC CARD application, the Antenna Diversity
function will be performed by the HARRIS HSP3824
device. Therefore, TCR28[4] must be set to a 0 in order
to allow the RCVR_ENABLED to SFD_SEARCH state
transition to occur unconditionally.

TCR28[3] controls the Am79C930 device’s use of its
internal CCA logic decision to control its internal anten-
na diversity decision. Since neither of these functions
is used in the HARRIS PRISM PC CARD application,
TCR28[3] must be set to a 0.

TCR28[2] controls the Am79C930 device’s use of its in-
ternal baud detect logic output to control its internal an-
tenna diversity decision. Since the Am79C930 device’s
antenna diversity logic is not used in the HARRIS PRISM
PC CARD application, TCR28[2] must be set to a 0.

TCR28[1] controls the Am79C930 device’s use of its
internal baud detect logic output to control its internal
CCA decision. Since the Am79C930 device’s CCA logic
is not used in the HARRIS PRISM PC CARD applica-
tion, TCR28[1] must be set to a 0.

TCR28[0] controls the Am79C930 device’s use of its in-
ternal RSSI threshold comparison logic output to control
its internal CCA and antenna diversity decisions. Since
neither of these functions is used in the HARRIS PRISM
PC CARD application, TCR28[0] must be set to a 0.

TCR30[7] Pin Function and Data Rate

TCR30[7:0] should be set to 89h.

TCR30[7:0] controls several functions.

TCR30[7] controls the ANTSLT pin function. The
ANTSLT pin is used as an output of the Am79C930
device for the HARRIS PRISM PC CARD application.
Therefore, TCR30[7] must be set to a 1 in order to invoke
the proper pin function.

TCR30[6] controls the TXDATA pin function. The TXDA-
TA pin is not used for the HARRIS PRISM PC CARD
application. Therefore, TCR30[6] must be reset to a 0
in order to invoke the proper pin function.

TCR30[5] controls the TXCMD pin function. The TXC-
MD pin is not used for the HARRIS PRISM PC CARD
application and, therefore, TCR30[5] must be reset to a
0 in order to invoke the proper pin function.

TCR30[4] controls the USER7 pin function. The USER7
pin is not used for the HARRIS PRISM PC CARD ap-
plication and, therefore, TCR30[4] must be reset to a 0
in order to invoke the proper pin function.

TCR30[3] controls the direction of the TXC pin. The TXC
pin is an input to the Am79C930 device within the HAR-
RIS PRISM PC CARD application. Therefore, TCR30[3]
must be set to a 1 in order to invoke the proper pin
function.

TCR30[2:0] control the data rate of transmission and
reception of serial network data. The nominal data rate
will be 1 Mbps. The HARRIS PRISM PC CARD system
is capable of switching automatically to a rate of 2 Mbps
as indicated by the device driver software. The rate
switch to 2 Mbps will be performed by setting a dynamic
rate switch bit at the time of transmission for each frame,
if the device driver has indicted that the frame should
be transmitted at the higher rate. The MAC control firm-
ware will set the dynamic rate switch bit as necessary.
The setting of the Data Rate bits in this register should
conform to the nominal rate of 1 Mbps, because the rate
switching mechanism in the Am79C930 device allows
for an automatic internal modification of the Data Rate
bits such that in the middle of a frame to be transmitted
a 2 Mbps, the internal Data Rate bits will automatically
be modified at the correct time to allow the MAC portion
of the frame to be transmitted a 2 Mbps. Therefore, the
proper data rate setting for the HARRIS PRISM PC
CARD application is 1 Mbps. With the CLKIN input fre-
quency set to 40 MHz, TCR30[2:0] must be set to ZERO
ZERO ONE binary in order to invoke the proper 1 Mbps
nominal data rate.

NC Pins Configured As Output

As a general note, unused pins (NC) may have an input/
output structure inside of the Am79C930 device. There-
fore, if the unused pin is left as an NC on the PCB and
the output structure of the Am79C930 device is not driv-
ing a value, then the pin will float and the input structure
could enter a state which sinks a relatively undesirable
amount of DC current, thereby, reducing the effective-
ness of the power-down mode. In order to guarantee
the lowest possible power-down current consumption,

all Am79C930 pins that are NC in the design need to
be configured for output mode of operation

. Following
the register setting recommendations described in this
application note will achieve this objective.

17

Am79C930 Register Settings Summary

Table 6 indicates the required configuration register set-
tings for the Am79C930 device, when combined in a de-
sign with the HARRIS PRISM chip on a PC CARD card.

Host PC/Adapter Card Interaction
Normal system operation (i.e., transmission and recep-
tion of frames) is controlled through the use of a soft-
ware device driver. The device driver will interface with
the Am79C930 device through command, status, and
data structures that exist in the SRAM component of the
system and through registers that are part of the
Am79C930 device. The Am79C930 device, in turn, will
perform all interface functions that are required in order
to operate the remaining system components (i.e., the
HARRIS PRISM chipset).

TX Flow
The Am79C930 device will perform the following func-
tions of the TX operation:

■ Monitor CCA input for TX defer procedure; execute
backoff if necessary

■ Execute TX power ramp-up sequence for radio
when defer=FALSE and a TX frame is queued

■ Generate preamble (uses DMA to transfer to TX
FIFO)

■ Generate Unique Word (uses DMA to transfer to TX
FIFO)

■ Generate PLCP header (uses DMA to transfer to TX
FIFO)

■ Generate PLCP CRC16 value (uses DMA to trans-
fer to TX FIFO)

■ Dynamic rate switch from 1 Mbps to 2 Mbps (if
necessary)

■ Generate MAC header (uses DMA transfer to TX
FIFO)

■ Generate MAC data (uses DMA to transfer to TX
FIFO)

■ Generate MAC CRC32 (generated by TX hardware
state machine)

■ Execute TX power ramp-down sequence for radio
(by TX hardware state machine control)

The transmit operation is initiated by a request from the
software driver to the Am79C930-based adapter card.
The driver will first place the data to be transmitted into
a predefined TX buffer area of the SRAM. The firmware
will poll the TX descriptors at a periodic interval. At the
next poll of the TX descriptors, the firmware will discover
the new TX frame and will initiate the MAC TX Sequence
as follows.

TX SEQUENCE for the Am79C930 Device Generates
and Strips PHY Fields

Note: Only the interaction between the Am79C930 de-
vice and the HARRIS PRISM subsystem is described.

The mode of operation selected for the Am79C930/
HARRIS PRISM chip application is one in which the
Am79C930 device will generate preamble, Unique
Word, and PLCP header for transmission, for an RX
frame, the Am79C930 device will remove these fields.
As such, the first operation for the Am79C930 device in
response to the discovery of a TX frame waiting in the
TX descriptor is to prepare the necessary PPDU(s) from
the MSDU. This step and those that follow in sequence
are described below.

1. The Am79C930 firmware has prepared ahead and
already has enabled the DMA0 engine to move the
preamble plus Unique Word (UW) from a template
in SRAM into the TX FIFO. Effectively, these fields
have been preloaded into the TX FIFO, even before
the device driver has written a descriptor for a trans-
mit frame.

2. The Am79C930 firmware determines whether the
MSDU should be fragmented. If no fragmentation is
needed, then the firmware creates a single “internal
descriptor” which contains the appropriately formed
PLCP header, including a calculated CRC16, and
an appropriately formed MAC header (which was
created by the device driver and passed to the firm-
ware as part of the MSDU “data.” However, the firm-

Table 6. Am79C930 Register Settings

Am79C930
Register Required Configuration Setting

MIR8 08h - 0 wait state FLASH

09h - 1 wait state FLASH

0Ah - 2 wait state FLASH

0Bh - 3 wait state FLASH
MIR9 82h - 0 wait state SRAM

92h - 1 wait state SRAM

write to this register after all other regis-
ters have been configured because the
MIR9[1]=1 setting will prevent writes to

some of the configuration registers
TIR2 40h
TIR11 00h
TIR26 08h
TCR7 02h
TCR8 don’t care
TCR9 A0h
TCR10 F3h
TCR13 FFh
TCR14 D8h
TCR15 82h
TCR27 83h
TCR28 20h
TCR30 89h

18

ware must modify certain bit fields of the MAC
header which the device driver is unable to fill in at
the time of creation). The internal descriptor contains
a pointer which points to the SRAM location that con-
tains the MSDU data that has been passed from the
device driver. If fragmentation is required, then mul-
tiple internal descriptors are created, each contain-
ing a PLCP header and a MAC header for one
fragment, and each pointing to a portion of the
MSDU data that has been passed from the device
driver. The “internal descriptor” structures are not
shared with the device driver. The device driver is
unaware that such descriptors have been created.
The purpose of the internal descriptors is to allow
for fragmentation, if needed, and to create a location
to store the appropriately formed PLCP headers and
modified MAC headers.

Note:The Am79C930 device firmware will compute the
CRC16 for the PHY PLCP, i.e., this operation is not performed
in hardware. The firmware CRC16 operation consists of a few
lookups into a small lookup table. Therefore, the firmware
implementation is quite simple and fast.

3. The Am79C930 firmware monitors CHBSY (CHBSY
is supplied by the PHY through the USER5/EXTCH-
BSY input). The CHBSY signal is available to
Am79C930 firmware as a direct read of a register
bit. Changes to the CCA signal value are signaled
to firmware through interrupts to the embedded
80188 core of the Am79C930 device, or they are
seen as the CHBSY bit is polled, depending upon
which firmware procedure is examining the CHBSY
status.

4. When the Am79C930 device firmware sees
CHBSY=0 (medium IDLE) for the required DIFS time
plus the selected backoff time, then the firmware ini-
tiates the TX operation by asserting the TXS bit of
TIR8.

5. TXCMD - TX_PEB is asserted under state machine
control in response to the assertion of the TXS bit of
TIR8.

6. TXPE - TX_PEA is asserted under state machine
control after a programmable number of bit times.
(The programmable delay time was set during
Am79C930 configuration, as part of an API call.)

7. TXDATA - TXD provides data from the TX FIFO after
a programmable time following the assertion of
TXPE - TX_PEA. (The programmable delay time
was set during Am79C930 configuration, as part of
an API call.)

8. The SFD DETECT logic inside of the Am79C930
device is programmed to recognize the Unique
Word for outgoing transmissions. When the Unique
Word is detected, the Am79C930 device will wait
the programmed PFL time (TCR3[3:0]) and then

begin CRC32 calculation. At the same time that the
CRC32 logic is started, the device will switch clock
rates to allow for a dynamic rate change of the
frame, if needed. The dynamic rate change will
occur if the dynamic rate bit (TIR8[3] has been set.
If the bit has been set, then the preamble, Unique
Word and PLCP header fields will leave the
Am79C930 device at a 1 Mbps rate, and the MAC
header and the remainder of the frame will leave
the Am79C930 device at a 2 Mbps rate.

9. At the end of the data portion of the TX, the TXDATA
pin of the Am79C930 device returns to its default state.

10.After a programmable delay, the TXPE (TX_PEA) pin
will become deasserted.

11.After another programmable delay, the TXCMD -
TX_PEB pin is deasserted, ending the transmission.

Interface Timing
The following timing diagrams indicate the logical signal-
ling that will be generated between the HARRIS DS PHY
chipset and the Am79C930 device for various operations.

Initialization to Receive (RX)

See Figure 4 for the initialization-to-receive timing dia-
gram.

Receive to Transmit to Receive (RX to TX to RX)

See Figure 5 for the receive-to-transmit-to-receive timing
diagram.

Receive (RX) to Sleep

For the SLEEP mode of the HSP3824 and the other
devices of the HARRIS HFA3x24 to be placed into the
sleep mode, the following signals should be placed into
the states shown in Table 7.

Table 7. SLEEP Mode Signal States

Pin Name: AMD_NAME
(HARRIS_NAME)

Pin State During
Sleep Mode

TXCMD (TX_PEB) 0

TXPE (TX_PEA) 0

RXPE (RX_PE) 0

19

Figure 4. Initialization to RX

Ttxon = 100 ns min, 150 ns max; Ttxoff = 1.8 µsec min, 2.0 µsec max

Figure 5. RX to TX to RX

TXCMD (TXPEB)

TXPE (TXPEA)

TXDATA (TXD)

TXC (TXCLK)

USER6/EXTSDF (MD_RDY)

RXPE (RX_PE)

RXD (RXD)

SDSEL1 (CS)

RXCIN (RXCLK)

SDSEL2 (AS)

SDSEL3 (R/W)

SDCLK (SCLK)

SDDATA (SD)

USER5/EXTCHBSY (CCA)

address data address data don't care

TXCMD (TXPEB)

TXPE (TXPEA)

TXDATA (TXD)

TXC (TXCLK)

USER6/EXTSDF
 (MD_RDY)

RXPE (RX_PE)

RXD (RXD)

SDSEL1 (CS)

RXCIN (RXCLK)

SDSEL2 (AS)

SDSEL3 (R/W)

SDCLK (SCLK)

SDDATA (SD)

USER5/EXTCHBSY
 (CCA)

DIFS or SIFS

Ttxon
Ttxoff

valid valid

rx data LSB first

20

RX Flow
The Am79C930 device will perform the following func-
tions of the RX operation:

■ Enable the RX portion of the HSP3824 chipset

■ Monitor USER6/EXTSDF input for RX Unique Word
detection event as signalled by the HSP3824

■ Parse the PLCP header

■ Check the PLCP CRC16

■ Parse MAC header

■ Pass MAC data to the LLC layer

■ Check the MAC CRC32

■ Disable the RX portion of the HSP3824 chipset

The receive operation is enabled by the host driver soft-
ware. Individual receive events are not generally pre-
dictable. Therefore, the receive operation is initiated by
the Am79C930 firmware whenever the transmit opera-
tion is not in progress, the current power savings state
dictates remaining awake, and the host driver software
has enabled the receive operation. An indication from
the HARRIS PRISM chip will begin the sequence that
constitutes the reception of a frame.

RX SEQUENCE for the Am79C930 Device Gener-
ates and Strips PHY Fields

Note: Only the interaction between the Am79C930 device
and the HARRIS PRISM subsystem is described.

The steps of the Am79C930 RX operation in the HAR-
RIS PRISM PC CARD application are listed below:

1. The Am79C930 firmware prepares the DMA1 en-
gine for DMA transfers from the RX FIFO to the next
available RX buffer space. The DMA1 engine is en-
abled.

2. The Am79C930 firmware sets the RXS bit of TIR16
to enable the RX state machine whenever there is
no transmit activity (and the current power savings
state allows it). RX data and RX clock from the de-
coder in the HARRIS HSP3824 arrives at the RXD
and RXCIN inputs. The RX DATA will be descram-
bled by the HARRIS HSP3824 device. RX DATA is
not stored by the Am79C930 device until the Unique
Word has been identified by the SFD detection logic
of the Am79C930 device.

3. Once the Unique Word field has been detected, the
Am79C930 device’s RX state machine will move
from the Unique-Word-search state to the DATA-ac-
cept state. The Am79C930 device will now begin
accepting data at the RXD input and placing it into
the RX FIFO.

4. The first bit that is placed into the RX FIFO is the first
bit of the PLCP header.

5. As RX data continues to arrive, the RX FIFO signals
a request for DMA to the embedded 80188. The
DMA machine moves bytes from the RX FIFO to the
RX buffer in the SRAM.

6. If the incoming RX frame is a 2 Mbps frame, then the
bit rate will change from 1 Mbps to 2 Mbps at the
PHY/MAC boundary. At this point, the RX clock from
the HARRIS HSP3824 will switch from 1 MHz to 2
MHz. The Am79C930 device is able to accept any
RX clock rate at any time, up to a limit of 8 MHz.

7. As RX data continues to arrive, the Am79C930 de-
vice firmware examines the data that has been
placed into the SRAM in order to determine the na-
ture of the RX frame. At this time, PLCP header in-
formation is parsed for correct field values and a valid
CRC16. If the CRC16 value is corrupted, then the
firmware will terminate the reception of the frame at
this point by sending a deassertion pulse on the
RX_PE signal.

Note that the HSP3824 contains an OVERRIDE bit
(CR2[5]) to allow the message to continue despite
the presence of a bad PLCP CRC16 indication. This
allows for the Am79C930 firmware to have complete
control of the subsequent action in the case of a bad
CRC16 value.

8. If CRC16 indication is OK, then RX continues. As
the MAC header is received, the Am79C930 firm-
ware continues to parse incoming fields, determines
future actions (such as responding with a transmis-
sion) and prepares for them by copying appropriate
fields of the MAC header into a TX buffer.

9. When PLCP length (obtained from the PLCP head-
er) number of bytes occurs, the Am79C930 firmware
will deassert the RX_PE signal to end the frame re-
ception to reset the RX portion of the HSP3824.

10.End of reception.

21

API REQUIREMENTS
This section gives examples of the API modules that
are required to be written in order to support the HAR-
RIS PRISM chipset. These modules must then be com-
piled and finally linked with the MAC protocol object
code. The complete list of API modules is found in a
separate document, the Am79C930 Device Driver
Interface Description.

API Procedures
Enable_TX()

This routine keys the transmitter on. It is called after a
frame has been completely formatted and TX_DMA is
programmed. Upon return from this routine, the
Am79C930 device will have started the data transmis-
sion. Any register and transceiver-dependent signalling
that is required to turn the transmitter on will be executed
in this routing, including assertion of the TXS bit of TIR8.

The transceiver will remain in the transmit state until the
transmission is terminated by either the Am79C930
hardware and/or the call tot he Disable_TX routine.

uint8 Enable_TX if Good(uint16 good length, uint8
dma length)

This API call is used by firmware when it is receiving a
frame to which it knows that a response will be sent if
the CRC32 on the frame is good. In order to minimize
the SIFS turnaround of the firmware, this API call is
made a few bytes before the end of the frame being
received. This routine will wait until DMA zero transfer
count has reached DMA length, at which time it will
check if the CRC is good by comparing the Am79C930
CRC good length register with the good length value
passed in the API call. If they match, then this API rout-
ing will start the transmitter and return.

Disable_TX()

Most transceiver transmitters would typically be keyed
off by the Am79C930 hardware which provides auto-
matic termination of the transmission through state ma-
chine generated signals at the Am79C930 pins. After
all bytes of the frame and the CRC have been sent, the
Am79C930 firmware will call this routine. The
Disable_TX routine will key off the transmitter if auto-
matic termination cannot be supported and enable any
RX functions that are required.

reset_CCA()

This routine is called by the firmware whenever it wishes
CCA to clear and start again. The actual steps taken by
this routine will depend on the PHY hardware used, but
as a minimum it must clear any CCA busy indication.

Enable_RX()

This routine is used to enable the receiver and is called
after each transmission. Enable_RX() must also per-
form the equivalent of the reset_CCA function.

Sleep (uint8 Sleep_Lvl)

This routine is used tot put the radio into its low power
consumption Sleep state. Once in the Sleep state, the
Wake routine must be called to resume operation. Dif-
ferent degrees of sleep are allowed by passing a pa-
rameter indicating which level of sleep is currently
desired.

Wake()

The Wake routine will cause the radio to exit the Sleep
state and power up its circuitry. When the routine returns
the radio will be in the Receive state.

Initialize (uint8 Domain)

This routine is called during the firmware’s initialization
procedure. The Am79C930 registers will be pro-
grammed by this routine bringing he Am79C930 to a
known default state. Following Am79C930 initialization,
the transceiver should be reset and then specific regis-
ters programmed, bringing the transceiver to the re-
quired initial default state. This includes a default
channel and power level for the transmitter. The trans-
ceiver may then be programmed for a specific channel
and power setting with the following commands.

The Domain of operation is passed as an argument in
the Initialize() routine in order to allow any special pro-
cessing or function that needs to be performed for a
particular domain to be correctly executed. As an ex-
ample, in the MKK domain, it is a requirement that all
radiators in the 2.4 GHz band send an identification
frame upon power up. In order to allow this function to
be carried out, additional information must be available
in order to form the frame properly, and this information
can be obtained at a fixed location in the code space,
immediately following the normal MIB structures. The
structure that follows contains one byte identifying the
domain, one byte giving a length, and subsequent bytes
that contain any necessary data (MKK Callsign ID, for
example).

Preset_Channel (uint8 Channel)

This routine is called to move the programming informa-
tion for the NEXT channel from the table in the flash into
a next channel information variable in the SRAM, and
also, to copy this same value into the next channel reg-
ister inside of the radio synthesizer, if such a register
exists.

Note: Some radio hardware does not contain a “next
channe l ” reg is te r. For such rad ios, the
Preset_channel() operation will only be able to copy the
next channel information programming information
from the flash tot he SRAM.

A typical application of Preset_channel() is that follow-
ing a Change_channel() call during an FH hop, a
Preset_channel() API call should be executed. This al-
lows the Change_channel() call to be executed at the

22

dwell boundary, thereby, removing the synthesizer
channel information download from the Am79C930 de-
vice to the radio from the critical 240 µsec time allotted
for channel hops.

Preset_channel() will be a null routine for the DS PHY
since this routine is not called by the DS section of
the code.

Change_Channel ()

This routine is called to move the preset channel from
the preset register in the radio hardware’s synthesizer
into the synthesizer’s working register, also inside of the
radio hardware, thereby causing the synthesizer to be-
gin the relock operation which will result in the retuning
of the radio to a new channel. This routine also copies
the next_channel_information variable into the
current_channel_information variable. This copy oper-
ation is required because scanning operations (and oth-
er possible operations) will cause non-hop channel
changes. And, in order to return to the correct channel
at the end of a scan operation, the
current_channel_information must be available to the
scan procedure.

Typically, this routine should cause the assertion of a
SYNTH_LOAD signal that executes a transfer from a
holding register to a working register in the synthesizer.
The intent of having separate Preset_channel() and
Change_Channel() calls is to allow the fastest possible
channel change operation. The Change_channel() call
should NOT perform the transfer of the synthesizer pro-
gramming information from the MAC to the PHY, unless
the PHY does NOT support a preload of the next chan-
nel programming information.

In the case of a radio that does not support the mainte-
nance of next channel information, the
Change_Channel() call will perform the move of the next
channel information from the next_channel_information
variable (in SRAM) to the synthesizer hardware in the
radio. This will be followed by the assertion of whatever
signalling is required to enable the synthesizer to re-sync
according to the new channel programming information.

Change_Channel() will be a null routine for the DS
PHY since this routine is not called by the DS section
of the code.

Force_Channel (uint8 Channel)

This routine is called to change the frequency of the
transceiver to the channel specified in the passed
parameter. The current_channel_information variable
in SRAM is modified.

Force_channel() will typically be used for scanning
operations and for channel changes that are the result
of AP association changes. For the scanning applica-
tion, the main program flow is one where
Force_channel() is called in order to force a channel

change for the scan. Additional channel changes may
be performed during the scan. When the scan operation
has been completed, the MAC Management code of the
Am79C930 firmware will perform a re-sync operation
with the saved state information, thereby solving the
problem of a scan covering multiple hop intervals and
also allowing the current_channel_information to be
modified (since this information is stored at the MAC
management level).

The range of the Channel parameter will depend on the
PHY type being used. Geographic restrictions will also
force the use to subsets of the channel range.

FH = 2 - 95

DS = 1 - 12

IR = n/a

Force_Channel() will be a null routine for the IR PHY
since it has only one defined channel.

Set_Power (uint8 Power_Lvl)

This routine is called to change the output power the
transceiver uses when transmitting to the level specified
in the passed parameter.

The range of the Power_Lvl parameter will depend on
the PHY type being used.

FH = 1 - 4

DS = 1 - n

IR = n/a

Set_Power() will be a null routine for the IR PHY since
it has only one defined output power.

Some radios determine transmit power level by signalling
at the pin level. Therefore, the power level as determined
by the PHY MGMT procedure and communicated with
the Set_Power() call needs to be stored in a variable (e.g.,
TX_Power) such that each time Enable_TX() is called,
the Enable_TX() routine can reference the stored
TX_Power level variable and create the appropriate sig-
nalling for the radio power ramp function.

For a radio that maintains a local copy of the power level
setting (for example, inside of a radio control register),
the Set_Power() API will, in addition to modifying the
FW copy of the global power level variable, execute a
write to the radio’s register.

The API will attempt to get the best fit for the power level
that is communicated without exceeding the requested
power level.

uint8 Get_PHY_Type()

This routine is used to get the type of PHY attached to
the API. The type is hard coded into the API function.
The two supported types are FREQUENCY_HOPPING
and DIRECT_SEQUENCE.

23

uint8 Get_Tx_Preamble_Len(uint8 rate)

This function returns the actual length of the transmit
Preamble that will be DMAed by the firmware when it is
transmitting a frame. The length of the preamble/SFD
is different for each PHY, and in certain implementa-
tions, different for each bit rate.

uint8 Get_Rx_PLCP_Header_Len()

This function returns the number of PLCP header bytes
that will be in received frames. This function is needed
by modules like PHY_Rx for its buffer management.

uint8 Get_Rx_Rate(uint8* PLCP_ptr)

This function is used to obtain the rate from the PLCP
header pointed to by PLCP_ptr. The encoding of the
rate information is different for each PHY. The return
values are ‘0’ for 1 Mbps and ‘1’ for 2 Mbps.

uint8 Get_Tx_PLCP_header_len(uint8 rate)

This function returns the length of the PLCP header in
bytes that must be transmitted for the particular PHY
and data rate. The rate parameter indicates the rate at
which the MAC portion of the frame will be transmitted
and is ‘0’ for 1 Mbps and ‘1’ for 2 Mbps.

uint8 Get_RSSI()

This function returns an RSSI value between 0 and 255,
sampled when this function is called. PHYs that do not
have an RSSI indicator shall return a value of zero. This
function is called by PHY_Rx when it receives the SFD
of a frame.

BOOLEAN Is_PLCP_Header_Good(uint8*
PLCP_ptr)

This function is called by the firmware when it wants to
verify that the PLCP Header pointed to by PLCP_ptr
has a good CRC16. This function returns zero if CRC
was bad and non-zero if CRC was good.

uint16 Get_Length(uint8* PLCP_ptr)

This function extracts and returns the length field from
the PLCP Header pointed to by PLPC_ptr.

Build_PLCP_Header(uint8* PLCP_start, uint16
length, uint8 rate)

This function is called by the firmware to build the PHY
specific PLCP Header in the buffer pointed to by
PLCP_start. The MPDU length and rate information.

uint8* Get_Tx_Preamble(uint8 rate)

This function returns a pointer to the buffer containing the
Preamble that is to be transmitted for each frame. Since
preambles may be different for different rates the rate
parameter is passed to the routine. ‘0’ implies 1 Mbps
and ‘1’ implies 2 Mbps. The Preamble buffer contains the
1-0-1-0 pattern as well as the SFD sequence and any
other special control bytes needed by the PHY. This buffer
must not be changed since the firmware does not copy
it to its own array but uses it in place.

Set_PHY_Rate(uint8 rate)

This function is called to allow the programming of any
PHY specific registers that may be required in order to
change the rate of the PHY. The rate parameter is ‘0’ for
1 Mbps and ‘1’ for 2 Mbps.

The function is called by the firmware when it pre-loads
the TX DMA FIFO with the rate specific preamble for the
next expected transmission.

User_Function()

This API function is called by the firmware once every
time around its main loop. Any function that the integra-
tor may need can be placed here. A byte in the Control
Block is reserved as a means for the driver to commu-
nicate with this function. Possible uses for this function
are, updating any LED’s, monitoring any PHY status
lines, etc.

Unsigned16 rel_time_to_µsec_est()

This API function is called by the firmware in order to
get a quick conversion from the Am79C930 real time
clock to a value in microseconds. This operation is called
at time-critical points in the firmware and, therefore, the
API routine must have a short execution time. An
indexed jump into a small table with interpolations
thereafter would be one possible implementation that
could meet the execution-time criteria. The sample API
routine that is provided is sufficient for all implementa-
tions that use a 32.768kHz crystal. For any system
implementation in which any other value of crystal is
used, this routine needs to be modified to accommodate
the difference in crystal frequency.

Unsigned32 rel_time_to_µsec()

This API function is called by the firmware in order to
get a much more accurate conversion from the
Am79C930 real time clock to a value in microseconds
than the rel_time_to_usec_est() function can provide.
This operation is called at points in the firmware when
execution time is not critical and, therefore, the API rou-
tine should include a much more sophisticated algo-
rithm giving a much more exact conversion. The sample
API routine that is provided is sufficient for all implemen-
tations that use a 32.768 kHz crystal. For any system
implementation in which any other value of crystal is
used, this routine needs to be modified to accommodate
the difference in crystal frequency.

Unsigned32 µsec_to_rel_time()

This routine converts a 32-bit number (max allowed val-
ue 8,000,000) in units of µsecs to 32768 Hz clock ticks.
The conversion is accurate to one tick. Partial ticks are
truncated since the error is not expected to accumulate.
This routine accomplishes the divide by 30.51 µsec by
first multiplying by 512 and dividing by 15625. (equiva-
lent to 32768/1000000). This operation is critical in time!
The sample API routine that is provided is sufficient for

24

all implementations that use a 32.768 kHz crystal. For
any system implementation in which any other value of
crystal is used, this routine needs to be modified to
accommodate the difference in crystal frequency.

pgm_clkgt20()

This routine sets the CLKGT20 bit of the MIR9 register,
since the 80188 microcontroller inside of the
Am79C930 device must be running at 20 MHz
(Am79C930 CLKIN pin = 40 MHz) in order to support
the MIPS requirement of the IEEE 802.11 MAC protocol
firmware. This routine may set the CLKGT20 bit of MIR9
to zero only if non-IEEE 802.11 MAC protocol firmware
is operating and the Am79C930 CLKIN input pin is run-
ning at a frequency of 20 MHz or less.

set_wait_states()

This routine sets the number of wait states to be intro-
duced for SRAM and FLASH memory accesses by al-
tering the contents of the MIR8 and MIR9 registers of
the Am79C930 device. With the Am79C930 CLKIN in-
put running at 40 MHz, memory devices that require a
setting of greater than one wait state will cause improper
function. Memory devices that allow wait state settings
of less than one are allowed for either SRAM or FLASH.

Trademarks

Copyright © 1997 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

